
Sean Barker

Time and Clocks

1

Sean Barker

Event Ordering in Make

2

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned

an earlier time

3

CS677: Distributed OSComputer Science Lecture 11, page

Physical Clocks: A Primer
• Accurate clocks are atomic oscillators (one part in 1013)
• Most clocks are less accurate (e.g., mechanical watches)

– Computers use crystal-based blocks (one part in million)
– Results in clock drift

• How do you tell time?
– Use astronomical metrics (solar day)

• Coordinated universal time (UTC) – international standard based on atomic
time

– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Need to synchronize machines with a master or with one another

4

Sean Barker

???

3

Atomic Clock!

Sean Barker

Clock Synchronization

4

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

5

CS677: Distributed OSComputer Science Lecture 11, page

Cristian’s Algorithm

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

6

Sean Barker

Cristian’s Algorithm

5

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

5

CS677: Distributed OSComputer Science Lecture 11, page

Cristian’s Algorithm

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

6

time server

time

network

process P

t
treq

treply

Sean Barker

Berkeley Algorithm

6

Leader sends time Followers send skews Leader averages,
sends offsets

Sean Barker

Network Time Protocol (NTP)

7

3/14/14

6

31

NTP Clock Strata
•  Stratum 0: atomic clocks, GPS clocks,

radio clocks

•  Stratum 1: Time servers, attached
directly to Stratum 0 devices

•  Stratum 2: Send requests to one or
more Stratum 1 time servers

•  Stratum 3: Send requests to one or
more Stratum 2 computers

•  And so on…

•  Up to 256(!) strata levels supported
in current version of NTP

32

NTP Modes

•  Multicast (for quick LANs, low accuracy)
•  Server periodically sends its actual time to its

leaves in the LAN

•  Procedure call (medium accuracy)
•  Server responds to requests with actual

timestamp (like Cristian’s algorithm)

•  Symmetric mode (high accuracy)
•  Used to synchronize between pairs of time

servers

33

Synchronizing NTP Servers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

•  All messages sent using UDP
•  Each message bears timestamps of recent events:

•  Local times of Send and Receive of previous message

•  Local times of Send of current message

•  Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

34

Accuracy of NTP

•  For each pair of messages between two servers, NTP
estimates an offset o between the two clocks, and a delay di
(total time for the two messages, which take t and t’)
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o

•  This gives us (by adding the equations) :
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1

•  Also (by subtracting the equations)
o = oi + (t’ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

•  Using the fact that t, t’>0 it can be shown that
oi - di /2 � o � oi + di /2 .
•  Thus oi is an estimate of the offset and di is a measure of the accuracy

35

NTP Summary

•  Goal is to estimate offset and delay
•  NTP server filters pairs of <o,d>, saves 8 latest
•  Use o with smallest d

36

Marzullo’s Algorithm
•  NTP servers filter pairs <oi, di>, estimating reliability from

variation, allowing them to select “good” peers

•  NTP servers use an algorithm developed by Keith Marzullo to
choose a time value given a bunch of varying samples

Stratum
Levels

Sean Barker

Logical Clocks

8

3/14/14

7

37

NTP Statistics

•  In 1999 there were 175,000 hosts running NTP in
the Internet

•  Among these there were:
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)
•  Over 20,000 servers at Stratum 2

•  Over 80,000 servers at Stratum 3

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)

38

Logical Clocks

39

Logical Time and Logical Clocks
•  Instead of synchronizing clocks, event ordering can be used
•  Rules:

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is →

2. When a message m is sent between two processes, send(m) happened
before receive(m)

3. The happened before relation is transitive

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40

Happened Before Relation
•  What do we know about events a, b, c, d, e?

•  Rule 1: a → b (at p1), c → d (at p2)
•  Rule 2: b → c (by m1), d → f (by of m2)
•  Rule 3: a → b → c → d → f = a → f

•  What do we know about a and e?
•  No relation - they are concurrent: a || e

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41

Lamport’s Logical Clocks
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1
•  LC2:
•  (a) when process pi sends message m, it piggybacks on m the value t = Li

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42

Lamport’s Logical Clocks
•  Each of p1, p2, p3 has its logical clock initialized to zero
•  The clock values on events are those immediately after the event

•  e.g. 1 for a, 2 for b.
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3
•  Note that e → e’ implies L(e) < L(e’)
•  Does L(e) < L(e') imply e → e’ ?

•  No! The converse is not true: L(e) < L(e') does not imply e → e’

•  Example: L(e) < L(b) but b || e

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Lamport Clocks

9

3/14/14

7

37

NTP Statistics

•  In 1999 there were 175,000 hosts running NTP in
the Internet

•  Among these there were:
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)
•  Over 20,000 servers at Stratum 2

•  Over 80,000 servers at Stratum 3

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)

38

Logical Clocks

39

Logical Time and Logical Clocks
•  Instead of synchronizing clocks, event ordering can be used
•  Rules:

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is →

2. When a message m is sent between two processes, send(m) happened
before receive(m)

3. The happened before relation is transitive

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40

Happened Before Relation
•  What do we know about events a, b, c, d, e?

•  Rule 1: a → b (at p1), c → d (at p2)
•  Rule 2: b → c (by m1), d → f (by of m2)
•  Rule 3: a → b → c → d → f = a → f

•  What do we know about a and e?
•  No relation - they are concurrent: a || e

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41

Lamport’s Logical Clocks
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1
•  LC2:
•  (a) when process pi sends message m, it piggybacks on m the value t = Li

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42

Lamport’s Logical Clocks
•  Each of p1, p2, p3 has its logical clock initialized to zero
•  The clock values on events are those immediately after the event

•  e.g. 1 for a, 2 for b.
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3
•  Note that e → e’ implies L(e) < L(e’)
•  Does L(e) < L(e') imply e → e’ ?

•  No! The converse is not true: L(e) < L(e') does not imply e → e’

•  Example: L(e) < L(b) but b || e

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Vector Clocks

10

3/14/14

8

43

Vector Clocks

•  How can we overcome the limitation of Lamport’s logical
clocks?
•  Problem: L(e) < L(e’) does not imply e happened before e’

•  If L(e) < L(e’), we want to know for sure that e happened
before e’

•  Solution: Vector clocks
•  Vector timestamps (rather than a single number) are used to timestamp

local events
•  Vector clock Vi[i] is the number of events that pi has timestamped
•  Vi[j] (j � i) is the number of events at pj that pi has been affected by

•  Vector clocks are used in many schemes for replication of
data to ensure consistency

44

Vector Clocks
•  Vector clock Vi at process pi is an array of N integers
•  Rules for determining vector clocks:

•  VC1: Initially Vi[j] = 0 for i, j = 1, 2, …N
•  VC2: Before pi timestamps an event, it sets Vi[i] = Vi[i] +1
•  VC3: pi piggybacks t = Vi on every message it sends

•  VC4: When pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) j = 1, 2, …N
–  Then before next event occurs adds I to Vi[i] using VC2

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

45

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks
•  At p1: a(1,0,0), b(2,0,0), piggyback (2,0,0) on m1

•  At p2: On receipt of m1 get max ((0,0,0), (2,0,0)) = (2,0,0), and add 1 to
own element in clock = (2,1,0) for event c

•  At p3: On receipt of m2 get max ((0,0,1), (2,2,0)) = (2,2,1) and add 1to
own element in clock

•  What’s the meaning of =, <=, max etc for vector timestamps?
•  Compare elements pairwise

•  Note that e → e’ still implies L(e) < L(e’)
•  And now the converse is also true (L(e) < L(e’) imples e → e’)
•  Can you see a pair of parallel events?

•  c || e because neither V(c) <= V(e) nor V(e) <= V(c)

46

Summary: Time and Clocks in
Distributed Systems

•  Accurate timekeeping is important for distributed systems
•  Algorithms (e.g. Cristian’s and NTP) synchronize clocks in

spite of their drift and the variability of message delays

•  For ordering of an arbitrary pair of events at different
computers, clock synchronization is not always practical

•  The happened-before relation is a partial order on events that
reflects a flow of information between them

•  Lamport clocks are counters that are updated according to
the happened-before relationship between events.

•  Vector clocks are an improvement on Lamport clocks
•  We can tell whether two events are ordered by happened-before or

are concurrent by comparing their vector timestamps

47

Moving on…

48

Coordination

•  Distributed processes often need to coordinate their
activities

•  If the processes share a resource or collection of
resources, then mutual exclusion is required to
ensure consistency
•  Often called the critical section problem
•  Discussed in detail in OS courses

•  In this class we need distributed mutual exclusion
•  Mutual exclusion that is based solely on message passing

