
Sean Barker

Distributed Hash Tables & Chord

1

Sean Barker

P2P Lookup

2

2 

7

How to find data in a distributed file sharing system?

“Lookup” is the key problem!
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Routed messages (Freenet, Tapestry, Chord, CAN, etc.)
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Routing Challenges

•  What makes routing “lookup messages” hard
•  Define a useful “key nearness” metric
•  Keep the hop count small

•  Keep the routing tables “right size”

•  Stay robust despite rapid changes in membership

•  Chord: emphasizes efficiency and simplicity
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Chord Overview

•  Provides peer-to-peer hash lookup service (basically 
a distributed index):
•  Lookup(key) → IP address
•  Note: Chord does not store the data being looked up!

•  How does Chord locate a node?
•  How does Chord maintain routing tables? 

•  How does Chord cope with changes in membership?
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Chord Overview
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Chord Properties

•  Efficient: O(log(N)) messages per lookup
•  N is the total number of servers/peers

•  Scalable: O(log(N)) state per node
•  Robust: survives massive failures

•  Formal proofs are in the original 2001 paper 
•  Assume no malicious participants

14

•  m bit identifier space for both keys and nodes

•  Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“137.165.10.100” ID=123SHA-1

•  Node identifier = SHA-1(IP address)

•  Both are uniformly distributed and exist in same ID space

•  Goal: How to map key IDs to node IDs? 

Chord IDs

15

Consistent Hashing [Karger97]

•  Given a set of n nodes, a consistent hash function 
will map keys (e.g., filenames) uniformly across the 
nodes
•  Load balancing!

•  Nice feature of consistent hashing for node addition:
•  Only 1/n keys must be reassigned to new nodes who join
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•  A key is stored at its successor: node with next higher ID
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Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example
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•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m
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•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring
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•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor
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Joining the Ring
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•  Initialize the new node’s (N36) finger table

•  Locate any node p in the ring

•  Ask node p to lookup fingers of new node N36

•  Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 1

26

•  Updating fingers of existing nodes
•  New node calls update function on existing nodes

•  Existing nodes can recursively update fingers of other nodes

•  N36 sets successor pointer to be N40
•  N20 sets successor pointer to be N36

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2

27

•  Transfer keys from successor node to new node

•  Only keys in the range are transferred 

Copy keys 21…36
from N40 to N36

K30
K38

N36

N60

N40
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N20
N99

N80

K30

K38

Joining the Ring - Step 3

•  Note: When a node leaves ring, all keys are copied to successor

28

•  Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

•  N80 doesn’t know correct successor, so lookup fails

•  What should we do?

Handing Failures

29

•  Use successor list (in addition to finger table)

•  Each node knows r immediate successors

•  After failure, will know first live successor

•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

•  Can choose r to make probability of lookup failure arbitrarily small

Handing Failures

30

•  Quick lookup in large systems

•  Low variation in lookup costs

•  Robust despite massive failure

•  Experiments confirm theoretical results (which is always 
a good thing)

Evaluation Overview
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Consistent Hashing
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Regular Hash 
Table

Consistent 
Hashing (DHT)

add/remove key 
(i.e., lookup) O(1) O(log N)

add/remove 
node (bucket) O(K) O(K/N + log N)

N nodes (buckets), K keys
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Evaluation: Lookup
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•  Cost is O(log N) as predicted by theory

•  Constant is 1/2
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•  Start with 1000 peers
•  Insert 1000 key/value pairs (and replicate each 5 times)
•  Stop X% of peers
•  Perform 1000 lookups
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Discussion

•  Limitations?  Problems?  Questions?
•  Locality with respect to the underlying network?

•  From Mass, first lookup goes to Australia, second to 
Europe, third to Asia

•  Even O(log n) steps too many for routing in large 
networks?

•  Single popular key mapping to a single node?
•  What about search?
•  How does replication fit into the picture?
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Evaluation: Robustness
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•  Cost is O(log N) as predicted by theory

•  Constant is 1/2
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•  Start with 1000 peers
•  Insert 1000 key/value pairs (and replicate each 5 times)
•  Stop X% of peers
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Discussion

•  Limitations?  Problems?  Questions?
•  Locality with respect to the underlying network?

•  From Mass, first lookup goes to Australia, second to 
Europe, third to Asia

•  Even O(log n) steps too many for routing in large 
networks?

•  Single popular key mapping to a single node?
•  What about search?
•  How does replication fit into the picture?


