
Lab Interlude: Algorithm Analysis
CSCI 2101 – Fall 2018

Due: Tuesday, October 2, 11:59 pm (firm; no flex days may be used)
Collaboration Policy: Level 1
Group Policy: Individual

In lieu of a regular programming lab, this week’s exercise is to explore the fundamentals of
algorithm analysis and Big-O notation. You may either type or handwrite (neatly!) your solutions.
Upload your solutions electronically (e.g., by scanning) to Blackboard.

1. Show that 2n+1 is O(2n) by finding c and n0 to satisfy the big-O requirement. Explain why
your chosen values work.

2. Show that 22n is not O(2n) by showing that it is not possible to find c and n0 to satisfy the
big-O requirement. Note that 22n = (2n)2.

3. Give a big-O characterization (and brief justification) of the running time, in terms of n, of
each of the following five loops. Think in terms of the number of loop iterations that will be
required. Note that the sum of the arithmetic sequence 1, 2, 3, · · · , k is k

2 (1 + k).

4. Given an ArrayList of initial size n, give a big-O characterization (and justification) of the
running time of the following Java function, in terms of n:

public void doubleList(ArrayList<Integer> myList) {

int size = myList.size();

for (int i = 0; i < size; i++) {

int pos = rand.nextInt(myList.size()); // rand is a Random object

myList.add(pos, i);

}

}

Would your answer change if the the fourth line instead read “int pos = myList.size();”?
If so, what would be the new running time and why?

5. Explain whether the following statement is true or false:

“If choosing between an O(n log n) algorithm and an O(n2) algorithm to solve a
problem on a specific input, it is always better to use the O(n log n) algorithm.”

Assume that the two algorithms use equivalent space and that the algorithms are already im-
plemented (so you do not need to worry about the difficulty of implementation, for instance).

1


