
Sean Barker

Distributed Storage Systems

1

Sean Barker

Bigtable Data Model

2

Basic Data Model
• “A BigTable is a sparse, distributed, persistent

multi-dimensional sorted map”
(row:string, column:string, time:int64) Æ string

Webtable

Row key: up to 64KB,
10-100B typically,
sorted by reverse URL

column families cell w/ timestamped
versions + GC 28

Sean Barker

Bigtable API Example

3

4/11/14

2

Bigtable: A Distributed Storage
System for Structured Data

Written By:
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber, Google, Inc.

OSDI 2006

Introduction
•  Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large size
•  i.e., petabytes of data across thousands of commodity servers

•  Essentially Google’s version of a database (with a slightly different
interface)

•  Bigtable achieved wide applicability, scalability, and high
availability
•  Used by more than sixty Google products and projects (probably

much more than this now)

•  Uses Chubby locks for consistency and coordination
•  Optional paper posted on course webpage

•  Easy to put MapReduce “over” Bigtable

Chubby Locks

•  Chubby lock service provides coarse-grained locking for
distributed systems
•  Long leases (hours and days rather than seconds and minutes)

•  Provides reliable low-volume storage for loosely-coupled
systems
•  But only for small files (impose a file size limit)

•  Chubby’s design mainly concentrates on availability and
reliability rather than high performance
•  Don’t expect to see any performance graphs…

•  Support tens of thousands of clients simultaneously

“Contents:” “anchor:cnnsi.com” “anchor:my.look.ca”

“com.cnn.www” “CNN” “CNN.com”
t3

t5
t6 t9 t8

<html><html>
<html>

Bigtable Data Model

•  Bigtable is a multi-dimensional sorted map
•  Map is indexed by row key, column key and timestamp
•  i.e. (row: string , column: string , time:int64) → string
•  Row keys are reversed URLs
•  Column keys are grouped into sets called column families

•  Contents column contains page contents
•  Anchor columns contain text of anchors that refer to page

•  Timestamps are indicated by “t” values

Writing to Bigtable:
// Open the table

Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor

RowMutation r1(T, "com.cnn.www");

r1.Set("anchor:www.c-span.org", "CNN");

r1.Delete("anchor:www.abc.com");

Operation op;

Apply(&op, &r1);

Taken From paper

Bigtable API
Reading from Bigtable:
Scanner scanner(T);

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");

stream->SetReturnAllVersions();

scanner.Lookup("com.cnn.www");

for (; !stream->Done(); stream->Next()) {

printf("%s %s %lld %s\n",
scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

 }
Taken From paper

Bigtable API

Sean Barker

Chubby Lock Service

4

System Architecture

• A chubby cell consists of a small set of servers (replicas)
– Placed in different racks, so as to minimize chance of correlated failures

• A master is elected from the replicas via Paxos
– Master lease: several seconds
– If master fails, a new one will be elected, but only after master leases expire

• Client talks to the master via the chubby library
– All replicas are listed in DNS; clients discover master by talking to any replica

a replica

6

Sean Barker

Bigtable Hierarchy

5

Sean Barker

Distributed File Systems

6

Sean Barker

Naming: Mount Points

7

4/15/14

3

Distributed File System Structure

•  Perform mount operation to attach remote file
system into local namespace
•  E.g., /project/proj1 actually a file on remote machine
•  Maps to server.cs.williams.edu:/local/a/project/proj1

/

local project home

proj1 proj2 usr1

Performance

•  How can we make distributed file access
approximate the performance of local file
access?

Performance

•  Network latency and limited bandwidth make it
difficult to match local performance
•  But network bandwidth is surpassing disk bandwidth…

•  How to make distributed file access approximate the
performance of local file access?
•  Caching: take advantage of locality

•  Both spatial and temporal

•  What issues are introduced by caching?

UNIX File Usage

•  Most files are small (< 10k)
•  Reads outnumber writes (~6:1)
•  Sequential access is common
•  Files remain open for short period of time

•  75% < .5s, 90% < 10s

•  Most files accessed by exactly one user
•  Most shared files written by exactly one user

•  Temporal locality: recently accessed files likely to be
accessed again in near future

•  Most bytes/files are short lived

Building a Distributed File System

•  Debate in late 1980’s, early 1990’s:
•  Stateless vs. stateful file server
•  Tradeoffs?

•  Sun NFS: stateless server
•  Only store contents of files + soft state (for performance)
•  Crash recovery simple operation
•  All RPC’s idempotent (no state)

•  “At least once” RPC semantics sufficient

•  Server unaware of users accessing files

•  Clients have to check with server periodically for the
uncommon case
•  Where directory/file has been modified

Sun NFS

•  Sun Microsystem’s Network File System
•  Widely adopted in industry and academia since 1985 (we

use it here at Williams…)

•  All NFS implementations support NFS protocol
•  Currently on version 3? Version 4 exists, but is drastically

different. We’ll talk about version 3…

•  Protocol is a set of RPCs that provide mechanisms for
clients to perform operations on remote files

•  OS-independent, but originally designed for UNIX

Sean Barker

Network File System (NFS)

8

4/15/14

5

Pathname Traversal

•  When a pathname is passed as an argument to a
system call, the syscall layer “converts” it to a vnode
•  Pathname traversal is a sequence of lookup calls to

descend the file tree to the named file (similar to DNS)

•  Issues:
•  Crossing mount points
•  Finding root vnode

•  Locking

•  Caching name->vnode translations

Network File System (NFS)

NFS Protocol
•  NFS is a network protocol layered above TCP/IP

•  Original implementations (and most today) use UDP
datagram transport for low overhead
•  Maximum IP datagram size was increased to match FS block size,

to allow send/receive of entire file blocks
•  Some implementations use TCP as a transport

•  The NFS protocol is a set of message formats and types
•  Client issues a request message for a service operation
•  Server performs requested operation and returns a reply message

with status and (perhaps) requested data

Two Options for !
NFS Lookup/Read

Stateless NFS (v3)

•  NFS server maintains no in-memory hard
state
•  Only hard state is stable file system image on disk
•  No record of clients or open files (in fact, no

open operation!)
•  No implicit arguments to requests (no server-

maintained file offsets)
•  No write-back caching on server
•  No record of recently processed requests

•  Why? Simple recovery!

Recovery in NFS

•  If server fails and restarts, no need to rebuild in-state
memory state on server
•  Client reestablishes contact
•  Client retransmits pending requests

•  Classical NFS uses UDP
•  Server failure is transparent to client since there is no

“connection”

•  Sun RPC masks network errors by retransmitting requests
after an adaptive timeout - dropped packets are
indistinguishable from crashed server to client

Sean Barker

Andrew File System (AFS)

9

Sean Barker

Google File System (GFS)

10

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Sean Barker

GFS Cluster Statistics (c. 2003)

11

Figure 3(a) shows the aggregate read rate for N clients
and its theoretical limit. The limit peaks at an aggregate of
125 MB/s when the 1 Gbps link between the two switches
is saturated, or 12.5 MB/s per client when its 100 Mbps
network interface gets saturated, whichever applies. The
observed read rate is 10 MB/s, or 80% of the per-client
limit, when just one client is reading. The aggregate read
rate reaches 94 MB/s, about 75% of the 125 MB/s link limit,
for 16 readers, or 6 MB/s per client. The efficiency drops
from 80% to 75% because as the number of readers increases,
so does the probability that multiple readers simultaneously
read from the same chunkserver.

6.1.2 Writes
N clients write simultaneously to N distinct files. Each

client writes 1 GB of data to a new file in a series of 1 MB
writes. The aggregate write rate and its theoretical limit are
shown in Figure 3(b). The limit plateaus at 67 MB/s be-
cause we need to write each byte to 3 of the 16 chunkservers,
each with a 12.5 MB/s input connection.

The write rate for one client is 6.3 MB/s, about half of the
limit. The main culprit for this is our network stack. It does
not interact very well with the pipelining scheme we use for
pushing data to chunk replicas. Delays in propagating data
from one replica to another reduce the overall write rate.

Aggregate write rate reaches 35 MB/s for 16 clients (or
2.2 MB/s per client), about half the theoretical limit. As in
the case of reads, it becomes more likely that multiple clients
write concurrently to the same chunkserver as the number
of clients increases. Moreover, collision is more likely for 16
writers than for 16 readers because each write involves three
different replicas.

Writes are slower than we would like. In practice this has
not been a major problem because even though it increases
the latencies as seen by individual clients, it does not sig-
nificantly affect the aggregate write bandwidth delivered by
the system to a large number of clients.

6.1.3 Record Appends
Figure 3(c) shows record append performance. N clients

append simultaneously to a single file. Performance is lim-
ited by the network bandwidth of the chunkservers that
store the last chunk of the file, independent of the num-
ber of clients. It starts at 6.0 MB/s for one client and drops
to 4.8 MB/s for 16 clients, mostly due to congestion and
variances in network transfer rates seen by different clients.

Our applications tend to produce multiple such files con-
currently. In other words, N clients append to M shared
files simultaneously where both N and M are in the dozens
or hundreds. Therefore, the chunkserver network congestion
in our experiment is not a significant issue in practice be-
cause a client can make progress on writing one file while
the chunkservers for another file are busy.

6.2 Real World Clusters
We now examine two clusters in use within Google that

are representative of several others like them. Cluster A is
used regularly for research and development by over a hun-
dred engineers. A typical task is initiated by a human user
and runs up to several hours. It reads through a few MBs
to a few TBs of data, transforms or analyzes the data, and
writes the results back to the cluster. Cluster B is primarily
used for production data processing. The tasks last much

Cluster A B

Chunkservers 342 227
Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB

Table 2: Characteristics of two GFS clusters

longer and continuously generate and process multi-TB data
sets with only occasional human intervention. In both cases,
a single “task” consists of many processes on many machines
reading and writing many files simultaneously.

6.2.1 Storage
As shown by the first five entries in the table, both clusters

have hundreds of chunkservers, support many TBs of disk
space, and are fairly but not completely full. “Used space”
includes all chunk replicas. Virtually all files are replicated
three times. Therefore, the clusters store 18 TB and 52 TB
of file data respectively.

The two clusters have similar numbers of files, though B
has a larger proportion of dead files, namely files which were
deleted or replaced by a new version but whose storage have
not yet been reclaimed. It also has more chunks because its
files tend to be larger.

6.2.2 Metadata
The chunkservers in aggregate store tens of GBs of meta-

data, mostly the checksums for 64 KB blocks of user data.
The only other metadata kept at the chunkservers is the
chunk version number discussed in Section 4.5.

The metadata kept at the master is much smaller, only
tens of MBs, or about 100 bytes per file on average. This
agrees with our assumption that the size of the master’s
memory does not limit the system’s capacity in practice.
Most of the per-file metadata is the file names stored in a
prefix-compressed form. Other metadata includes file own-
ership and permissions, mapping from files to chunks, and
each chunk’s current version. In addition, for each chunk we
store the current replica locations and a reference count for
implementing copy-on-write.

Each individual server, both chunkservers and the master,
has only 50 to 100 MB of metadata. Therefore recovery is
fast: it takes only a few seconds to read this metadata from
disk before the server is able to answer queries. However, the
master is somewhat hobbled for a period – typically 30 to
60 seconds – until it has fetched chunk location information
from all chunkservers.

6.2.3 Read and Write Rates
Table 3 shows read and write rates for various time pe-

riods. Both clusters had been up for about one week when
these measurements were taken. (The clusters had been
restarted recently to upgrade to a new version of GFS.)

The average write rate was less than 30 MB/s since the
restart. When we took these measurements, B was in the
middle of a burst of write activity generating about 100 MB/s
of data, which produced a 300 MB/s network load because
writes are propagated to three replicas.

Sean Barker

GFS Mutations

12

Primary
Replica

Secondary
Replica B

Secondary
Replica A

Master

Legend:

Control

Data

3

Client
2

step 14

5

6

6

7

Figure 2: Write Control and Data Flow

becomes unreachable or replies that it no longer holds
a lease.

3. The client pushes the data to all the replicas. A client
can do so in any order. Each chunkserver will store
the data in an internal LRU buffer cache until the
data is used or aged out. By decoupling the data flow
from the control flow, we can improve performance by
scheduling the expensive data flow based on the net-
work topology regardless of which chunkserver is the
primary. Section 3.2 discusses this further.

4. Once all the replicas have acknowledged receiving the
data, the client sends a write request to the primary.
The request identifies the data pushed earlier to all of
the replicas. The primary assigns consecutive serial
numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serial-
ization. It applies the mutation to its own local state
in serial number order.

5. The primary forwards the write request to all sec-
ondary replicas. Each secondary replica applies mu-
tations in the same serial number order assigned by
the primary.

6. The secondaries all reply to the primary indicating
that they have completed the operation.

7. The primary replies to the client. Any errors encoun-
tered at any of the replicas are reported to the client.
In case of errors, the write may have succeeded at the
primary and an arbitrary subset of the secondary repli-
cas. (If it had failed at the primary, it would not
have been assigned a serial number and forwarded.)
The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our
client code handles such errors by retrying the failed
mutation. It will make a few attempts at steps (3)
through (7) before falling back to a retry from the be-
ginning of the write.

If a write by the application is large or straddles a chunk
boundary, GFS client code breaks it down into multiple
write operations. They all follow the control flow described
above but may be interleaved with and overwritten by con-
current operations from other clients. Therefore, the shared

file region may end up containing fragments from different
clients, although the replicas will be identical because the in-
dividual operations are completed successfully in the same
order on all replicas. This leaves the file region in consistent
but undefined state as noted in Section 2.7.

3.2 Data Flow
We decouple the flow of data from the flow of control to

use the network efficiently. While control flows from the
client to the primary and then to all secondaries, data is
pushed linearly along a carefully picked chain of chunkservers
in a pipelined fashion. Our goals are to fully utilize each
machine’s network bandwidth, avoid network bottlenecks
and high-latency links, and minimize the latency to push
through all the data.

To fully utilize each machine’s network bandwidth, the
data is pushed linearly along a chain of chunkservers rather
than distributed in some other topology (e.g., tree). Thus,
each machine’s full outbound bandwidth is used to trans-
fer the data as fast as possible rather than divided among
multiple recipients.

To avoid network bottlenecks and high-latency links (e.g.,
inter-switch links are often both) as much as possible, each
machine forwards the data to the “closest” machine in the
network topology that has not received it. Suppose the
client is pushing data to chunkservers S1 through S4. It
sends the data to the closest chunkserver, say S1. S1 for-
wards it to the closest chunkserver S2 through S4 closest to
S1, say S2. Similarly, S2 forwards it to S3 or S4, whichever
is closer to S2, and so on. Our network topology is simple
enough that “distances” can be accurately estimated from
IP addresses.

Finally, we minimize latency by pipelining the data trans-
fer over TCP connections. Once a chunkserver receives some
data, it starts forwarding immediately. Pipelining is espe-
cially helpful to us because we use a switched network with
full-duplex links. Sending the data immediately does not
reduce the receive rate. Without network congestion, the
ideal elapsed time for transferring B bytes to R replicas is
B/T + RL where T is the network throughput and L is la-
tency to transfer bytes between two machines. Our network
links are typically 100 Mbps (T), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms.

3.3 Atomic Record Appends
GFS provides an atomic append operation called record

append. In a traditional write, the client specifies the off-
set at which data is to be written. Concurrent writes to
the same region are not serializable: the region may end up
containing data fragments from multiple clients. In a record
append, however, the client specifies only the data. GFS
appends it to the file at least once atomically (i.e., as one
continuous sequence of bytes) at an offset of GFS’s choosing
and returns that offset to the client. This is similar to writ-
ing to a file opened in O APPEND mode in Unix without the
race conditions when multiple writers do so concurrently.

Record append is heavily used by our distributed applica-
tions in which many clients on different machines append
to the same file concurrently. Clients would need addi-
tional complicated and expensive synchronization, for ex-
ample through a distributed lock manager, if they do so
with traditional writes. In our workloads, such files often

(forward)

(write)

(transfer)

