
Sean Barker

Replication & Fault Tolerance

1

X

Sean Barker

Passive Replication

2

2

Replication Goals

•  Replicate network service for:
•  Better performance
•  Enhanced availability

•  Fault tolerance

•  How could replication lower performance,
availability, and fault tolerance?

Replication Challenges

•  Transparency
•  Mask from client the fact that there are multiple physical

copies of a logical service or object
•  Expanded role of naming in networks/dist systems

•  Consistency
•  Data updates must eventually be propagated to multiple

replicas

•  Guarantees about latest version of data?
•  Guarantees about ordering of updates among replicas?

•  Increased complexity…

Replication Model

ReplicaReplica

Service

Client

Client

Replica

FE

FE

How to Handle Updates?
•  Problem: all updates must be distributed to all

replicas
•  Different consistency guarantees for different

services
•  Synchronous vs. asynchronous update distribution
•  Read/write ratio of workload

•  Three options:
•  Passive (primary-backup) replication
•  Active replication
•  Gossip-based replication

Replication Alternatives

•  Primary-backup replication (passive)
•  All updates go to a single server (master)
•  Master distributes updates to all other replicas (slaves)

•  Active replication
•  Replicas are all “equal”
•  All updates go to all replicas

•  Gossip architecture
•  Updates can go to any replica
•  Each replica responsible for eventually delivering local

updates to all other replicas

Passive Replication

SlaveMaster

Service

Client

Client

Slave

FE

FE

write

read

write

Each replica must handle "
write load of entire system?

read

Follower

Follower

Sean Barker

Active Replication

3

3

Active Replication

Replica

Replica

Service

Client

Client

Replica

FE

FE

write

read

write

Each replica still must handle "
write load of entire system!

write

Gossip Architecture

ReplicaReplica

Service

Client

Client

Replica

FE

FE read

write

Replicas may be temporarily out
of sync while updates propagate

Gossip: !
Update Ordering Requirements

•  Total Order
•  Bulletin board: all messages assigned globally unique

message identifier
•  For messages r1, r2: either r1 appears before r2 at all

replicas or r1 appears after r2 at all replicas

•  Causal Order
•  Bulletin board: message replies appear after original

posting
•  For messages r1, r2: r1 appears before r2 if r1 happens

before r2
•  Easier to implement than total ordering

•  Hmm…haven’t we seen this before?

Review: Happens Before

•  Captures potential causal ordering (information flow)
•  ab if a takes place before b in same process
•  Send(m)recv(m)
•  Transitivity holds

p1

p2

p3

a b

c d

fe

physical
time

Implementing Total Ordering

•  Use central sequencer
•  Send updates to centralized site, assign monotonically

increasing identifier, distribute to all replicas
•  Single point of failure at central site, contention

•  Distributed total ordering
•  Front end sends update to all replicas

•  Each replica proposes unique id
•  Front end picks highest value

•  Transmits final value back to replicas

•  3 messages/replica overhead

Network Partitions

•  Some failure (either network or host) keeps
replicas from communicating with one
another

•  How to proceed with read/write transactions
in case where not all replicas can be
contacted?

Sean Barker

Gossip Architecture

4

3

Active Replication

Replica

Replica

Service

Client

Client

Replica

FE

FE

write

read

write

Each replica still must handle "
write load of entire system!

write

Gossip Architecture

ReplicaReplica

Service

Client

Client

Replica

FE

FE read

write

Replicas may be temporarily out
of sync while updates propagate

Gossip: !
Update Ordering Requirements

•  Total Order
•  Bulletin board: all messages assigned globally unique

message identifier
•  For messages r1, r2: either r1 appears before r2 at all

replicas or r1 appears after r2 at all replicas

•  Causal Order
•  Bulletin board: message replies appear after original

posting
•  For messages r1, r2: r1 appears before r2 if r1 happens

before r2
•  Easier to implement than total ordering

•  Hmm…haven’t we seen this before?

Review: Happens Before

•  Captures potential causal ordering (information flow)
•  ab if a takes place before b in same process
•  Send(m)recv(m)
•  Transitivity holds

p1

p2

p3

a b

c d

fe

physical
time

Implementing Total Ordering

•  Use central sequencer
•  Send updates to centralized site, assign monotonically

increasing identifier, distribute to all replicas
•  Single point of failure at central site, contention

•  Distributed total ordering
•  Front end sends update to all replicas

•  Each replica proposes unique id
•  Front end picks highest value

•  Transmits final value back to replicas

•  3 messages/replica overhead

Network Partitions

•  Some failure (either network or host) keeps
replicas from communicating with one
another

•  How to proceed with read/write transactions
in case where not all replicas can be
contacted?

Sean Barker

Network Partitions

5

X

Sean Barker

Fault Tolerance

6

“A distributed system is one in which the failure
of a computer you didn't even know existed
can render your own computer unusable.”

 – Leslie Lamport

Sean Barker

Redundancy

7

Sean Barker

Three Byzantine Generals

8

3/20/14

6

31

Agreement

•  The goal is to get processes to agree on some
value after one or more processes propose
that value

•  …even in the presence of faults!

•  This is often referred to as the consensus
problem

32

Consensus

•  To reach consensus, every process begins in an
undecided state and proposes a single value

•  Processes communicate, deciding which value to
accept (one option: majority rules)

•  Requirements:
•  Termination - Eventually each process sets its decision

variable
•  Agreement - The decision value of each process is the

same
•  Integrity - If the correct processes all proposed the same

value, then any correct process in decided state has
chosen that value

33

Consensus

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

34

Byzantine Generals!
Lamport et al., 1982

•  Three or more generals agree to attack or retreat
•  One general (the commander) issues the order, the

others must decide to attack or retreat
•  Slightly different than normal consensus since there is a

“distinguished process” deciding initial value

•  One or more general may be “treacherous” or faulty
•  He lies! He says “attack” to one general and “retreat” to

another

•  How does each general decide what to do?
•  Assume this is a synchronous system

35

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

“3 says 1 says u”

Faulty general. What should
p2 decide?

The goal is for p2 to determine
that p1 says v. But p2 doesn’t

have enough info!

36

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

“3 says 1 says x”

Faulty commander. What
should p2 decide?

p2 once again has conflicting
info. Can’t distinguish between
faulty p3 and faulty commander!

Sean Barker

Faulty Commander

9

3/20/14

6

31

Agreement

•  The goal is to get processes to agree on some
value after one or more processes propose
that value

•  …even in the presence of faults!

•  This is often referred to as the consensus
problem

32

Consensus

•  To reach consensus, every process begins in an
undecided state and proposes a single value

•  Processes communicate, deciding which value to
accept (one option: majority rules)

•  Requirements:
•  Termination - Eventually each process sets its decision

variable
•  Agreement - The decision value of each process is the

same
•  Integrity - If the correct processes all proposed the same

value, then any correct process in decided state has
chosen that value

33

Consensus

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

34

Byzantine Generals!
Lamport et al., 1982

•  Three or more generals agree to attack or retreat
•  One general (the commander) issues the order, the

others must decide to attack or retreat
•  Slightly different than normal consensus since there is a

“distinguished process” deciding initial value

•  One or more general may be “treacherous” or faulty
•  He lies! He says “attack” to one general and “retreat” to

another

•  How does each general decide what to do?
•  Assume this is a synchronous system

35

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

“3 says 1 says u”

Faulty general. What should
p2 decide?

The goal is for p2 to determine
that p1 says v. But p2 doesn’t

have enough info!

36

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

“3 says 1 says x”

Faulty commander. What
should p2 decide?

p2 once again has conflicting
info. Can’t distinguish between
faulty p3 and faulty commander!

Sean Barker

Four Generals

10

3/20/14

7

37

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

Since we can’t distinguish between these two
scenarios, no solution exists!

“3 says 1 says u”

The goal is for p2 to determine
that p1 says v. But p2 doesn’t

have enough info!

p2 once again has conflicting
info. Can’t distinguish between
faulty p3 and faulty commander!

38

Byzantine Generals

•  It turns out that no solution exists if N � 3f,
where f is the number of treacherous
generals, and N is total number of generals

•  But if N � 3f + 1, a solution exists!
•  Consider N=4 generals, f=1
•  3f + 1 = 4 � N

•  Note that no solution exists in
asynchronous systems for all N and f

39

Four Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

40

Four Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

41

Four Byzantine Generals

•  Within two rounds, non-faulty generals reach consensus
(which may mean “take no action”)

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

42

Four Byzantine Generals

•  What now?
•  They’d all pick u!

•  But this commander isn’t really truly faulty
•  Faulty processes ALWAYS lie and don’t propose a majority of

anything

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:u

4:1:u

2:1:u 3:1:w

4:1:u

u, u, v u, u, w

u, u, w

Sean Barker

Faulty Commander (four generals)

11

3/20/14

7

37

Three Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

Since we can’t distinguish between these two
scenarios, no solution exists!

“3 says 1 says u”

The goal is for p2 to determine
that p1 says v. But p2 doesn’t

have enough info!

p2 once again has conflicting
info. Can’t distinguish between
faulty p3 and faulty commander!

38

Byzantine Generals

•  It turns out that no solution exists if N � 3f,
where f is the number of treacherous
generals, and N is total number of generals

•  But if N � 3f + 1, a solution exists!
•  Consider N=4 generals, f=1
•  3f + 1 = 4 � N

•  Note that no solution exists in
asynchronous systems for all N and f

39

Four Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

40

Four Byzantine Generals
p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

41

Four Byzantine Generals

•  Within two rounds, non-faulty generals reach consensus
(which may mean “take no action”)

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.” Using

simple “majority rules” consensus,
this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

42

Four Byzantine Generals

•  What now?
•  They’d all pick u!

•  But this commander isn’t really truly faulty
•  Faulty processes ALWAYS lie and don’t propose a majority of

anything

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:u

4:1:u

2:1:u 3:1:w

4:1:u

u, u, v u, u, w

u, u, w

