
Sean Barker

Servers

1

Sean Barker

Client-Server Architecture

2

2/11/14

2

Client-Server
Client

Client

Client

ClientClient

Server

request

request

re
qu

es
t

request

request
reply

reply

re
ply

reply

reply

Clients and Servers
•  Server tasks

•  Listen, accept, receive, send, loop

•  Client tasks
•  Connect, request, receive, close

Implementing a Server

•  How do we create the network connections?
•  Sockets!
•  Java uses ServerSockets (and Sockets for clients)
•  C/C++ makes no distinction between client and

server connections

•  How does the server support multiple clients
at once?
•  Using multiple threads or processes
•  Using an event queue

File Descriptors

•  File descriptors
•  Most I/O on Unix systems take place through read and

write system calls
•  Read and write operations are performed on file

descriptors
•  Non-negative integers that are created using system calls (like

open(), socket(), accept())
•  They remain bound to files/sockets even when they are renamed

or deleted

•  Popular file descriptors
•  0 = stdin, 1 = stdout, 2 = stderr

File I/O

•  System calls for file I/O:
•  int open(char *path, int flags, …)
•  int read(int fd, void *buf, int nbytes)
•  int write(int fd, void *buf, int nbytes)

•  Example using files
•  Read from “a.txt” and write to stdout

Introduction to Sockets
•  Sockets are like file descriptors for network connections
•  Create new sockets using socket()

•  Just like open() for files
•  int socket(int domain, int type, int protocol)
•  For TCP over IP

•  domain = AF_INET
•  type = SOCK_STREAM
•  protocol = 0, or IPPROTO_TCP

•  But unlike files, sockets require more info to be
functional
•  They need an IP address and port

Sean Barker

File I/O: File Descriptors

int open(char* path, int flags, ...)

int read(int fd, void* buf, int nbytes)

int write(int fd, void* buf, int nbytes)

int close(int fd)

3

Sean Barker

Socket I/O: socket

int socket(int domain, int type,
 int protocol)

• domain = AF_INET
• type = SOCK_STREAM
• protocol = 0 (or IPPROTO_TCP)

4

Sean Barker

Socket I/O: bind

int bind(int sock, struct sockaddr* addr,
 int addrlen)

• sock = socket file descriptor
• addr: see below
• addrlen = sizeof(addr)

struct sockaddr_in {
 short sin_family; // --> AF_INET
 u_short sin_port; // --> htons(portnum)
 struct in_addr sin_addr;
 // --> .s_addr = htonl(INADDR_ANY)
}

5

Sean Barker

Socket I/O: listen

int listen(int sock, int backlog)

• sock = socket file descriptor
• backlog = max # of unaccepted
connections (e.g. 10)

6

Sean Barker

Socket I/O: accept

int accept(int sock, struct sockaddr* addr,
 int* addrlenp)

• sock = listening socket
• addr gets filled in with client info
• addrlen = pointer to sizeof(struct
sockaddr_in)

7

Blocking call!

Sean Barker

Socket I/O: send/recv

int send(int sock, char* buf, size_t len,
 int flags)

int recv(int sock, char* buf, size_t len,
 int flags)

or, higher level: fdopen to open stream from FD, then
 fgets, fprintf, ...

8

Sean Barker

Client-Server Architecture

9

2/11/14

2

Client-Server
Client

Client

Client

ClientClient

Server

request

request

re
qu

es
t

request

request
reply

reply

re
ply

reply

reply

Clients and Servers
•  Server tasks

•  Listen, accept, receive, send, loop

•  Client tasks
•  Connect, request, receive, close

Implementing a Server

•  How do we create the network connections?
•  Sockets!
•  Java uses ServerSockets (and Sockets for clients)
•  C/C++ makes no distinction between client and

server connections

•  How does the server support multiple clients
at once?
•  Using multiple threads or processes
•  Using an event queue

File Descriptors

•  File descriptors
•  Most I/O on Unix systems take place through read and

write system calls
•  Read and write operations are performed on file

descriptors
•  Non-negative integers that are created using system calls (like

open(), socket(), accept())
•  They remain bound to files/sockets even when they are renamed

or deleted

•  Popular file descriptors
•  0 = stdin, 1 = stdout, 2 = stderr

File I/O

•  System calls for file I/O:
•  int open(char *path, int flags, …)
•  int read(int fd, void *buf, int nbytes)
•  int write(int fd, void *buf, int nbytes)

•  Example using files
•  Read from “a.txt” and write to stdout

Introduction to Sockets
•  Sockets are like file descriptors for network connections
•  Create new sockets using socket()

•  Just like open() for files
•  int socket(int domain, int type, int protocol)
•  For TCP over IP

•  domain = AF_INET
•  type = SOCK_STREAM
•  protocol = 0, or IPPROTO_TCP

•  But unlike files, sockets require more info to be
functional
•  They need an IP address and port

Sean Barker

Processes and Threads

10

Sean Barker

Processes and Threads

Creating Processes:
int fork()

Creating Threads:
 int pthread_create(pthread_t* thr,

const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg)

attr: usually NULL
start_routine: function to execute
arg: argument to function

11

