
Sean Barker

Distributed Coordination

1

Sean Barker

Centralized Mutual Exclusion

2

3/20/14

5

25

Central Server Approach
•  All processes contact central server to obtain

permission to enter CS
•  Pros: Simple to implement
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26

Ring-Based Approach
•  Arrange processes in logical ring
•  Each process has communication channel to the next process

•  Pass “token” around ring; token grants access to CS
•  Pros: Simple, no central bottleneck

•  Cons: Potentially large delay; wastes bandwidth

p
n

p
2

p
3

p
4

Token

p
1

27

Multicast & Logical Clocks
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks
•  Multicast request for access to other processes; wait for reply
•  Logical timestamps make sure happened-before requirement is met
•  Pros: Short delay (compared to ring)
•  Cons: Consumes lots of bandwidth

p
3

34

Reply

34

41

41

34

p
1

p
2

Reply

41

Reply

28

Maekawa’s Voting Algorithm

•  Not necessary for all processes to grant access, only
need subset of all processes
•  Each process maintains a “voting set”
•  All voting sets are the same size

•  Make sure subsets used by any two processes overlap
•  For all voting sets, Vi ∩ Vj ≠ ∅

•  Pros: Requires less bandwidth than previous approach
•  Cons: Can cause deadlock! How?

29

Deadlock Example
•  Seven processes, seven voting sets

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0;

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0.
So deadlock is possible!

(To correct this, requests are accepted in happened-before order.)

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30

Questions

•  What about fault tolerance?

•  What happens when messages are lost?
•  What happens when a process crashes?

Sean Barker

Token Ring Approach

3

3/20/14

5

25

Central Server Approach
•  All processes contact central server to obtain

permission to enter CS
•  Pros: Simple to implement
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26

Ring-Based Approach
•  Arrange processes in logical ring
•  Each process has communication channel to the next process

•  Pass “token” around ring; token grants access to CS
•  Pros: Simple, no central bottleneck

•  Cons: Potentially large delay; wastes bandwidth

p
n

p
2

p
3

p
4

Token

p
1

27

Multicast & Logical Clocks
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks
•  Multicast request for access to other processes; wait for reply
•  Logical timestamps make sure happened-before requirement is met
•  Pros: Short delay (compared to ring)
•  Cons: Consumes lots of bandwidth

p
3

34

Reply

34

41

41

34

p
1

p
2

Reply

41

Reply

28

Maekawa’s Voting Algorithm

•  Not necessary for all processes to grant access, only
need subset of all processes
•  Each process maintains a “voting set”
•  All voting sets are the same size

•  Make sure subsets used by any two processes overlap
•  For all voting sets, Vi ∩ Vj ≠ ∅

•  Pros: Requires less bandwidth than previous approach
•  Cons: Can cause deadlock! How?

29

Deadlock Example
•  Seven processes, seven voting sets

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0;

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0.
So deadlock is possible!

(To correct this, requests are accepted in happened-before order.)

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30

Questions

•  What about fault tolerance?

•  What happens when messages are lost?
•  What happens when a process crashes?

Sean Barker

Multicast Approach (Ricart and Agrawala)

4

3/20/14

5

25

Central Server Approach
•  All processes contact central server to obtain

permission to enter CS
•  Pros: Simple to implement
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26

Ring-Based Approach
•  Arrange processes in logical ring
•  Each process has communication channel to the next process

•  Pass “token” around ring; token grants access to CS
•  Pros: Simple, no central bottleneck

•  Cons: Potentially large delay; wastes bandwidth

p
n

p
2

p
3

p
4

Token

p
1

27

Multicast & Logical Clocks
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks
•  Multicast request for access to other processes; wait for reply
•  Logical timestamps make sure happened-before requirement is met
•  Pros: Short delay (compared to ring)
•  Cons: Consumes lots of bandwidth

p
3

34

Reply

34

41

41

34

p
1

p
2

Reply

41

Reply

28

Maekawa’s Voting Algorithm

•  Not necessary for all processes to grant access, only
need subset of all processes
•  Each process maintains a “voting set”
•  All voting sets are the same size

•  Make sure subsets used by any two processes overlap
•  For all voting sets, Vi ∩ Vj ≠ ∅

•  Pros: Requires less bandwidth than previous approach
•  Cons: Can cause deadlock! How?

29

Deadlock Example
•  Seven processes, seven voting sets

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0;

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0.
So deadlock is possible!

(To correct this, requests are accepted in happened-before order.)

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30

Questions

•  What about fault tolerance?

•  What happens when messages are lost?
•  What happens when a process crashes?

“Request (41)”

“Request (34)”

Sean Barker

Voting Approach (Maekawa’s Algorithm)

5

P0

P1 P2

V0

V1

V2

Sean Barker

Elections

6

Sean Barker

Ring-Based Election

7

24

15

9

4

33

28

17

24

1

Sean Barker

Bully Algorithm

8

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Details

• Any process P can initiate an election
• P sends Election messages to all process with higher Ids

and awaits OK messages
• If no OK messages, P becomes coordinator and sends I

won messages to all process with lower Ids
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK and

starts an election
• If a process receives a I won, it treats sender an

coordinator

11

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Example

• The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

12

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Example

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

13

Computer Science Lecture 14, page CS677: Distributed OS

Ring-based Election

• Processes have unique Ids and arranged in a logical ring
• Each process knows its neighbors

– Select process with highest ID
• Begin election if just recovered or coordinator has failed
• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found
• Each process tags its ID on the message
• Initiator picks node with highest ID and sends a coordinator message
• Multiple elections can be in progress

– Wastes network bandwidth but does no harm

14

