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SWORD"

•  Queries"
•  Which nodes have Load = [0,1.0]?"
•  Hash attribute-value range using shared function 

to determine key"
•  Ask DHT to route update until nodes who are 

responsible for keeping track of Load in desired 
range are found"

•  Nodes responsible for keeping track of Load in 
desired range return identities of nodes who meet 
criteria"
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Today’s Outline"

•  Learn about “remote procedure calls” (RPCs)"
•  We’ll look at Java RMI, XML-RPC"

•  There are many others: SOAP, SunRPC, etc."
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Recap: !
Remote Procedure Call (RPC)"

•  Distributed programming is challenging"
•  Need common primitives/abstractions to hide complexity"
•  E.g., file system abstraction to hide block layout, process 

abstraction for scheduling/fault isolation"

•  Initially, network programming involved hand-coded 
messages – not a very natural programming model!"

•  In early 1980’s, researchers at PARC noticed most 
distributed programming took form of remote procedure 
call"

•  Popular variant: Remote Method Invocation (RMI)"
•  Obtain handle to remote object, invoke method on object"
•  Transparency goal: remote object appears as local object"
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Remote Procedure Call Issues"

•  Underlying transport layer protocol"
•  Semantics (i.e., what is the effect of executing an RPC?)"
•  Transparency"

•  Make “remote-ness” invisible to programmer"
•  Choice of timeout values "

•  Idempotent operations"
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Remote Procedure Call"

•  Client stub indicates which procedure should run at 
server"
•  Marshals arguments"

•  Server stub unmarshals arguments"
•  Big switch statement to determine local procedure to run"

Name!
Server"

RPC!
Server"

RPC!
Client"

1. Register"2. Lo
okup"

3. Request"

4. Response"St
ub
"

St
ub
"
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RPC Model"

•  Define the server’s interface using an interface 
definition language (IDL)"
•  The IDL specifies the names, parameters, and types for all 

client-callable server procedures"
•  A stub compiler reads the IDL and produces two stub 

procedures for each server procedure (client and 
server)"
•  The server programmer implements the server 

procedures and links them with the server-side stubs"
•  The client programmer implements the client program and 

links it with the client-side stubs"
•  The stubs are responsible for managing all details of the 

remote communication between client and server"
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Hierarchical Design"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

Top Level Domains"
gTLDs"
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Domain Name System (DNS)"

•  Translate human understandable names to 
machine understandable names"
•  E.g., www.cs.williams.edu137.165.8.2"

•  Hierarchical structure"
•  Every DNS server knows where the “root” is"

•  The root can tell you how to get to .edu"

•  .edu server can tell you how to find williams.edu"
•  williams.edu tells you about cs.williams.edu"

•  cs.williams.edu translates www.cs.williams.edu137.165.8.2"

•  Caching along the way to improve performance"
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Query Processing"
•  Clients query local name server"

•  Local name server can provide authoritative or cached answers"

•  Many name servers support both recursive and iterative 
queries"
•  Recursive queries - servers recursively find answer and return it to 

resolver (host who originally submitted query)"
•  Iterative queries - each server responds to resolver with information 

about next server to ask"

•  If response is not cached locally, locate server lowest in the 
hierarchy with entry in local DB"
•  In the worst case, contact root (.)"

•  Cache locally with TTL"
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Recursive DNS Lookup Example"

client" Local "
nameserver"

edu "
DNS server"

williams"
DNS server"

cs DNS"
server"

www.cs.williams.edu" william
s=IPaddr1"

www.cs.w
illiam

s.edu"

cs=IPaddr2"

www=IPaddr3"

Root "
DNS server"

www.cs
.w

illia
ms.e

du
"

ed
u=

IPa
dd

r0"

www.cs.williams.edu"

www.cs.williams.edu"

IPaddr3"

(Note that the servers could also just route the request among 
themselves rather than going back to the local nameserver each time.)"
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Iterative DNS Lookup Example"

client"

Local "
nameserver"

edu "
DNS server"

williams"
DNS server"

cs DNS"
server"

william
s=IPaddr1"

www.cs.w
illiam

s.edu"

cs=IPaddr2"

www=IPaddr3"

Root "
DNS server"

www.cs
.w

illia
ms.e

du
"

ed
u=

IPa
dd

r0"

www.cs.williams.edu"

www.cs.williams.edu"

w
w

w.cs.w
illiam

s.edu"

Root server’s IPaddr"

Local nameserver only tells 
client what it already knows.   
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Domains and Zones"

•  Domains"
•  Entire branches in tree"

•  Zones"
•  Portions of a domain (anchored at domain nodes)"

•  Any contiguous set of nodes in the tree"
•  Provide local autonomy"
•  Can be grown to arbitrary size"

•  Each zone should provide redundant name servers"
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Zones and Domains"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

edu Zone"

edu Domain"

Zone and Domain"
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Zones and Domains"

. (root)"

edu"mil"org" uk"com" ca"

ucsd" amherst" williams" harvard" mit"

bull" cortland" sysnet"

www" cs" oit"

edu Zone"

edu Domain"

Zone, NOT Domain"
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Caching"

•  Caching (and replication) can be used to improve 
performance"

•  Name servers cache lookups for some period of time "
•  Time to keep data in cache determined by TTL value"

•  (TTL = time to live)"
•  Design decisions:"

•  Low TTL -> more accurate results, more lookups"
•  High TTL -> less accurate results (stale data), less lookups"

•  Caching can significantly reduce lookup time and 
traffic, but only if the right design choices are made"

•  Cache poisoning"
22"

1988 Status"
•  20k hosts available through DNS"
•  30 top level domain names"
•  7 Root servers"

•  1 query per second, driven by tuning of parameters"

•  Query breakdown"
•  All info (25-40%)"
•  Hostname to address (30-40%)"

•  Address to hostname (10-15%)"
•  Mail MX record (<10%)"
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Discussion"

•  Where does security fit into DNS?"
•  What tradeoffs are associated with caching 

DNS lookups?"
•  Who controls DNS root servers?"
•  Who should control them?"

•  International domain names?"

24"

Other Naming Services"
•  Directory services"

•  Name services allow users to find attributes for a given name"
•  But how do you find names for a given attribute?"

•  “Yellow pages services”"
•  Example:"

•  Find all computers running Mac OS X in this building"
•  Find closest printer"

•  Popular directory services"
•  Microsoft’s Active Directory Services, X.500, LDAP"

•  There are also special directory services called discovery 
services"

•  Next up: How can we maintain/build directory and discovery 
services?"
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Directory Service"

•  Formal definition"
•  A service that stores collections of bindings 

between names and attributes"

•  Looks up entries that match attribute-based 
specifications"

•  Popular examples"
•  X.500"
•  LDAP (Lightweight Directory Access Protocol)"
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X.500"

•  Application level service in OSI set of standards (1988?)"
•  Data stored in X.500 servers is organized into a tree structure"

•  Name tree is called the Directory Information Tree (DIT)"
•  Entire directory structure is called Directory Information Base 

(DIB)"

•  Servers are called Directory Service Agents (DSA)"
•  Clients are Directory User Agents (DUA)"

•  X.500 is almost like DNS for “people”"
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X.500"
•  DIB entry consists of a set of attributes"
•  Each attribute has a type and one or more values"
•  Name of DIB entry is determined by selecting 

distinguished attributes called Distinguished 
Names (DN)"

•  Accessing the directory:"
•  Read - specify name (similar to domain name) and 

desired attributes, DSA navigates DIT and returns 
requested information"

•  Search - specify base name and filter expression, DSA 
returns DNs for all entries below base name for which 
filters evaluate to true"
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X.500"
•  Updating the DIB"
•  DSA interface supports adding, deleting, modifying 

entries in DIB"
•  Expected that DIB is partitioned and replicated, 

but X.500 standard does not address 
implementation issues directly"

•  Issues with X.500"
•  Very heavy-weight!  Complex and difficult to 

implement"
•  Uses upper layers of network stack"
•  Check out Wikipedia…"
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LDAP to the Rescue"

•  X.500 is too complex for many applications"
•  Lightweight Directory Access Protocol 

(LDAP) is based on X.500, but is simplified"
•  Runs over TCP/IP"
•  LDAP, unlike X.500, is widely used in Internet 

applications"
•  LDAP directory service consists of a number 

of records made up of (attribute, value) pairs"

30"

LDAP"
•  Sample LDAP namespace:"

Attribute! Abbr.! Value!

Country" C" US"

Locality" L" Massachusetts"

Organization" O" Williams College"

OranizationalUnit" OU" Comp. Sci."

CommonName" CN" Main server"

Mail_Servers" --" 137.164.8.4, 137.165.8.5"

WWW_Server" --" 137.165.8.6"

Maine          
Bowdoin College          

139.140.238.128

139.140.227.110
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