
Sean Barker

Email

1

Sean Barker

Simple Mail Transfer Protocol (SMTP)

2

3/7/14 

6 

31

Java RMI vs. XML-RPC

•  Java RMI is arguably simpler 
•  Programs look a bit more “normal”
•  Can serialize (by implementing Serializable) and 

return different objects 
•  (See example)

•  XML-RPC is more flexible
•  Can interact (easily) with other XML-RPC clients 

written in different languages
•  But procedure calls are somewhat limiting
•  Difficult to send non-standard objects
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Take-Away Message

•  RPCs handle the marshaling and unmarshaling 
of data automatically

•  Also handle threading, message formatting, 
socket creation, etc.

•  Designed to simplify network programming 
through familiar programmatic abstractions

•  You should appreciate all of this after building 
your web servers!
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Intro to Email: !
Terminology

•  Mail User Agent: end-user email program
•  Mail Transfer Agent: program responsible for 

communicating with remote hosts and 
transmitting/receiving email
•  Think of this as the mail server software

•  Mail Exchanger: host with specific IP address 
(registered with DNS) that takes care of email 
for a domain
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SMTP

•  Used to exchange mail messages between mail 
servers (Message Transfer Agents)
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SMTP Protocol

•  SMTP sender is the client
•  SMTP receiver is the server
•  Alternating dialogue:
•  Client sends command and server responds with 

command status message
•  Order of the commands is important
•  Status messages include ASCII encoded numeric status 

code (like HTTP) and text string
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POP – Post Office Protocol

•  Used to transfer mail from a mail server to a 
MUA

Mail
Server MUA

File
System

POP
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POP (version 3)

•  Similar to SMTP command/reply lockstep 
protocol

•  Used to retrieve mail for a single user
•  Requires authentication

•  Commands and replies are ASCII lines
•  Replies start with “+OK” or “-ERR”. 
•  Replies may contain multiple lines
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POP-3 Commands
•  USER - specify username
•  PASS - specify password 
•  STAT - get mailbox status

•  Return number of messages in the mailbox

•  LIST - get  a list of messages and sizes
•  One per line, termination line contains ‘.’ only

•  RETR - retrieve a message
•  DELE - mark a message for deletion from the mailbox
•  NOOP - send back positive reply
•  RSET - reset; all deletion marks are unmarked
•  QUIT - remove marked messages and close the (TCP) 

connection
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A POP3 Exchange
albrecht:~ telnet fuji.cs.williams.edu 110 !
Trying 137.165.8.2... !
Connected to fuji.cs.williams.edu. !
Escape character is '^]'. !
+OK POP3 at fuji.cs.williams.edu server ready  
USER jcool !
+OK Name is a valid mailbox !
PASS nomoresnow !
+OK jeannie has 1 visible message in 1761 octets. !
STAT !
+OK 1 1761!
LIST !
+OK 1 visible messages (1761 octets) !
1 1761!
.
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POP3 Example Continued

•  RETR 1!
+OK 1761 octets!
Received: from fuji.cs.williams.edu
From: “Jeannie Albrecht” <jeannie@cs.williams.edu>
To: <jeannie@cs.williams.edu>
Subject: test
Date: Tue, 11 Mar 2014 10:31:21 -0400

    Content-Type: text/plain;charset=“US-ASCII”

test
.
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IMAP

•  IMAP stands for Internet message access 
protocol

•  Very widely used today
•  Used to transfer messages from server to 

client
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Internet Message Access Protocol (IMAP)
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Receiving Email in Porcupine
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Basic Data Structures
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Porcupine Performance
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Figure 8. Performance improvement on a 30-node
Porcupine cluster without replication when disks are
added to a small number of nodes.
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Figure 9. Performance improvement on a 30-node
Porcupine cluster with replication when disks are
added to a small number of nodes.

policies with larger spread sizes will be penalized more by
increased frequency of directory operations.

6.3.2 Adapting to heterogeneous configurations
As mentioned in the previous section, the easiest way to im-
prove throughput in our configuration is to increase the sys-
tem’s disk I/O capacity. This can be done by adding more
machines or by adding more or faster disks to a few ma-
chines. In a statically partitioned system, it is necessary to
upgrade the disks on all machines to ensure a balanced per-
formance improvement. In contrast, because of Porcupine’s
functional homogeneity and automatic load balancing, we
can improve the system’s overall throughput for all users
simply by improving the throughput on a few machines. The
systemwill automaticallyfind and exploit the new resources.

Figures 8 and 9 show the absolute performance improve-
ment of the 30-node configuration when adding two fast
SCSI disks to each of one, two, and three of the 300Mhz
nodes, with and without replication. The improvement for
Porcupine shows that the dynamic load balancing mecha-
nism can fully utilize the added capacity. Here, spread=4
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Figure 10. Reconfiguration timeline without replica-
tion.
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Figure 11. Reconfiguration timeline with replication.

slightly outperforms spread=2, because the former policy is
more likely to include the faster nodes in the spread. When a
few nodes are many times faster than the rest, as is the case
with our setting, the spread size needs to be increased. On
the other hand, as described in Section 5, larger spread sizes
tend to reduce the system efficiency. Thus, spread size is one
parameter that needs to be revisited as the system becomes
more heterogeneous.

In contrast, the statically partitioned and random mes-
sage distribution policies demonstrate little improvement
with the additional disks. This is because their assignment
improves performance for only a subset of the users.

6.4 Failure recovery
As described previously, Porcupine automatically reconfig-
ures whenever nodes fail or restart. Figures 10 and 11 depict
an annotated timeline of events that occur during the fail-
ure and recovery of 1, 3, and 6 nodes in a 30-node system
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