
Sean Barker

Transport Layer (Layer 4)

1

Sean Barker

IP Hourglass (redux)

2

2/13/14

1

CSCI 339!
Distributed Systems

Lecture 3
Feb 13, 2014

Administrative Details

•  Web server is due Wed, Feb 26 at 11:59pm
•  You are behind if you haven’t already spent at least 2 hours on it
•  Simon’s hours: Sun 7pm-10pm, Thur 9pm-11pm

•  First “written homework” is due now
•  Note: HTTP/1.1 “Host” header – required by protocol

•  GET / HTTP/1.1
Host: bengali.cs.williams.edu:8888

•  “…allows the origin server or gateway to differentiate between
internally-ambiguous URLs, such as the root "/" URL of a server
for multiple host names on a single IP address…”

•  “A client MUST include a Host header field in all HTTP/1.1
request messages.”

2

Last Time

•  Discussed sockets
•  Reviewed threads vs. processes vs. event queue
•  Note: the “select” system call is essential for the

event queue model

•  Learned about network “layers”

3

Today’s Outline

•  Discuss Internet routing
•  This is an overview! In a networks course we’d

spend weeks on this topic…

•  Discuss E2E argument and its merits
•  Begin discussing TCP and UDP (layer 4

protocols)

4

OSI Model

•  OSI standardized before implemented
•  IETF philosophy: “We reject kings, presidents, and voting.

We believe in rough consensus and working code”
•  IETF requires two working/interoperable versions before

considering a standard

•  Modular design, but some boundaries are arbitrary
•  Why seven layers?

•  What exactly is the session layer?
•  Basic network functionality exists at multiple layers

Internet Architecture

•  IP Hourglass:
NFS HTTP email rlogin

RPC

Telecollaboration

TCP
RSVP

IP

Ethernet ATM packet radio

UDP

SONET

PPP

air

modem

100BT

•  Layering not strict
•  Can define new abstractions on any existing protocol

Sean Barker

User Datagram Protocol (UDP)

3

2/18/14

1

CSCI 339!
Distributed Systems

Lecture 4
Layer 4: TCP and UDP

Feb 18, 2014

Administrative Details
•  Written homework 2 is due Thursday

•  Should be a relatively quick read

•  Web server is due Wed, Feb 26 at midnight
•  Don’t forget about HTTP headers

•  Paper due same day as code
•  When writing your paper, think about design choices you made

•  If you run any performance experiments while thinking about
thought questions (recommended), include graphs in paper

Last Time

•  We learned about routing (quick overview)
•  Talked about the E2E argument
•  Any questions?

Today’s Outline

•  Discuss transport layer protocols (layer 4)
•  UDP - User Datagram Protocol
•  TCP - Transmission Control Protocol

•  Focus on flow control in TCP

End-to-End Protocols

•  Layers 2 & 3 (Ethernet/WiFi/IP) focus on delivering
packets/frames of data to arbitrary hosts connected to
the Internet
•  We have routing protocols for getting packets to

destination (Link State Protocol)
•  IP is best effort delivery (no reliability)

•  Layer 4 focuses on arbitrary processes communicating
together
•  Provide illusion that all processes are located on one large

computer
•  Can deliver data reliably to any process running on any host

Option 1: UDP
•  User Datagram Protocol (UDP) - invented in 1980

•  Simple transport layer protocol
•  No guarantees about reliability, in-order delivery

•  “Thin veneer” on top of IP
•  Adds src/dest port numbers

•  16 bit port number allows for identification of 65536 unique
communication endpoints per host

•  Note that a single process can utilize multiple ports
•  IP addr + port number uniquely identifies all Internet endpoints

•  UDP Datagram:

Link-layer IP SrcPort DestPort Checksum Len Data…

UDP Header

Sean Barker

Transmission Control Protocol (TCP)

4

2/18/14

2

Option 2: TCP

•  Transmission Control Protocol (TCP) - 1974/1982
•  Reliable in-order delivery of byte streams

•  Full duplex (endpoints simultaneously send/receive)
•  Two-way traffic is permitted

•  e.g., single socket for web browser talking to web server

•  Provides flow control
•  To ensure that sender does not overrun receiver

•  e.g., fast server talking to slow client

•  Provides congestion control
•  Keep the sender from overrunning the network
•  e.g., fast sender on low bandwidth Internet connection

•  Many simultaneous connections across routers (cross traffic)

TCP Flow & Congestion Control

•  Sender must determine maximum amount of data in
transit that will not overrun either receiver or
network

•  Solutions?

TCP Flow Control

•  Sender must determine maximum amount of data in
transit that will not overrun receiver

•  Solutions for flow control:
•  Maintain “sliding window” to track data in transit
•  Size of window determined by minimum of “flow window”

and “congestion window”
•  Receiver ACKs “slide” left side of window forward (right)

•  Opens up another “slot” at right side of window for transmission

DataDataDataDataDataDataDataDataDataDataDataDataDataData

Data in transit

TCP “Sliding Window” !
Protocol Issues

•  Need for connection establishment
•  No dedicated cable

•  Varying round trip times over life of connection
•  Different paths, different levels of congestion

•  Must be ready for very old packets to arrive
•  Delay-bandwidth product highly variable

•  Amount of available buffer space at receivers also variable

•  Sender has no idea what links will be traversed to
receiver in advance
•  Must dynamically estimate changing end-to-end

characteristics

TCP Header Format

SrcPort DestPort

SequenceNum

Acknowledgment

HdrLen AdvertisedWindowFlags000000

CheckSum UrgPtr

Options (variable – max of 320 bits)

Data

0 4 10 16 31

•  Without options, TCP header 20 bytes
•  IP header is also 20 bytes

•  Thus, typical Internet packet min of 40 bytes (+link header)

TCP Connection Establishment
•  Exchange necessary information to begin

communication
•  Three-way handshake

•  E.g., server listening on socket

Client Server
SYN, sequence #=x

ACK, Acknowledgement=y+1

SYN+ACK, sequence #=y

Acknowledgment=x+1

Sean Barker

ACKs and Timeouts

5

2/18/14

3

TCP Connection Teardown

•  Each side of a TCP connection can
independently close the connection
•  Thus, possible to have a half duplex connection

•  Possible problems?
•  Solutions?

•  Closing process sends a FIN message
•  Waits for ACK of FIN to come back

•  This side of the connection is now closed

Reliability, First Cut: Stop and Wait

Time Packet

ACK

T
im

eo
ut

Sender Receiver

•  Reliability, two principal mechanisms:
•  ACKs and timeouts

•  Send a packet, stop and wait until acknowledgement
arrives before sending next packet

•  Problems?

Recovering From Error

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Packet

T
im

eo
ut

Packet

ACK

T
im

eo
ut

T
im

e
Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

ACK lost Packet lost Early timeout/
Delayed ACK

Problems with Stop and Wait

•  How to recognize a duplicate transmission?
•  Solution: Put sequence number in packet

•  Performance
•  Unless Latency-Bandwidth product is very small,

sender cannot “fill the pipe”
•  Solution: Sliding window protocol with

dynamically changing window size

Keeping the Pipe Full

•  Bandwidth-Delay product measures network capacity
•  How much data can you put into the network before the first byte

reaches receiver

•  Stop and Wait: 1 data packet per RTT (round trip time)
•  Compute throughput of 1.5-Mbps link with 45-ms RTT and 1KByte data

packet
•  With Stop-and-wait: 182-Kbps throughput

•  1 Kbyte = 1024x8 bits, Throughput = 8192 bits / 45 ms = 182 Kbps

•  Ideally, send enough packets to fill the pipe before requiring first
ACK packet

Bandwidth

Delay
(or roundtrip latency)

How Do We Keep the Pipe Full?

•  Send multiple packets without waiting for
first to be ACK’d

•  Reliable, unordered delivery:
•  Send new packet after each ACK
•  Sender keeps list of unACK’d packets;

resends after timeout

•  Ideally, first ACK arrives immediately
after pipe is filled
•  Opens up another “slot”

•  Example: 10 Mbps link, 100 ms RTT:
•  How much data is needed to keep pipe full?

•  10x106bps * 100x10-3s = 1,000,000 bits = 125 KB

Sean Barker

Sequence and ACK Numbers

6

Sender Receiver

Seq = 123, Len = 50

Ack = 173

Seq = 173, Len = 40

Ack = 213

Seq = 213, Len = 60

Ack = 273

Ti
m

e

Sean Barker

Three-Way Handshake

7

2/18/14

2

Option 2: TCP

•  Transmission Control Protocol (TCP) - 1974/1982
•  Reliable in-order delivery of byte streams

•  Full duplex (endpoints simultaneously send/receive)
•  Two-way traffic is permitted

•  e.g., single socket for web browser talking to web server

•  Provides flow control
•  To ensure that sender does not overrun receiver

•  e.g., fast server talking to slow client

•  Provides congestion control
•  Keep the sender from overrunning the network
•  e.g., fast sender on low bandwidth Internet connection

•  Many simultaneous connections across routers (cross traffic)

TCP Flow & Congestion Control

•  Sender must determine maximum amount of data in
transit that will not overrun either receiver or
network

•  Solutions?

TCP Flow Control

•  Sender must determine maximum amount of data in
transit that will not overrun receiver

•  Solutions for flow control:
•  Maintain “sliding window” to track data in transit
•  Size of window determined by minimum of “flow window”

and “congestion window”
•  Receiver ACKs “slide” left side of window forward (right)

•  Opens up another “slot” at right side of window for transmission

DataDataDataDataDataDataDataDataDataDataDataDataDataData

Data in transit

TCP “Sliding Window” !
Protocol Issues

•  Need for connection establishment
•  No dedicated cable

•  Varying round trip times over life of connection
•  Different paths, different levels of congestion

•  Must be ready for very old packets to arrive
•  Delay-bandwidth product highly variable

•  Amount of available buffer space at receivers also variable

•  Sender has no idea what links will be traversed to
receiver in advance
•  Must dynamically estimate changing end-to-end

characteristics

TCP Header Format

SrcPort DestPort

SequenceNum

Acknowledgment

HdrLen AdvertisedWindowFlags000000

CheckSum UrgPtr

Options (variable – max of 320 bits)

Data

0 4 10 16 31

•  Without options, TCP header 20 bytes
•  IP header is also 20 bytes

•  Thus, typical Internet packet min of 40 bytes (+link header)

TCP Connection Establishment
•  Exchange necessary information to begin

communication
•  Three-way handshake

•  E.g., server listening on socket

Client Server
SYN, sequence #=x

ACK, Acknowledgement=y+1

SYN+ACK, sequence #=y

Acknowledgment=x+1

Sean Barker

Filling the Pipe

8

2/18/14

3

TCP Connection Teardown

•  Each side of a TCP connection can
independently close the connection
•  Thus, possible to have a half duplex connection

•  Possible problems?
•  Solutions?

•  Closing process sends a FIN message
•  Waits for ACK of FIN to come back

•  This side of the connection is now closed

Reliability, First Cut: Stop and Wait

Time Packet

ACK

T
im

eo
ut

Sender Receiver

•  Reliability, two principal mechanisms:
•  ACKs and timeouts

•  Send a packet, stop and wait until acknowledgement
arrives before sending next packet

•  Problems?

Recovering From Error

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Packet

T
im

eo
ut

Packet

ACK

T
im

eo
ut

T
im

e

Packet

ACK

T
im

eo
ut

Packet

ACK
T

im
eo

ut

ACK lost Packet lost Early timeout/
Delayed ACK

Problems with Stop and Wait

•  How to recognize a duplicate transmission?
•  Solution: Put sequence number in packet

•  Performance
•  Unless Latency-Bandwidth product is very small,

sender cannot “fill the pipe”
•  Solution: Sliding window protocol with

dynamically changing window size

Keeping the Pipe Full

•  Bandwidth-Delay product measures network capacity
•  How much data can you put into the network before the first byte

reaches receiver

•  Stop and Wait: 1 data packet per RTT (round trip time)
•  Compute throughput of 1.5-Mbps link with 45-ms RTT and 1KByte data

packet
•  With Stop-and-wait: 182-Kbps throughput

•  1 Kbyte = 1024x8 bits, Throughput = 8192 bits / 45 ms = 182 Kbps

•  Ideally, send enough packets to fill the pipe before requiring first
ACK packet

Bandwidth

Delay
(or roundtrip latency)

How Do We Keep the Pipe Full?

•  Send multiple packets without waiting for
first to be ACK’d

•  Reliable, unordered delivery:
•  Send new packet after each ACK
•  Sender keeps list of unACK’d packets;

resends after timeout

•  Ideally, first ACK arrives immediately
after pipe is filled
•  Opens up another “slot”

•  Example: 10 Mbps link, 100 ms RTT:
•  How much data is needed to keep pipe full?

•  10x106bps * 100x10-3s = 1,000,000 bits = 125 KB

Sean Barker

Lost Packets

9

Sender Receiver

Seq = 123, Len = 50

Ack = 173

Seq = 173, Len = 40

Seq = 213, Len = 60

Ack = 173

Seq = 173, Len = 40

Ack = 273

(timeout)

Ti
m

e X (packet lost)

Sean Barker

TCP Sliding Window (1)

10

2/18/14

4

Reliable, In-Order Delivery !
& Flow Control

•  To support in-order delivery, add sequence number
•  Receivers buffer later packets until prior packets arrive
•  When a packet arrives out of order, receiver ACKs largest sequence #

received in order
•  What happens when receiver receives 1, 2, 3, 5, 6, 7?
•  Receiver ACKs 1, 2, 3, 3, 3, 3

•  Sender must still prevent buffer overflow at receiver
•  We can’t forget about flow control

•  Solution?
•  Sliding window with changing window size
•  Circular buffer at sender and receiver

•  # packets in transit <= buffer size
•  Advance window when sender and receiver agree packets at beginning have

been successfully received

TCP Flow Control
•  TCP is a sliding window protocol based on byte

streams, not packets
•  For window size n, can send up to n bytes without

receiving an acknowledgement

•  When the data is acknowledged then the window slides
forward

•  Each packet advertises a window size inside TCP
header field
•  This number indicates number of bytes the receiver is

willing to buffer

How does buffering affect !
flow control?

•  Buffering taking place at multiple places
•  Only finite space available at each location
•  System will eventually block (through backpressure)

Sending App

OS Buffer

NIC Buffer

Recv App

OS Buffer

NIC Buffer
Net!

Transmission

TCP Flow Control: !
Visualizing the Sliding Window

4 5 6 7 8 91 2 3 10 11 12

offered window = 6 bytes
(advertised by receiver)

usable window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Left side of window advances when data is acknowledged.
Right side controlled by size of window advertisement.

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Initial State, Receiver has 6 slots to buffer data
Bytes 4, 5, 6 sent, but not yet received

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent,
not ACKed

can send ASAP
can’t send until
window moves

Receiver to Sender ACK 5, Window 4

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d, not read

Sean Barker

TCP Sliding Window (2)

11

2/18/14

4

Reliable, In-Order Delivery !
& Flow Control

•  To support in-order delivery, add sequence number
•  Receivers buffer later packets until prior packets arrive
•  When a packet arrives out of order, receiver ACKs largest sequence #

received in order
•  What happens when receiver receives 1, 2, 3, 5, 6, 7?
•  Receiver ACKs 1, 2, 3, 3, 3, 3

•  Sender must still prevent buffer overflow at receiver
•  We can’t forget about flow control

•  Solution?
•  Sliding window with changing window size
•  Circular buffer at sender and receiver

•  # packets in transit <= buffer size
•  Advance window when sender and receiver agree packets at beginning have

been successfully received

TCP Flow Control
•  TCP is a sliding window protocol based on byte

streams, not packets
•  For window size n, can send up to n bytes without

receiving an acknowledgement

•  When the data is acknowledged then the window slides
forward

•  Each packet advertises a window size inside TCP
header field
•  This number indicates number of bytes the receiver is

willing to buffer

How does buffering affect !
flow control?

•  Buffering taking place at multiple places
•  Only finite space available at each location
•  System will eventually block (through backpressure)

Sending App

OS Buffer

NIC Buffer

Recv App

OS Buffer

NIC Buffer
Net!

Transmission

TCP Flow Control: !
Visualizing the Sliding Window

4 5 6 7 8 91 2 3 10 11 12

offered window = 6 bytes
(advertised by receiver)

usable window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Left side of window advances when data is acknowledged.
Right side controlled by size of window advertisement.

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Initial State, Receiver has 6 slots to buffer data
Bytes 4, 5, 6 sent, but not yet received

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent,
not ACKed

can send ASAP
can’t send until
window moves

Receiver to Sender ACK 5, Window 4

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d, not read

ACK 5,
Window 4

Sean Barker

TCP Sliding Window (3)

12

2/18/14

5

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent, not ACKed
can’t send until
window moves

Sender to Receiver Send 7, 8, 9

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d,
not read

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and acknowledged
can’t send until
window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read can’t recv until
window moves

Sender

Receiver

ACK’d, not read

offered window=0

Receiver to Sender ACK 9, Window 0

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read

Sender

Receiver

ACK’d, not read

offered window=3

Available bufs

Receiver App reads packets 4, 5, 6
But sender has no way of knowing that more room is available!

Options for Sender Discovery of!
Increased Advertised Window

•  Receiver sends duplicate ACK with a larger
advertised window
•  Complicates receiver design
•  TCP design philosophy: keep receiver simple

•  Sender periodically transmits a 1-byte packet
•  If no space available at receiverpacket dropped, no ACK

•  If additional space became availableACK contains new
advertised window

•  NOTE: Advertised window expressed in bytes, not
packets!

TCP Congestion Control

Congestion Control

•  Flow controls helps sender avoid flooding
receiver

•  Sender also wants to avoid causing congestion
in the network

•  Questions:
•  How can we detect congestion?
•  How should we adjust our sending rate?

•  How fast should we send initially?

Send 7, 8, 9

Sean Barker

TCP Sliding Window (4)

13

2/18/14

5

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent, not ACKed
can’t send until
window moves

Sender to Receiver Send 7, 8, 9

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d,
not read

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and acknowledged
can’t send until
window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read can’t recv until
window moves

Sender

Receiver

ACK’d, not read

offered window=0

Receiver to Sender ACK 9, Window 0

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read

Sender

Receiver

ACK’d, not read

offered window=3

Available bufs

Receiver App reads packets 4, 5, 6
But sender has no way of knowing that more room is available!

Options for Sender Discovery of!
Increased Advertised Window

•  Receiver sends duplicate ACK with a larger
advertised window
•  Complicates receiver design
•  TCP design philosophy: keep receiver simple

•  Sender periodically transmits a 1-byte packet
•  If no space available at receiverpacket dropped, no ACK

•  If additional space became availableACK contains new
advertised window

•  NOTE: Advertised window expressed in bytes, not
packets!

TCP Congestion Control

Congestion Control

•  Flow controls helps sender avoid flooding
receiver

•  Sender also wants to avoid causing congestion
in the network

•  Questions:
•  How can we detect congestion?
•  How should we adjust our sending rate?

•  How fast should we send initially?

ACK 9,
Window 0

Sean Barker

2/18/14

5

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent, not ACKed
can’t send until
window moves

Sender to Receiver Send 7, 8, 9

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d,
not read

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and acknowledged
can’t send until
window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read can’t recv until
window moves

Sender

Receiver

ACK’d, not read

offered window=0

Receiver to Sender ACK 9, Window 0

Visualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read

Sender

Receiver

ACK’d, not read

offered window=3

Available bufs

Receiver App reads packets 4, 5, 6
But sender has no way of knowing that more room is available!

Options for Sender Discovery of!
Increased Advertised Window

•  Receiver sends duplicate ACK with a larger
advertised window
•  Complicates receiver design
•  TCP design philosophy: keep receiver simple

•  Sender periodically transmits a 1-byte packet
•  If no space available at receiverpacket dropped, no ACK

•  If additional space became availableACK contains new
advertised window

•  NOTE: Advertised window expressed in bytes, not
packets!

TCP Congestion Control

Congestion Control

•  Flow controls helps sender avoid flooding
receiver

•  Sender also wants to avoid causing congestion
in the network

•  Questions:
•  How can we detect congestion?
•  How should we adjust our sending rate?

•  How fast should we send initially?

TCP Sliding Window (5)

14

Read bytes 4, 5, 6

Sean Barker

Congestion Control

15

2/18/14

6

How to detect congestion?
•  Explicit congestion signaling

•  Source Quench: Message from router to sender

•  DECBit / Explicit Congestion Notification (ECN):
•  Router marks packet based on queue occupancy (i.e. indication

that packet encountered congestion the way)
•  Receiver tells sender if queues are getting too full

•  Implicit congestion signaling (TCP)
•  Packet loss

•  Assume congestion is primary source of packet loss
•  i.e., lost packets indicate congestion

•  Packet delay
•  Round-trip time increases as queues become more full
•  Packet inter-arrival time is a function of bottleneck link

How to adjust the sending rate?

•  Window-based (TCP)
•  Artificially constrain number of outstanding packets allowed in network

•  Increase window to send faster; decrease to send slower

•  Pro: Cheap to implement, good failure properties

•  Con: Creates traffic bursts (requires bigger buffers)

•  Rate-based (many streaming media protocols)
•  Two parameters (period, packets)

•  Allow sending of x packets in period y

•  Pro: Smooth traffic
•  Con: Bad failure recovery properties

How fast to send?

•  Ideally: Keep equilibrium at “knee” of throughput-load curve
•  Find “knee” somehow

•  Keep number of packets “in flight” the same

•  Don’t send a new packet into the network until you know one has left
(i.e. by receiving an ACK)

•  What if you guess wrong, or if bandwidth availability changes?

•  Compromise: adaptive approximation
•  If congestion signaled, reduce sending rate by x
•  If data delivered successfully, increase sending rate by y

•  How to relate x and y?

How does TCP do it?

•  Jacobson&Karels88: Seminal paper in computer
networking
•  One of the most cited papers in all computer science

•  Context: 1986 brings huge congestion collapse
•  LBL - Berkeley link throughput decreases by 1000x
•  Motivation for paper: Why did everything collapse, and

how can we fix it?

•  Key TCP algorithms
•  Congestion avoidance (misnamed)
•  Slow start
•  Fast retransmit & fast recovery

Basic approach: !
TCP Probes the Network

•  Each source independently probes the network to determine
how much bandwidth is available
•  Changes over time, since everyone does this

•  Assume that packet loss implies congestion
•  Since errors are rare; also, requires no support from routers

Sink
45 Mbps T3 link

RouterSource
100 Mbps Ethernet

Basic Implementation

•  Window-based congestion control
•  Allows congestion control and flow control mechanisms

to be unified
•  rwin: advertised flow control window from receiver
•  cwnd: congestion control window

•  Estimate of how much outstanding data network can deliver in a
round-trip time

•  Sender can only send MIN(rwin,cwnd) at any time

•  Idea: decrease cwnd when congestion is encountered;
increase cwnd otherwise

•  Question: How much to adjust?

Sean Barker

Slow Start

16

2/18/14

7

Congestion “Avoidance” Algorithm

•  Goal: Adapt to changes in available bandwidth
•  Additive increase, Multiplicative Decrease (AIMD)

•  Increase sending rate by a constant (e.g. by 1500 bytes)
•  Decrease sending rate by a linear factor (e.g. divide by 2)

•  Rough intuition for why this works
•  Let Li be queue length at time i
•  In steady state: Li = N, where N is a constant
•  During congestion, Li = N + yLi-1, where y > 0
•  Consequence: Queue size increases exponentially

•  Must reduce sending rate exponentially as well (hence
multiplicative decrease)

AIMD !
(Additive Increase/Multiplicative Decrease)

•  Increase slowly while we
believe there is bandwidth
•  Additive increase per RTT

•  Cwnd += 1 full packet / RTT

•  Decrease quickly when there is
loss (went too far!)
•  Multiplicative decrease

•  Cwnd /= 2

Source Destination

…

Slow Start

•  Problem: Takes a long time to “ramp up” to optimal sending
rate using AIMD

•  Goal: Quickly find the equilibrium sending rate

•  Quickly increase sending rate until congestion detected
•  Remember last rate that “worked” and don’t overshoot it
•  Algorithm:

•  On new connection, or after timeout, set cwnd=1 full pkt
•  For each segment acknowledged, increment cwnd by 1 pkt
•  If timeout then set ssthresh = cwnd / 2
•  Next time, if cwnd >= ssthresh then exit slow start and do additive

increase

•  Why called slow? Its exponential after all…

Slow Start Growth Example

 1

 2
Ack 2

 3

Ack 3

 4
 5
 6
 7

cwnd=1

cwnd=2

cwnd=4

cwnd=8

Sender Receiver

Ack 4

Ack 5
Ack 6
Ack 7
Ack 8

Putting It Together

Timeout

ssthresh

Slow start

Congestion
avoidance

Fast Retransmit & Recovery

•  Fast retransmit
•  Timeouts are slow (1 second is fastest timeout on many TCPs)
•  When packet is lost, receiver still ACKs last in-order packet
•  Use 3 duplicate ACKs to indicate a loss; detect losses quickly

•  Why 3? When wouldn’t this work?
–  Out of order delivery?

•  Fast recovery
•  Goal: Avoid stalling after loss
•  If there are still ACKs coming in, then no need for slow start
•  If a packet has made it through -> we can send another one
•  Divide cwnd by 2 after fast retransmit
•  Increment cwnd by 1 full pkt for each additional duplicate ACK

Sean Barker

Slow Start + Congestion Avoidance

17

2/18/14

7

Congestion “Avoidance” Algorithm

•  Goal: Adapt to changes in available bandwidth
•  Additive increase, Multiplicative Decrease (AIMD)

•  Increase sending rate by a constant (e.g. by 1500 bytes)
•  Decrease sending rate by a linear factor (e.g. divide by 2)

•  Rough intuition for why this works
•  Let Li be queue length at time i
•  In steady state: Li = N, where N is a constant
•  During congestion, Li = N + yLi-1, where y > 0
•  Consequence: Queue size increases exponentially

•  Must reduce sending rate exponentially as well (hence
multiplicative decrease)

AIMD !
(Additive Increase/Multiplicative Decrease)

•  Increase slowly while we
believe there is bandwidth
•  Additive increase per RTT

•  Cwnd += 1 full packet / RTT

•  Decrease quickly when there is
loss (went too far!)
•  Multiplicative decrease

•  Cwnd /= 2

Source Destination

…

Slow Start

•  Problem: Takes a long time to “ramp up” to optimal sending
rate using AIMD

•  Goal: Quickly find the equilibrium sending rate

•  Quickly increase sending rate until congestion detected
•  Remember last rate that “worked” and don’t overshoot it
•  Algorithm:

•  On new connection, or after timeout, set cwnd=1 full pkt
•  For each segment acknowledged, increment cwnd by 1 pkt
•  If timeout then set ssthresh = cwnd / 2
•  Next time, if cwnd >= ssthresh then exit slow start and do additive

increase

•  Why called slow? Its exponential after all…

Slow Start Growth Example

 1

 2
Ack 2

 3

Ack 3

 4
 5
 6
 7

cwnd=1

cwnd=2

cwnd=4

cwnd=8

Sender Receiver

Ack 4

Ack 5
Ack 6
Ack 7
Ack 8

Putting It Together

Timeout

ssthresh

Slow start

Congestion
avoidance

Fast Retransmit & Recovery

•  Fast retransmit
•  Timeouts are slow (1 second is fastest timeout on many TCPs)
•  When packet is lost, receiver still ACKs last in-order packet
•  Use 3 duplicate ACKs to indicate a loss; detect losses quickly

•  Why 3? When wouldn’t this work?
–  Out of order delivery?

•  Fast recovery
•  Goal: Avoid stalling after loss
•  If there are still ACKs coming in, then no need for slow start
•  If a packet has made it through -> we can send another one
•  Divide cwnd by 2 after fast retransmit
•  Increment cwnd by 1 full pkt for each additional duplicate ACK

Sean Barker

TCP Sawtooth Pattern

18

2/18/14

8

Fast Retransmit & Recovery

 1

 2

Ack 2

 3

 4
 5
 6
 7

Sender Receiver

Ack 4

Ack 4
Ack 4
Ack 4
Ack 4

Ack 3

 4

Fast
Retransmit

(don’t wait for timeout)

Fast recovery
(increase cwnd by 1)

 8

Ack 9

3 Dup Acks

Fast Recovery in Action

Fast recovery

TCP vs. UDP

TCP
•  Connection oriented
•  On-going conversation

•  Heavy-weight

•  Reliable delivery

•  In-order delivery

•  Connection setup and tear down
required

•  Flow & congestion control

•  What apps need TCP?

UDP
•  Connection-less
•  No notion of conversation
•  Light-weight
•  No reliability
•  No in-order delivery
•  No connection setup or tear

down
•  No flow or congestion control
•  What apps don’t need TCP (and

can use UDP)?

What if Two TCP !
Connections Share Link?

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)

What if TCP and UDP Share Link?
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left.
Sender Receiver

ACK 486

Data 4381:5841

Data 1461:2921Data 2921:4381
Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Cheating TCP: !
ACK splitting

•  Rule: grow window by one
 full-sized packet for each
 valid ACK received

•  Send M ACKs for one pkt

•  Growth factor proportional
 to M!

Round-
Trip
Time
(RTT)

Sean Barker

TCP Link Sharing

19

2/18/14

8

Fast Retransmit & Recovery

 1

 2

Ack 2

 3

 4
 5
 6
 7

Sender Receiver

Ack 4

Ack 4
Ack 4
Ack 4
Ack 4

Ack 3

 4

Fast
Retransmit

(don’t wait for timeout)

Fast recovery
(increase cwnd by 1)

 8

Ack 9

3 Dup Acks

Fast Recovery in Action

Fast recovery

TCP vs. UDP

TCP
•  Connection oriented
•  On-going conversation

•  Heavy-weight

•  Reliable delivery

•  In-order delivery

•  Connection setup and tear down
required

•  Flow & congestion control

•  What apps need TCP?

UDP
•  Connection-less
•  No notion of conversation
•  Light-weight
•  No reliability
•  No in-order delivery
•  No connection setup or tear

down
•  No flow or congestion control
•  What apps don’t need TCP (and

can use UDP)?

What if Two TCP !
Connections Share Link?

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)

What if TCP and UDP Share Link?
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left.
Sender Receiver

ACK 486

Data 4381:5841

Data 1461:2921Data 2921:4381
Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Cheating TCP: !
ACK splitting

•  Rule: grow window by one
 full-sized packet for each
 valid ACK received

•  Send M ACKs for one pkt

•  Growth factor proportional
 to M!

Round-
Trip
Time
(RTT)

Sean Barker

TCP/UDP Sharing

20

2/18/14

8

Fast Retransmit & Recovery

 1

 2

Ack 2

 3

 4
 5
 6
 7

Sender Receiver

Ack 4

Ack 4
Ack 4
Ack 4
Ack 4

Ack 3

 4

Fast
Retransmit

(don’t wait for timeout)

Fast recovery
(increase cwnd by 1)

 8

Ack 9

3 Dup Acks

Fast Recovery in Action

Fast recovery

TCP vs. UDP

TCP
•  Connection oriented
•  On-going conversation

•  Heavy-weight

•  Reliable delivery

•  In-order delivery

•  Connection setup and tear down
required

•  Flow & congestion control

•  What apps need TCP?

UDP
•  Connection-less
•  No notion of conversation
•  Light-weight
•  No reliability
•  No in-order delivery
•  No connection setup or tear

down
•  No flow or congestion control
•  What apps don’t need TCP (and

can use UDP)?

What if Two TCP !
Connections Share Link?

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)

What if TCP and UDP Share Link?
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left.
Sender Receiver

ACK 486

Data 4381:5841

Data 1461:2921Data 2921:4381
Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Cheating TCP: !
ACK splitting

•  Rule: grow window by one
 full-sized packet for each
 valid ACK received

•  Send M ACKs for one pkt

•  Growth factor proportional
 to M!

Round-
Trip
Time
(RTT)

