
Sean Barker

MapReduce

1

Sean Barker

Programming Model

map (in_key, in_value) ->
 (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
 out_value list

2

Sean Barker

MapReduce Control Flow

3

3/20/14

3

13

Data store 1 Data store n
map

(key 1,
values ...)

(key 2,
values ...)

(key 3,
values ...)

map

(key 1,
values...)

(key 2,
values ...)

(key 3,
values ...)

Input key *value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

14

Parallelism

•  map() functions run in parallel, creating
different intermediate values from different
input data sets

•  reduce() functions also run in parallel, each
working on a different output key

•  All values are processed independently
•  Bottleneck: reduce phase can’t start until map

phase is completely finished.

15

Example: Count word occurrences
map(String input_key, String input_value):

 // input_key: document name
 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));
16

Example vs. Actual Source Code

•  Example is written in pseudo-code
•  Actual implementation is in C++, using a

MapReduce library
•  Bindings for Python and Java exist via

interfaces

•  True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)

17

Locality

•  Master program divvies up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at least
same rack

•  map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

18

Fault Tolerance

•  Master detects worker failures
•  Re-executes completed & in-progress map() tasks
•  Re-executes in-progress reduce() tasks

•  Master notices particular input key/values
cause crashes in map(), and skips those values
on re-execution.
•  Effect: Can work around bugs in third-party

libraries!

Sean Barker

Word Count Example

4

3/20/14

3

13

Data store 1 Data store n
map

(key 1,
values ...)

(key 2,
values ...)

(key 3,
values ...)

map

(key 1,
values...)

(key 2,
values ...)

(key 3,
values ...)

Input key *value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

14

Parallelism

•  map() functions run in parallel, creating
different intermediate values from different
input data sets

•  reduce() functions also run in parallel, each
working on a different output key

•  All values are processed independently
•  Bottleneck: reduce phase can’t start until map

phase is completely finished.

15

Example: Count word occurrences
map(String input_key, String input_value):

 // input_key: document name
 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));
16

Example vs. Actual Source Code

•  Example is written in pseudo-code
•  Actual implementation is in C++, using a

MapReduce library
•  Bindings for Python and Java exist via

interfaces

•  True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)

17

Locality

•  Master program divvies up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at least
same rack

•  map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

18

Fault Tolerance

•  Master detects worker failures
•  Re-executes completed & in-progress map() tasks
•  Re-executes in-progress reduce() tasks

•  Master notices particular input key/values
cause crashes in map(), and skips those values
on re-execution.
•  Effect: Can work around bugs in third-party

libraries!

Sean Barker

Stragglers

5

3/20/14

6

31

Bullet

•  Overlay based file distribution
•  30+ seconds for 50/90/130 hosts to connect

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts

32

EMAN

•  Electron Micrograph Analysis
•  2700+ seconds to complete 98 tasks on 98 hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800

T
as

k
s

Elapsed time (sec)

Completed tasks

33

MapReduce

•  Application-specific data processing
•  2500+ seconds to complete 480 map tasks on 30 hosts

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

T
as

k
s

Elapsed time (sec)

Completed tasks

34

Dealing with Stragglers
•  In MapReduce, application developers explicitly dealt with

stragglers
•  Application-specific algorithm detected slow hosts

•  Reallocated work from slow hosts to fast hosts

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500

T
as

k
s

Elapsed time (sec)

Completed tasks

Work reallocated

35

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 400 800 1200 1600

T
as

k
s

Elapsed time (sec)

Completed tasks

Dealing with Stragglers
•  Need a general technique for detecting stragglers in

distributed applications
•  Ease developers of burden of handling stragglers separately for each

application
•  Detect “knee” of curve and adjust application

Bullet EMAN

36

Application Characteristics

•  Bullet, EMAN, and MapReduce belong to a specific class of
applications
•  Support mid-computation reconfiguration

•  Support dynamically degrading computation

•  Some applications do not support reconfiguration
•  Degrading computation may reduce accuracy

•  Require specific number of hosts

•  For applications that support reconfiguration, we can improve
performance by decreasing completion time using partial
barriers

Sean Barker

Stragglers

6

3/20/14

6

31

Bullet

•  Overlay based file distribution
•  30+ seconds for 50/90/130 hosts to connect

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts

32

EMAN

•  Electron Micrograph Analysis
•  2700+ seconds to complete 98 tasks on 98 hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800

T
as

k
s

Elapsed time (sec)

Completed tasks

33

MapReduce

•  Application-specific data processing
•  2500+ seconds to complete 480 map tasks on 30 hosts

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

T
as

k
s

Elapsed time (sec)

Completed tasks

34

Dealing with Stragglers
•  In MapReduce, application developers explicitly dealt with

stragglers
•  Application-specific algorithm detected slow hosts

•  Reallocated work from slow hosts to fast hosts

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500

T
as

k
s

Elapsed time (sec)

Completed tasks

Work reallocated

35

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 400 800 1200 1600

T
as

k
s

Elapsed time (sec)

Completed tasks

Dealing with Stragglers
•  Need a general technique for detecting stragglers in

distributed applications
•  Ease developers of burden of handling stragglers separately for each

application
•  Detect “knee” of curve and adjust application

Bullet EMAN

36

Application Characteristics

•  Bullet, EMAN, and MapReduce belong to a specific class of
applications
•  Support mid-computation reconfiguration

•  Support dynamically degrading computation

•  Some applications do not support reconfiguration
•  Degrading computation may reduce accuracy

•  Require specific number of hosts

•  For applications that support reconfiguration, we can improve
performance by decreasing completion time using partial
barriers

Sean Barker

Apache Hadoop

7

– 17 –

Hadoop Project
File system with files distributed across nodes

!  Store multiple (typically 3 copies of each file)
"  If one node fails, data still available

!  Logically, any node has access to any file
"  May need to fetch across network

Map / Reduce programming environment
!  Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •

Sean Barker

Programming Model

map (in_key, in_value) ->
 (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
 out_value list

8

Sean Barker

Web Log Parsing

9

C
B
B
C

C
A 3 C

1 A

Result File 2 File 1 ResultFile 2File 1

“Count the number of times pages matching A|C were fetched”

(e.g., or matching “bowdoin.edu”)

Sean Barker

Web Log Parsing

10

Map tasks:

(f1, C) -> [(C, 1)]

(f1, B) -> []

(f1, B) -> []

(f1, C) -> [(C, 1)]

(f2, C) -> [(C, 1)]

(f2, A) -> [(A, 1)]

Reduce tasks:

(A, [1]) -> (A, 1)

(C, [1, 1, 1]) -> (C, 3)

C
B
B
C

C
A 3 C

1 A

Result File 2 File 1 ResultFile 2File 1

