
Sean Barker

Remote Procedure Calls

1

3/7/14

2

7"

SWORD"

•  Queries"
•  Which nodes have Load = [0,1.0]?"
•  Hash attribute-value range using shared function

to determine key"
•  Ask DHT to route update until nodes who are

responsible for keeping track of Load in desired
range are found"

•  Nodes responsible for keeping track of Load in
desired range return identities of nodes who meet
criteria"

" 8"

Today’s Outline"

•  Learn about “remote procedure calls” (RPCs)"
•  We’ll look at Java RMI, XML-RPC"

•  There are many others: SOAP, SunRPC, etc."

9"

Recap: !
Remote Procedure Call (RPC)"

•  Distributed programming is challenging"
•  Need common primitives/abstractions to hide complexity"
•  E.g., file system abstraction to hide block layout, process

abstraction for scheduling/fault isolation"

•  Initially, network programming involved hand-coded
messages – not a very natural programming model!"

•  In early 1980’s, researchers at PARC noticed most
distributed programming took form of remote procedure
call"

•  Popular variant: Remote Method Invocation (RMI)"
•  Obtain handle to remote object, invoke method on object"
•  Transparency goal: remote object appears as local object"

10"

Remote Procedure Call Issues"

•  Underlying transport layer protocol"
•  Semantics (i.e., what is the effect of executing an RPC?)"
•  Transparency"

•  Make “remote-ness” invisible to programmer"
•  Choice of timeout values "

•  Idempotent operations"

11"

Remote Procedure Call"

•  Client stub indicates which procedure should run at
server"
•  Marshals arguments"

•  Server stub unmarshals arguments"
•  Big switch statement to determine local procedure to run"

Name!
Server"

RPC!
Server"

RPC!
Client"

1. Register"2. Lo
okup"

3. Request"

4. Response"St
ub
"

St
ub
"

12"

RPC Model"

•  Define the server’s interface using an interface
definition language (IDL)"
•  The IDL specifies the names, parameters, and types for all

client-callable server procedures"
•  A stub compiler reads the IDL and produces two stub

procedures for each server procedure (client and
server)"
•  The server programmer implements the server

procedures and links them with the server-side stubs"
•  The client programmer implements the client program and

links it with the client-side stubs"
•  The stubs are responsible for managing all details of the

remote communication between client and server"

Sean Barker

DNS (Domain Name System)

2

Sean Barker

Hierarchical Organization

3

2/25/14

3

13"

Hierarchical Design"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

Top Level Domains"
gTLDs"

14"

Domain Name System (DNS)"

•  Translate human understandable names to
machine understandable names"
•  E.g., www.cs.williams.edu137.165.8.2"

•  Hierarchical structure"
•  Every DNS server knows where the “root” is"

•  The root can tell you how to get to .edu"

•  .edu server can tell you how to find williams.edu"
•  williams.edu tells you about cs.williams.edu"

•  cs.williams.edu translates www.cs.williams.edu137.165.8.2"

•  Caching along the way to improve performance"

15"

Query Processing"
•  Clients query local name server"

•  Local name server can provide authoritative or cached answers"

•  Many name servers support both recursive and iterative
queries"
•  Recursive queries - servers recursively find answer and return it to

resolver (host who originally submitted query)"
•  Iterative queries - each server responds to resolver with information

about next server to ask"

•  If response is not cached locally, locate server lowest in the
hierarchy with entry in local DB"
•  In the worst case, contact root (.)"

•  Cache locally with TTL"

16"

Recursive DNS Lookup Example"

client" Local "
nameserver"

edu "
DNS server"

williams"
DNS server"

cs DNS"
server"

www.cs.williams.edu" william
s=IPaddr1"

www.cs.w
illiam

s.edu"

cs=IPaddr2"

www=IPaddr3"

Root "
DNS server"

www.cs
.w

illia
ms.e

du
"

ed
u=

IPa
dd

r0"

www.cs.williams.edu"

www.cs.williams.edu"

IPaddr3"

(Note that the servers could also just route the request among
themselves rather than going back to the local nameserver each time.)"

17"

Iterative DNS Lookup Example"

client"

Local "
nameserver"

edu "
DNS server"

williams"
DNS server"

cs DNS"
server"

william
s=IPaddr1"

www.cs.w
illiam

s.edu"

cs=IPaddr2"

www=IPaddr3"

Root "
DNS server"

www.cs
.w

illia
ms.e

du
"

ed
u=

IPa
dd

r0"

www.cs.williams.edu"

www.cs.williams.edu"

w
w

w.cs.w
illiam

s.edu"

Root server’s IPaddr"

Local nameserver only tells
client what it already knows.

18"

Domains and Zones"

•  Domains"
•  Entire branches in tree"

•  Zones"
•  Portions of a domain (anchored at domain nodes)"

•  Any contiguous set of nodes in the tree"
•  Provide local autonomy"
•  Can be grown to arbitrary size"

•  Each zone should provide redundant name servers"

bowdoin

polariscampus

sbarker

Sean Barker

Recursive DNS Lookup

4

client
Local
Name
Server

Root DNS
Server

edu DNS
Server

bowdoin
DNS

Server

campus
DNS

Server

sbarker.campus.
bowdoin.edu

"edu IP
"

"bowdoin IP"

"campus IP"
"sbarker IP"

"final IP"

Sean Barker

Iterative DNS Lookup

5

client

Local
Name
Server Root DNS

Server

edu DNS
Server

bowdoin
DNS

Server

campus
DNS

Server

sbarker.campus.

bowdoin.edu "edu IP
"

"bowdoin IP"

"campus IP"
"sbarker IP"

"root IP"

Sean Barker

Domains and Zones

6

2/25/14

4

19"

Zones and Domains"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

edu Zone"

edu Domain"

Zone and Domain"
20"

Zones and Domains"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

edu Zone"

edu Domain"

Zone, NOT Domain"

21"

Caching"

•  Caching (and replication) can be used to improve
performance"

•  Name servers cache lookups for some period of time "
•  Time to keep data in cache determined by TTL value"

•  (TTL = time to live)"
•  Design decisions:"

•  Low TTL -> more accurate results, more lookups"
•  High TTL -> less accurate results (stale data), less lookups"

•  Caching can significantly reduce lookup time and
traffic, but only if the right design choices are made"

•  Cache poisoning"
22"

1988 Status"
•  20k hosts available through DNS"
•  30 top level domain names"
•  7 Root servers"

•  1 query per second, driven by tuning of parameters"

•  Query breakdown"
•  All info (25-40%)"
•  Hostname to address (30-40%)"

•  Address to hostname (10-15%)"
•  Mail MX record (<10%)"

23"

Discussion"

•  Where does security fit into DNS?"
•  What tradeoffs are associated with caching

DNS lookups?"
•  Who controls DNS root servers?"
•  Who should control them?"

•  International domain names?"

24"

Other Naming Services"
•  Directory services"

•  Name services allow users to find attributes for a given name"
•  But how do you find names for a given attribute?"

•  “Yellow pages services”"
•  Example:"

•  Find all computers running Mac OS X in this building"
•  Find closest printer"

•  Popular directory services"
•  Microsoft’s Active Directory Services, X.500, LDAP"

•  There are also special directory services called discovery
services"

•  Next up: How can we maintain/build directory and discovery
services?"

bowdoin

polariscampus

sbarker

Sean Barker

LDAP Example

7

2/25/14

5

25"

Directory Service"

•  Formal definition"
•  A service that stores collections of bindings

between names and attributes"

•  Looks up entries that match attribute-based
specifications"

•  Popular examples"
•  X.500"
•  LDAP (Lightweight Directory Access Protocol)"

26"

X.500"

•  Application level service in OSI set of standards (1988?)"
•  Data stored in X.500 servers is organized into a tree structure"

•  Name tree is called the Directory Information Tree (DIT)"
•  Entire directory structure is called Directory Information Base

(DIB)"

•  Servers are called Directory Service Agents (DSA)"
•  Clients are Directory User Agents (DUA)"

•  X.500 is almost like DNS for “people”"

27"

X.500"
•  DIB entry consists of a set of attributes"
•  Each attribute has a type and one or more values"
•  Name of DIB entry is determined by selecting

distinguished attributes called Distinguished
Names (DN)"

•  Accessing the directory:"
•  Read - specify name (similar to domain name) and

desired attributes, DSA navigates DIT and returns
requested information"

•  Search - specify base name and filter expression, DSA
returns DNs for all entries below base name for which
filters evaluate to true"

28"

X.500"
•  Updating the DIB"
•  DSA interface supports adding, deleting, modifying

entries in DIB"
•  Expected that DIB is partitioned and replicated,

but X.500 standard does not address
implementation issues directly"

•  Issues with X.500"
•  Very heavy-weight! Complex and difficult to

implement"
•  Uses upper layers of network stack"
•  Check out Wikipedia…"

29"

LDAP to the Rescue"

•  X.500 is too complex for many applications"
•  Lightweight Directory Access Protocol

(LDAP) is based on X.500, but is simplified"
•  Runs over TCP/IP"
•  LDAP, unlike X.500, is widely used in Internet

applications"
•  LDAP directory service consists of a number

of records made up of (attribute, value) pairs"

30"

LDAP"
•  Sample LDAP namespace:"

Attribute! Abbr.! Value!

Country" C" US"

Locality" L" Massachusetts"

Organization" O" Williams College"

OranizationalUnit" OU" Comp. Sci."

CommonName" CN" Main server"

Mail_Servers" --" 137.164.8.4, 137.165.8.5"

WWW_Server" --" 137.165.8.6"

Maine
Bowdoin College

139.140.238.128

139.140.227.110

Sean Barker

Project 2 Architecture

8

