
Sean Barker

Giant-Scale Services

1

Sean Barker

Basic Service Architecture

2

2/20/14

3

Benefits of Network Services
•  Access anywhere, anytime

•  This is even more true now than it was in 2001
•  Cloud computing?

•  Availability via multiple devices
•  Also more true…

•  Groupware support
•  Calendaring, teleconferencing, messaging, etc.

•  Lower overall cost
•  Multiplex infrastructure over active users
•  Dedicated resources are typically at least 96% idle
•  Central administrative burden, simplified end devices

•  Simplified service updates
•  Update the service in one place, or 100 million?

Network Service Components

1
2

3

4 Server

5

6

Clusters as Building Blocks
•  No alternative to clusters for building network

services that can scale to global use
•  Do you think this is still true? (What about P2P? Clouds?

Are clouds=clusters?)

•  Key question: what is the lowest-level building block
of a cluster?
•  Commodity processors or higher-end “super-computer”?

•  Cluster benefits:
•  Incremental scalability

•  Adding one machine typically linearly improves performance

•  Independent components
•  Cost and performance

•  Brewer advocates extreme symmetry. Why?

Load Management

•  Started with “round-robin” DNS in 1995
•  Map hostname to multiple IP addresses, hand out

particular mapping in a round robin fashion to clients
•  Does not hide failure or inactive servers

•  Exposes structure of underlying service

•  Today, “fancy” L4 and L7 switches can inspect TCP
session state or HTTP session state
•  Perform mapping of requests to back end servers based

on dynamically changing membership information

F5 Networks 3DNS
Load Management Option 1: !

Service Replication

Sean Barker

DNS Load Balancing Example

3

Sean Barker

Load Management: Replication

4

2/20/14

3

Benefits of Network Services
•  Access anywhere, anytime

•  This is even more true now than it was in 2001
•  Cloud computing?

•  Availability via multiple devices
•  Also more true…

•  Groupware support
•  Calendaring, teleconferencing, messaging, etc.

•  Lower overall cost
•  Multiplex infrastructure over active users
•  Dedicated resources are typically at least 96% idle
•  Central administrative burden, simplified end devices

•  Simplified service updates
•  Update the service in one place, or 100 million?

Network Service Components

1
2

3

4 Server

5

6

Clusters as Building Blocks
•  No alternative to clusters for building network

services that can scale to global use
•  Do you think this is still true? (What about P2P? Clouds?

Are clouds=clusters?)

•  Key question: what is the lowest-level building block
of a cluster?
•  Commodity processors or higher-end “super-computer”?

•  Cluster benefits:
•  Incremental scalability

•  Adding one machine typically linearly improves performance

•  Independent components
•  Cost and performance

•  Brewer advocates extreme symmetry. Why?

Load Management

•  Started with “round-robin” DNS in 1995
•  Map hostname to multiple IP addresses, hand out

particular mapping in a round robin fashion to clients
•  Does not hide failure or inactive servers

•  Exposes structure of underlying service

•  Today, “fancy” L4 and L7 switches can inspect TCP
session state or HTTP session state
•  Perform mapping of requests to back end servers based

on dynamically changing membership information

F5 Networks 3DNS
Load Management Option 1: !

Service Replication

Sean Barker

Load Management: Partitioning

5

2/20/14

4

Load Management Option 2: !
Service Partitioning

Case Study: Search
•  Map keywords to a set of documents containing all words

•  Optionally rank the document set in decreasing relevance
•  E.g., PageRank from Google

•  Need a web crawler to build inverted index
•  Data structure that maps keywords to list of all documents that

contains that word

•  Multi-word search
•  Perform join operation across individual inverted indices

•  Where to store individual inverted indices?
•  Too much storage to place all on each machine (esp if you also

need to have portions of the document avail as well)

Partitioning Keywords in Search
•  Think about keywords as columns and documents as rows
•  Vertical partitioning

•  Split inverted index across multiple nodes (nodes=data storage devices)

•  Each node contains as much of index as possible for a particular keyword
•  Essentially like reducing the number of columns in table, and using extra

tables to store remaining columns

•  Horizontal partitioning
•  Each node contains portion of inverted index for all keywords

•  Have to visit every node in system to perform full join (or search)
•  Essentially like splitting table up into multiple tables (with same number of

columns) by putting different (complete) rows in different tables

Replication versus Partitioning

•  Replication
•  Any replica can serve any request
•  Failure reduces system capacity but not data availability
•  Must make sure replicas are kept in-sync

•  Partitioning
•  Nodes are no longer identical so certain requests need to

be sent to individual nodes
•  No need for coherence traffic for syncing data
•  Failure reduces data availability and may reduce capacity

•  Optimal solution? Which is better?

Availability Metrics

•  Mean time between failures (MTBF)
•  Mean time to repair (MTTR)
•  Availability = (MTBF – MTTR)/MTBF
•  Can improve availability by increasing MTBF

or by reducing MTTR
•  Ideally, systems never fail but much easier to test

reduction in MTTR than improvement in MTBF

•  Uptime: fraction of time service is handling
traffic (usually measured in “nines”)

Harvest and Yield

•  yield = queries completed/queries offered
•  In some sense more interesting than availability

because it focuses on client perceptions rather
than server perceptions

•  If a service fails when no one was accessing it…

•  harvest = data available/complete data
•  How much of the database is reflected in each

query?

•  Should faults affect yield, harvest, or both?

Sean Barker

Measuring Availability

6

Mean time between failures (MTBF)
Mean time to repair (MTTR)

Availability = (MTBF – MTTR) / MTBF

Uptime ('nines')

Sean Barker

Yield, Harvest, and DQ Principle

7

data per query * queries per second = DQ constant

yield = queries completed / queries offered
harvest = data available / complete data

