Lab 1: Silver Dollar Game!
CSCI 2101 A — Fall 2018

Due: Sunday, September 16, 11:59 pm
Collaboration Policy: Level 1 (review full policy for details)
Group Policy: Individual

This lab will give you experience writing an object-oriented program in Java as well as working
with one of the simplest types of data structure (an array). To do so, you will write a program
allowing you to play a simple two-player game, the Silver Dollar Game. The rules of the game are
described below, followed by some suggestions for how to go about designing and implementing
your program.

1 Game Rules

The Silver Dollar Game is played between two players. An arbitrarily long strip of paper is marked
off into squares, as pictured below:

The game begins by placing silver dollars in a few of the squares. Each square holds at most
one coin. Interesting games begin with some pairs of coins separated by one or more empty squares.
For example:

O Ol O O

From the starting board configuration, players take turns moving a single coin, constrained by
the following rules:

1. Coins move only to the left.
2. No coin may pass (skip over) another.

3. No square may hold more than one coin.

The game ends once the n coins occupy the leftmost n squares of the board (that is, no further
moves are possible). The final player to move is the winner.

! Adapted from a lab provided with Java Structures, D. Bailey

2 Game Interface

Your program will facilitate playing the Silver Dollar Game using a simple text-based interface.
At the beginning of each round, a textual representation of the board should be printed to the
terminal. The active player (Player 1 or Player 2) should then be prompted for a move, e.g.:

Player 1: Enter your move:

A move should be specified as two integers: a coin number (where the leftmost coin is coin
0) and the number of spaces to move that coin. For example, entering 3 2 says to move coin 3
(the fourth coin) two spaces left. Note that in order to facilitate ease of play, your textual board
representation should make it clear which coin is which (e.g. coin 3 vs coin 4).

For now, you can make the assumption that the user will only enter two numbers when
prompted (and not arbitrary text). Gracefully handling malformed input would be nice, but would
require using exceptions, which we haven’t covered in Java (but you may remember from Python)!

Note that many syntactically-valid moves (two numbers) may still not be valid moves given
the current board configuration. For example, the move 5 3 isn’t valid if there is no coin 5, or if
coin 5 exists but can’t be moved left 3 spaces without falling off the edge of the board or violating
one of the game rules. If such an invalid move is entered, a message indicating as such should be
printed, and the current player should again be prompted for a move, e.g.:

Player 1: Enter your move: 5 3
Illegal move! Try again.
Player 1: Enter your move:

Once the game is won, the final board should be printed along with the winner, e.g.:

Player 2 wins!

3 Program Design

You should write your program in two Java classes — a class called CoinStrip representing the
game board, and a class called PlayGame that actually runs the game. The PlayGame class will just
be a wrapper for your main method, while the bulk of your code will go in the CoinStrip class.

Before you write any code, you should plan out the design of your program. For programs of
any significant complexity, tackling design before beginning to implement is very important. You
should first decide on an internal representation of the coin strip — i.e., the instance variables of
CoinStrip and what they represent. Make sure your representation supports all needed operations,
such as testing for a legal move, printing the board, testing for a win, moving coins, etc. Think
carefully about your representation — the most obvious representation may not be the best one!

Once you have decided on a representation, write down the set of operations offered by your
board. In other words, what are the public methods of CoinStrip, what parameters do they
take, what do they return, and what do they do? Some specific suggestions are provided in the
“Implementation Tips” section below.

Your PlayGame class will simply be a container for your main method, and should not need any
other methods. The main method should create a CoinStrip object representing the board and
then begin prompting the players to make their moves. In other words, the public methods of your
CoinStrip class will be called from within main, which will actually control the game simulation.

4 Implementation Tips

You have significant freedom in deciding how to implement your program (provided it follows the
game rules and interface specifications given above), but this section contains suggestions for how
to approach your implementation.

First, read the CSCI 2101 Coding Design & Style Guide, which is linked from the class
website and available here:

https://www.bowdoin.edu/~sbarker/teaching/courses/fall18/ds/coding.php

This guide provides a summary of important aspects of design and style that you should adhere
to throughout this course and beyond. Pay particular attention to the advice on modularity before
beginning to code; style issues can more easily be corrected later on.

You should build your program incrementally, compiling and testing as you go. Don’t blindly
try to write the entire program before testing anything! An incremental approach will both make
your debugging more efficient as well as help in producing a modular program design. A good
general approach is to write one method, test it to make sure it works as intended, then move onto
another method. Aim for small, compact methods that accomplish specific jobs.

Some more specific pieces of advice are below:

e The simplest data structure to store the game board is an array. You can also use a fancier
data structure like an ArrayList in roughly the same way, but a basic array should be fine
for now. You will still need to consider what the array is actually storing!

e Normally, the design of your methods (i.e., the interface of the CoinStrip class, as used by
the PlayGame class) would be fully left up to you. However, since this is your first program,
two specific methods are suggested: one that checks if a given move is valid (i.e., whether it
is a legal next move) and another that actually performs a given move. You will still need
to decide what parameters these methods will need (e.g., how a move is specified when you
call the method) as well as what, if anything, they will return. Note that you will likely want
other methods in addition to these suggested two.

e The use of the static keyword is often a source of confusion for beginners in Java. For this
lab, we’ll keep things easy for you — the only places you should use static in this lab are (1)
your main method declaration, and (2) the declarations of any constants you use. All other
methods (besides main) should not be marked static, and none of your instance variables
should be marked static. We will be talking more about static in the next few classes.

e Use the built-in Scanner class to handle reading user input, as demonstrated in class. Re-
member that you will need to include java.util.Scanner in order to use the Scanner class.

e Use the built-in Random class to generate the initial board configuration (you’ll need to include
java.util.Random). Remember that a Random object is a random number generator, not
a random number itself. Random integers can be retrieved from the generator using the
nextInt method.

e One of your challenges is to generate the initial board configuration. You can either just pick
a fixed number of coins to place (e.g., 3 or 4) or you can randomize the number of coins. In
either case, you will still need to decide how to assign the starting coin positions.

e One of the most important functions of your program is generating the textual board rep-
resentation to print each round. This representation should be returned by the toString
method of the CoinStrip class. It’s a good idea to start with a very simple representation,
such as the one below:

Once that’s working, and possibly when everything else is working as well, you can change
toString to return a fancier representation such as the one below:

e et T L e kel S e S s

e

e et T e s S e etk ST P

Note that while you are not required to produce a nicer representation like this one, it’s a
good programming exercise to do so!

5 Thought Questions

Once your program is finished, consider and answer the following questions:

1. How might one pick game sizes (number of coins) such that one has a 50% chance of three
coins, a 25% chance of four coins, a 12.5% chance of five coins, and so on?

2. Does your method of generating the starting configuration guarantee that the game is not
an immediate win? If not, how might you change your approach to enforce that guarantee
(without just adding some blank spaces to the left of an existing configuration)?

3. A similar game, called Welter’s Game (after C. P. Welter, who analyzed the game), allows
the coins to pass each other. Would this rule modification change your implementation
significantly? Why or why not?

Write your answers in the README.TXT file that is automatically generated by BlueJ (which
you can also open by double-clicking the page icon in the BlueJ window). You should also include
your name (but can delete everything else that BlueJ automatically puts in that file). If there is
any other information you would like to submit with your program, you may include it here as well.

6 Evaluation

Your completed program will be graded on correctness, design, and style. Make sure that your
program is documented appropriately and is in compliance with the Coding Design & Style Guide.
Especially for this lab, (re)-read the coding guide once your program is finished to make sure
you haven’t overlooked any important points. Lastly, make sure your name is included in all of
your important files: CoinStrip.java, PlayGame. java, and your README. TXT file.

! Important !!! Points may be deducted if your name is missing from your files or if your
project directory is improperly named (see below for naming instructions).

7 Submitting Your Program
Once your program is finished, you should follow the following steps to submit:

1. Save your program and quit BlueJ (this is necessary because BlueJ gets confused if you
perform step 2 — renaming your project directory — while the project is open).

2. Rename your project folder (which is the folder that contains your .java files,
package.bluej, and possibly a few other files) so that it is named username-labl,
where username is replaced by your Bowdoin username. For example, I would
rename my folder sbarker-labl. Do not include anything else in the folder name!

3. Create a single, compressed .zip archive of your project folder. On a Mac, right-click (or,
if you have no right mouse button, control-click) on your project folder and select “Com-
press your-folder-name” from the menu that appears. On a Windows machine, right-click
on the folder, select “Send To,” and then select “Compressed (zipped) Folder.” In either
case, you should now have a .zip file that contains your project, named something like
sbarker-labl.zip (with your actual username).

4. Open a web browser and go to the course’s Blackboard page, then browse to Lab Submissions.
Click on Lab 1 and then Start New Submission. Don’t write any comments in Section 2,
as [will not see them. Then select Browse My Computer and browse to the .zip file you
created in step 3. Select that file, then click on Submit.

After submitting your lab, remember to save a copy of your project folder somewhere other
than on the desktop of the machine you are working on (if you’re on a lab machine). If you just
leave it on the desktop, it will only be available on that machine — if you log into any other machine
on campus, it will not be there. You can also store your projects in Dropbox (or any similar service)
or in your folder on the microwave server (see below).

Connecting to the microwave server

All students have storage space available on the microwave file server, which you can use to store
your labs. The benefit of using this server is that you can access your microwave folder from any
machine on campus, not just the specific lab machine on which you were last working.

To connect to microwave on any lab Mac, click on the Desktop, then select “Connect to
Server” under the Go menu (or just command-K). In the window that appears, type the following
(substituting your actual username for the word username):

smb://microwave.bowdoin.edu/home/username

Click Connect and enter your Bowdoin password when prompted. A folder should then appear
on the desktop named with your username. This is your microwave folder, in which you can store
your labs when you are finished with them (or leaving but returning to work later). However, you
should not work directly on files on microwave. While you are actively writing your program, you
should copy your project folder to a “local” area first, such as the desktop. Once you are finished
working, you can copy your files back to microwave.

