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Programming Model

map (in_key, in_value) ->            
     (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
     out_value list
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MapReduce Control Flow

3

3/20/14 

3 

13

Data store 1 Data store n
map

(key 1, 
values ...)

(key 2, 
values ...)

(key 3, 
values ...)

map

(key 1, 
values...)

(key 2, 
values ...)

(key 3, 
values ...)

Input key *value 
pairs

Input key*value 
pairs

== Barrier ==  : Aggregates intermediate values by output key

reduce reduce reduce

key 1, 
intermediate 

values

key 2, 
intermediate 

values

key 3, 
intermediate 

values

final key 1 
values

final key 2 
values

final key 3 
values

...

14

Parallelism

•  map() functions run in parallel, creating 
different intermediate values from different 
input data sets

•  reduce() functions also run in parallel, each 
working on a different output key

•  All values are processed independently
•  Bottleneck: reduce phase can’t start until map 

phase is completely finished.
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Example: Count word occurrences
map(String input_key, String input_value): 

  // input_key: document name  
  // input_value: document contents  

  for each word w in input_value:  

    EmitIntermediate(w, "1");  
 

reduce(String output_key, Iterator 
intermediate_values):  

  // output_key: a word  

  // output_values: a list of counts  

  int result = 0;  
  for each v in intermediate_values:  

    result += ParseInt(v); 

 Emit(AsString(result));  
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Example vs. Actual Source Code

•  Example is written in pseudo-code
•  Actual implementation is in C++, using a 

MapReduce library
•  Bindings for Python and Java exist via 

interfaces

•  True code is somewhat more involved 
(defines how the input key/values are divided 
up and accessed, etc.)
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Locality

•  Master program divvies up tasks based on 
location of data: tries to have map() tasks on 
same machine as physical file data, or at least 
same rack

•  map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks

18

Fault Tolerance

•  Master detects worker failures
•  Re-executes completed & in-progress map() tasks
•  Re-executes in-progress reduce() tasks

•  Master notices particular input key/values 
cause crashes in map(), and skips those values 
on re-execution.
•  Effect: Can work around bugs in third-party 

libraries!
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Word Count Example
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Stragglers
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Bullet

•  Overlay based file distribution
•  30+ seconds for 50/90/130 hosts to connect
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EMAN

•  Electron Micrograph Analysis
•  2700+ seconds to complete 98 tasks on 98 hosts
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MapReduce

•  Application-specific data processing
•  2500+ seconds to complete 480 map tasks on 30 hosts
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Dealing with Stragglers
•  In MapReduce, application developers explicitly dealt with 

stragglers
•  Application-specific algorithm detected slow hosts

•  Reallocated work from slow hosts to fast hosts
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Dealing with Stragglers
•  Need a general technique for detecting stragglers in 

distributed applications
•  Ease developers of burden of handling stragglers separately for each 

application
•  Detect “knee” of curve and adjust application

Bullet EMAN

36

Application Characteristics

•  Bullet, EMAN, and MapReduce belong to a specific class of 
applications 
•  Support mid-computation reconfiguration

•  Support dynamically degrading computation

•  Some applications do not support reconfiguration
•  Degrading computation may reduce accuracy

•  Require specific number of hosts

•  For applications that support reconfiguration, we can improve 
performance by decreasing completion time using partial 
barriers
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EMAN

•  Electron Micrograph Analysis
•  2700+ seconds to complete 98 tasks on 98 hosts
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MapReduce

•  Application-specific data processing
•  2500+ seconds to complete 480 map tasks on 30 hosts
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Apache Hadoop
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Hadoop Project
File system with files distributed across nodes

!  Store multiple (typically 3 copies of each file)
"  If one node fails, data still available

!  Logically, any node has access to any file
"  May need to fetch across network

Map / Reduce programming environment
!  Software manages execution of tasks on nodes

Local Network 

CPU

Node 1 

CPU

Node 2 

CPU

Node n 

•   •  • 
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Programming Model

map (in_key, in_value) ->            
     (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
     out_value list

8



Sean Barker

Web Log Parsing

9

C 
B 
B 
C 

C 
A 3 C 

1 A 

Result File 2 File 1 ResultFile 2File 1

“Count the number of times pages matching A|C were fetched”

(e.g., or matching “bowdoin.edu”)
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Web Log Parsing
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Map tasks:

(f1, C) -> [(C, 1)]

(f1, B) -> []

(f1, B) -> []

(f1, C) -> [(C, 1)]

(f2, C) -> [(C, 1)]

(f2, A) -> [(A, 1)]

Reduce tasks:

(A, [1]) -> (A, 1)

(C, [1, 1, 1]) -> (C, 3)
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