
Sean Barker

Email

1

Sean Barker

Simple Mail Transfer Protocol (SMTP)

2

3/7/14

6

31

Java RMI vs. XML-RPC

•  Java RMI is arguably simpler
•  Programs look a bit more “normal”
•  Can serialize (by implementing Serializable) and

return different objects
•  (See example)

•  XML-RPC is more flexible
•  Can interact (easily) with other XML-RPC clients

written in different languages
•  But procedure calls are somewhat limiting
•  Difficult to send non-standard objects

32

Take-Away Message

•  RPCs handle the marshaling and unmarshaling
of data automatically

•  Also handle threading, message formatting,
socket creation, etc.

•  Designed to simplify network programming
through familiar programmatic abstractions

•  You should appreciate all of this after building
your web servers!

33

BREAK

34

Intro to Email: !
Terminology

•  Mail User Agent: end-user email program
•  Mail Transfer Agent: program responsible for

communicating with remote hosts and
transmitting/receiving email
•  Think of this as the mail server software

•  Mail Exchanger: host with specific IP address
(registered with DNS) that takes care of email
for a domain

35

SMTP

•  Used to exchange mail messages between mail
servers (Message Transfer Agents)

MTA MTA

MUA

SMTP

File
System

MTA
SMTP

MUA

36

SMTP Protocol

•  SMTP sender is the client
•  SMTP receiver is the server
•  Alternating dialogue:
•  Client sends command and server responds with

command status message
•  Order of the commands is important
•  Status messages include ASCII encoded numeric status

code (like HTTP) and text string

Sean Barker

Post Office Protocol (POP)

3

3/11/14

3

13

POP – Post Office Protocol

•  Used to transfer mail from a mail server to a
MUA

Mail
Server MUA

File
System

POP

14

POP (version 3)

•  Similar to SMTP command/reply lockstep
protocol

•  Used to retrieve mail for a single user
•  Requires authentication

•  Commands and replies are ASCII lines
•  Replies start with “+OK” or “-ERR”.
•  Replies may contain multiple lines

15

POP-3 Commands
•  USER - specify username
•  PASS - specify password
•  STAT - get mailbox status

•  Return number of messages in the mailbox

•  LIST - get a list of messages and sizes
•  One per line, termination line contains ‘.’ only

•  RETR - retrieve a message
•  DELE - mark a message for deletion from the mailbox
•  NOOP - send back positive reply
•  RSET - reset; all deletion marks are unmarked
•  QUIT - remove marked messages and close the (TCP)

connection

16

A POP3 Exchange
albrecht:~ telnet fuji.cs.williams.edu 110 !
Trying 137.165.8.2... !
Connected to fuji.cs.williams.edu. !
Escape character is '^]'. !
+OK POP3 at fuji.cs.williams.edu server ready
USER jcool !
+OK Name is a valid mailbox !
PASS nomoresnow !
+OK jeannie has 1 visible message in 1761 octets. !
STAT !
+OK 1 1761!
LIST !
+OK 1 visible messages (1761 octets) !
1 1761!
.

17

POP3 Example Continued

•  RETR 1!
+OK 1761 octets!
Received: from fuji.cs.williams.edu
From: “Jeannie Albrecht” <jeannie@cs.williams.edu>
To: <jeannie@cs.williams.edu>
Subject: test
Date: Tue, 11 Mar 2014 10:31:21 -0400

 Content-Type: text/plain;charset=“US-ASCII”

test
.

18

IMAP

•  IMAP stands for Internet message access
protocol

•  Very widely used today
•  Used to transfer messages from server to

client

Sean Barker

Internet Message Access Protocol (IMAP)

4

Sean Barker

Porcupine

5

Sean Barker

Porcupine Architecture

6

3/11/14

6

31

Overview: Porcupine

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32

Receiving Email in Porcupine

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33

Basic Data Structures

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34

Porcupine Performance

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Porcupine Data Structures

7

3/11/14

6

31

Overview: Porcupine

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32

Receiving Email in Porcupine

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33

Basic Data Structures

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34

Porcupine Performance

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Sending Mail in Porcupine

8

3/11/14

6

31

Overview: Porcupine

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32

Receiving Email in Porcupine

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33

Basic Data Structures

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34

Porcupine Performance

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Porcupine Performance

9

3/11/14

6

31

Overview: Porcupine

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32

Receiving Email in Porcupine

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33

Basic Data Structures

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34

Porcupine Performance

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Porcupine Performance

10

Number of nodes with fast disks
1 2 3

In
cr

ea
se

 in
m

es
sa

ge
s/

se
co

nd

0

50

100

150

200
D4
D2
S4
S2
R

Figure 8. Performance improvement on a 30-node
Porcupine cluster without replication when disks are
added to a small number of nodes.

Number of nodes with fast disks
1 2 3

In
cr

ea
se

 in
m

es
sa

ge
s/

se
co

nd

0

25

50

75

100
D4
D2
S4
S2
R

Figure 9. Performance improvement on a 30-node
Porcupine cluster with replication when disks are
added to a small number of nodes.

policies with larger spread sizes will be penalized more by
increased frequency of directory operations.

6.3.2 Adapting to heterogeneous configurations
As mentioned in the previous section, the easiest way to im-
prove throughput in our configuration is to increase the sys-
tem’s disk I/O capacity. This can be done by adding more
machines or by adding more or faster disks to a few ma-
chines. In a statically partitioned system, it is necessary to
upgrade the disks on all machines to ensure a balanced per-
formance improvement. In contrast, because of Porcupine’s
functional homogeneity and automatic load balancing, we
can improve the system’s overall throughput for all users
simply by improving the throughput on a few machines. The
systemwill automaticallyfind and exploit the new resources.

Figures 8 and 9 show the absolute performance improve-
ment of the 30-node configuration when adding two fast
SCSI disks to each of one, two, and three of the 300Mhz
nodes, with and without replication. The improvement for
Porcupine shows that the dynamic load balancing mecha-
nism can fully utilize the added capacity. Here, spread=4

Timeline
(seconds)0 100 200 300 400 500 600 700 800

M
es

sa
ge

s/
se

co
nd

300

400

500

600

700

Nodes
fail

New
membership
determined

Nodes
recover

New
membership
determined

No failure
One node
failure
Three node
failures
Six node
failures

Figure 10. Reconfiguration timeline without replica-
tion.

Timeline
(seconds)0 100 200 300 400 500 600 700 800

M
es

sa
ge

s/
se

co
nd

100

150

200

250

300

Nodes
fail

New
membership
determined

Nodes
recover

New
membership
determined

No failure
One node
failure
Three node
failures
Six node
failures

Figure 11. Reconfiguration timeline with replication.

slightly outperforms spread=2, because the former policy is
more likely to include the faster nodes in the spread. When a
few nodes are many times faster than the rest, as is the case
with our setting, the spread size needs to be increased. On
the other hand, as described in Section 5, larger spread sizes
tend to reduce the system efficiency. Thus, spread size is one
parameter that needs to be revisited as the system becomes
more heterogeneous.

In contrast, the statically partitioned and random mes-
sage distribution policies demonstrate little improvement
with the additional disks. This is because their assignment
improves performance for only a subset of the users.

6.4 Failure recovery
As described previously, Porcupine automatically reconfig-
ures whenever nodes fail or restart. Figures 10 and 11 depict
an annotated timeline of events that occur during the fail-
ure and recovery of 1, 3, and 6 nodes in a 30-node system

12

