
Sean Barker

Distributed Hash Tables & Chord

1

Sean Barker

P2P Lookup

2

2

7

How to find data in a distributed file sharing system?

“Lookup” is the key problem!

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Motivation

Slide content based on material from Daniel Figueiredo and Robert Morris 8

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)

Centralized Solution

9

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (1)

10

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Distributed Solution (2)

11

Routing Challenges

•  What makes routing “lookup messages” hard
•  Define a useful “key nearness” metric
•  Keep the hop count small

•  Keep the routing tables “right size”

•  Stay robust despite rapid changes in membership

•  Chord: emphasizes efficiency and simplicity

12

Chord Overview

•  Provides peer-to-peer hash lookup service (basically
a distributed index):
•  Lookup(key) → IP address
•  Note: Chord does not store the data being looked up!

•  How does Chord locate a node?
•  How does Chord maintain routing tables?

•  How does Chord cope with changes in membership?

Sean Barker

Centralized Lookup

3

2

7

How to find data in a distributed file sharing system?

“Lookup” is the key problem!

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Motivation

Slide content based on material from Daniel Figueiredo and Robert Morris 8

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)

Centralized Solution

9

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (1)

10

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Distributed Solution (2)

11

Routing Challenges

•  What makes routing “lookup messages” hard
•  Define a useful “key nearness” metric
•  Keep the hop count small

•  Keep the routing tables “right size”

•  Stay robust despite rapid changes in membership

•  Chord: emphasizes efficiency and simplicity

12

Chord Overview

•  Provides peer-to-peer hash lookup service (basically
a distributed index):
•  Lookup(key) → IP address
•  Note: Chord does not store the data being looked up!

•  How does Chord locate a node?
•  How does Chord maintain routing tables?

•  How does Chord cope with changes in membership?

Sean Barker

Flooding

4

2

7

How to find data in a distributed file sharing system?

“Lookup” is the key problem!

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Motivation

Slide content based on material from Daniel Figueiredo and Robert Morris 8

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)

Centralized Solution

9

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (1)

10

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Distributed Solution (2)

11

Routing Challenges

•  What makes routing “lookup messages” hard
•  Define a useful “key nearness” metric
•  Keep the hop count small

•  Keep the routing tables “right size”

•  Stay robust despite rapid changes in membership

•  Chord: emphasizes efficiency and simplicity

12

Chord Overview

•  Provides peer-to-peer hash lookup service (basically
a distributed index):
•  Lookup(key) → IP address
•  Note: Chord does not store the data being looked up!

•  How does Chord locate a node?
•  How does Chord maintain routing tables?

•  How does Chord cope with changes in membership?

Sean Barker

Routed Messages

5

2

7

How to find data in a distributed file sharing system?

“Lookup” is the key problem!

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Motivation

Slide content based on material from Daniel Figueiredo and Robert Morris 8

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)

Centralized Solution

9

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (1)

10

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Distributed Solution (2)

11

Routing Challenges

•  What makes routing “lookup messages” hard
•  Define a useful “key nearness” metric
•  Keep the hop count small

•  Keep the routing tables “right size”

•  Stay robust despite rapid changes in membership

•  Chord: emphasizes efficiency and simplicity

12

Chord Overview

•  Provides peer-to-peer hash lookup service (basically
a distributed index):
•  Lookup(key) → IP address
•  Note: Chord does not store the data being looked up!

•  How does Chord locate a node?
•  How does Chord maintain routing tables?

•  How does Chord cope with changes in membership?
Sean Barker

Identifier Circle

6

3

13

Chord Properties

•  Efficient: O(log(N)) messages per lookup
•  N is the total number of servers/peers

•  Scalable: O(log(N)) state per node
•  Robust: survives massive failures

•  Formal proofs are in the original 2001 paper
•  Assume no malicious participants

14

•  m bit identifier space for both keys and nodes

•  Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“137.165.10.100” ID=123SHA-1

•  Node identifier = SHA-1(IP address)

•  Both are uniformly distributed and exist in same ID space

•  Goal: How to map key IDs to node IDs?

Chord IDs

15

Consistent Hashing [Karger97]

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes
•  Load balancing!

•  Nice feature of consistent hashing for node addition:
•  Only 1/n keys must be reassigned to new nodes who join

16

N32

N90

N123 K20

K5

Circular m-bit
ID space

0

K60

Consistent Hashing

K101

17

•  A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular m-bit
ID space

0IP=“137.165.10.100”

K101

K60
Key=“LetItBe”

Consistent Hashing

18

N32

N90

N123

0

Hash(“LetItBe”) =
K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Consistent Hashing

Advantages? Disadvantages?

Sean Barker

Identifier Successors

7

3

13

Chord Properties

•  Efficient: O(log(N)) messages per lookup
•  N is the total number of servers/peers

•  Scalable: O(log(N)) state per node
•  Robust: survives massive failures

•  Formal proofs are in the original 2001 paper
•  Assume no malicious participants

14

•  m bit identifier space for both keys and nodes

•  Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“137.165.10.100” ID=123SHA-1

•  Node identifier = SHA-1(IP address)

•  Both are uniformly distributed and exist in same ID space

•  Goal: How to map key IDs to node IDs?

Chord IDs

15

Consistent Hashing [Karger97]

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes
•  Load balancing!

•  Nice feature of consistent hashing for node addition:
•  Only 1/n keys must be reassigned to new nodes who join

16

N32

N90

N123 K20

K5

Circular m-bit
ID space

0

K60

Consistent Hashing

K101

17

•  A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular m-bit
ID space

0IP=“137.165.10.100”

K101

K60
Key=“LetItBe”

Consistent Hashing

18

N32

N90

N123

0

Hash(“LetItBe”) =
K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Consistent Hashing

Advantages? Disadvantages?

IP=“1.2.3.4”

Sean Barker

Lookup Example

8

3

13

Chord Properties

•  Efficient: O(log(N)) messages per lookup
•  N is the total number of servers/peers

•  Scalable: O(log(N)) state per node
•  Robust: survives massive failures

•  Formal proofs are in the original 2001 paper
•  Assume no malicious participants

14

•  m bit identifier space for both keys and nodes

•  Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“137.165.10.100” ID=123SHA-1

•  Node identifier = SHA-1(IP address)

•  Both are uniformly distributed and exist in same ID space

•  Goal: How to map key IDs to node IDs?

Chord IDs

15

Consistent Hashing [Karger97]

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes
•  Load balancing!

•  Nice feature of consistent hashing for node addition:
•  Only 1/n keys must be reassigned to new nodes who join

16

N32

N90

N123 K20

K5

Circular m-bit
ID space

0

K60

Consistent Hashing

K101

17

•  A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular m-bit
ID space

0IP=“137.165.10.100”

K101

K60
Key=“LetItBe”

Consistent Hashing

18

N32

N90

N123

0

Hash(“LetItBe”) =
K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Consistent Hashing

Advantages? Disadvantages?

Sean Barker

Locating Keys: Simple Lookup

9

4

19

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

•  Every node knows only its successor in the ring

Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

21

•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m

N116

N80
80 + 20

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

22

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

Lookups are Faster

23

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups are Faster

24

•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring

Sean Barker

Locating Keys: Finger Tables

10

4

19

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

•  Every node knows only its successor in the ring

Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

21

•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m

N116

N80
80 + 20

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

22

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

Lookups are Faster

23

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups are Faster

24

•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring

4

19

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

•  Every node knows only its successor in the ring

Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

21

•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m

N116

N80
80 + 20

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

22

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

Lookups are Faster

23

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups are Faster

24

•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring

Sean Barker

Chord Lookup

11

4

19

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

•  Every node knows only its successor in the ring

Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

21

•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m

N116

N80
80 + 20

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

22

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

Lookups are Faster

23

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups are Faster

24

•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring

Sean Barker

Chord Lookup

12

4

19

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

•  Every node knows only its successor in the ring

Chord: Basic Lookup

20

•  Every node knows up to m other nodes in the ring
•  Increase distance exponentially
•  m=7 in this example

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

21

•  Finger i points to successor of n+2i-1

•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m

N116

N80
80 + 20

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

22

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

Lookups are Faster

23

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups are Faster

24

•  Three step process:

•  Initialize all fingers of new node

•  Update fingers of existing nodes

•  Transfer keys from successor to new node

•  Less aggressive mechanism (lazy finger update):

•  Initialize only the finger to successor node

•  Periodically verify immediate successor, predecessor

•  Periodically refresh finger table entries

Joining the Ring

Sean Barker

Joining the Ring

13

5

25

•  Initialize the new node’s (N36) finger table

•  Locate any node p in the ring

•  Ask node p to lookup fingers of new node N36

•  Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 1

26

•  Updating fingers of existing nodes
•  New node calls update function on existing nodes

•  Existing nodes can recursively update fingers of other nodes

•  N36 sets successor pointer to be N40
•  N20 sets successor pointer to be N36

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2

27

•  Transfer keys from successor node to new node

•  Only keys in the range are transferred

Copy keys 21…36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Joining the Ring - Step 3

•  Note: When a node leaves ring, all keys are copied to successor

28

•  Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

•  N80 doesn’t know correct successor, so lookup fails

•  What should we do?

Handing Failures

29

•  Use successor list (in addition to finger table)

•  Each node knows r immediate successors

•  After failure, will know first live successor

•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

•  Can choose r to make probability of lookup failure arbitrarily small

Handing Failures

30

•  Quick lookup in large systems

•  Low variation in lookup costs

•  Robust despite massive failure

•  Experiments confirm theoretical results (which is always
a good thing)

Evaluation Overview

Sean Barker

Joining the Ring

14

5

25

•  Initialize the new node’s (N36) finger table

•  Locate any node p in the ring

•  Ask node p to lookup fingers of new node N36

•  Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 1

26

•  Updating fingers of existing nodes
•  New node calls update function on existing nodes

•  Existing nodes can recursively update fingers of other nodes

•  N36 sets successor pointer to be N40
•  N20 sets successor pointer to be N36

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2

27

•  Transfer keys from successor node to new node

•  Only keys in the range are transferred

Copy keys 21…36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Joining the Ring - Step 3

•  Note: When a node leaves ring, all keys are copied to successor

28

•  Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

•  N80 doesn’t know correct successor, so lookup fails

•  What should we do?

Handing Failures

29

•  Use successor list (in addition to finger table)

•  Each node knows r immediate successors

•  After failure, will know first live successor

•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

•  Can choose r to make probability of lookup failure arbitrarily small

Handing Failures

30

•  Quick lookup in large systems

•  Low variation in lookup costs

•  Robust despite massive failure

•  Experiments confirm theoretical results (which is always
a good thing)

Evaluation Overview

Sean Barker

Consistent Hashing

15

Regular Hash
Table

Consistent
Hashing (DHT)

add/remove key
(i.e., lookup) O(1) O(log N)

add/remove
node (bucket) O(K) O(K/N + log N)

N nodes (buckets), K keys

Sean Barker

Fault Tolerance

16

5

25

•  Initialize the new node’s (N36) finger table

•  Locate any node p in the ring

•  Ask node p to lookup fingers of new node N36

•  Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 1

26

•  Updating fingers of existing nodes
•  New node calls update function on existing nodes

•  Existing nodes can recursively update fingers of other nodes

•  N36 sets successor pointer to be N40
•  N20 sets successor pointer to be N36

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2

27

•  Transfer keys from successor node to new node

•  Only keys in the range are transferred

Copy keys 21…36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Joining the Ring - Step 3

•  Note: When a node leaves ring, all keys are copied to successor

28

•  Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

•  N80 doesn’t know correct successor, so lookup fails

•  What should we do?

Handing Failures

29

•  Use successor list (in addition to finger table)

•  Each node knows r immediate successors

•  After failure, will know first live successor

•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

•  Can choose r to make probability of lookup failure arbitrarily small

Handing Failures

30

•  Quick lookup in large systems

•  Low variation in lookup costs

•  Robust despite massive failure

•  Experiments confirm theoretical results (which is always
a good thing)

Evaluation Overview

Sean Barker

Evaluation: Lookup

17

6

31

•  Cost is O(log N) as predicted by theory

•  Constant is 1/2

Number of Nodes

A
ve

ra
ge

 M
es

sa
ge

s
pe

r
Lo

ok
up

Cost of lookup

32

•  Start with 1000 peers
•  Insert 1000 key/value pairs (and replicate each 5 times)
•  Stop X% of peers
•  Perform 1000 lookups

Robustness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Failed Nodes (Percent)

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Massive failures have little impact!

33

Effectiveness of Load Balancing

34

Path Length of Lookup

P
at

h
le

ng
th

100000

35

Distribution of Path Length!
(4096 nodes)

36

Discussion

•  Limitations? Problems? Questions?
•  Locality with respect to the underlying network?

•  From Mass, first lookup goes to Australia, second to
Europe, third to Asia

•  Even O(log n) steps too many for routing in large
networks?

•  Single popular key mapping to a single node?
•  What about search?
•  How does replication fit into the picture?

Sean Barker

Evaluation: Robustness

18

6

31

•  Cost is O(log N) as predicted by theory

•  Constant is 1/2

Number of Nodes

A
ve

ra
ge

 M
es

sa
ge

s
pe

r
Lo

ok
up

Cost of lookup

32

•  Start with 1000 peers
•  Insert 1000 key/value pairs (and replicate each 5 times)
•  Stop X% of peers
•  Perform 1000 lookups

Robustness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Failed Nodes (Percent)

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Massive failures have little impact!

33

Effectiveness of Load Balancing

34

Path Length of Lookup

P
at

h
le

ng
th

100000

35

Distribution of Path Length!
(4096 nodes)

36

Discussion

•  Limitations? Problems? Questions?
•  Locality with respect to the underlying network?

•  From Mass, first lookup goes to Australia, second to
Europe, third to Asia

•  Even O(log n) steps too many for routing in large
networks?

•  Single popular key mapping to a single node?
•  What about search?
•  How does replication fit into the picture?

