
Sean Barker

TCP: Slow Start + Congestion Avoidance

1

2/18/14

7

Congestion “Avoidance” Algorithm"

•  Goal: Adapt to changes in available bandwidth"
•  Additive increase, Multiplicative Decrease (AIMD)"

•  Increase sending rate by a constant (e.g. by 1500 bytes)"
•  Decrease sending rate by a linear factor (e.g. divide by 2)"

•  Rough intuition for why this works"
•  Let Li be queue length at time i!
•  In steady state: Li = N, where N is a constant"
•  During congestion, Li = N + yLi-1, where y > 0"
•  Consequence: Queue size increases exponentially"

•  Must reduce sending rate exponentially as well (hence
multiplicative decrease)"

AIMD !
(Additive Increase/Multiplicative Decrease)"

•  Increase slowly while we
believe there is bandwidth"
•  Additive increase per RTT"

•  Cwnd += 1 full packet / RTT"

•  Decrease quickly when there is
loss (went too far!)"
•  Multiplicative decrease"

•  Cwnd /= 2"

Source! Destination!

…
!

Slow Start"

•  Problem: Takes a long time to “ramp up” to optimal sending
rate using AIMD"

•  Goal: Quickly find the equilibrium sending rate"

•  Quickly increase sending rate until congestion detected"
•  Remember last rate that “worked” and don’t overshoot it"
•  Algorithm: "

•  On new connection, or after timeout, set cwnd=1 full pkt"
•  For each segment acknowledged, increment cwnd by 1 pkt"
•  If timeout then set ssthresh = cwnd / 2!
•  Next time, if cwnd >= ssthresh then exit slow start and do additive

increase"

•  Why called slow? Its exponential after all…"

Slow Start Growth Example"

 1"

 2"
Ack 2"

 3"

Ack 3"

 4"
 5"
 6"
 7"

cwnd=1"

cwnd=2"

cwnd=4"

cwnd=8"

Sender" Receiver"

Ack 4"

Ack 5"
Ack 6"
Ack 7"
Ack 8"

Putting It Together"

Timeout"

ssthresh"

Slow start"

Congestion"
avoidance"

Fast Retransmit & Recovery"

•  Fast retransmit"
•  Timeouts are slow (1 second is fastest timeout on many TCPs)"
•  When packet is lost, receiver still ACKs last in-order packet"
•  Use 3 duplicate ACKs to indicate a loss; detect losses quickly"

•  Why 3? When wouldn’t this work?"
–  Out of order delivery?"

•  Fast recovery"
•  Goal: Avoid stalling after loss "
•  If there are still ACKs coming in, then no need for slow start"
•  If a packet has made it through -> we can send another one"
•  Divide cwnd by 2 after fast retransmit"
•  Increment cwnd by 1 full pkt for each additional duplicate ACK"

Sean Barker

TCP Sawtooth Pattern

2

2/18/14

8

Fast Retransmit & Recovery"

 1"

 2"

Ack 2"

 3"

 4"
 5"
 6"
 7"

Sender" Receiver"

Ack 4"

Ack 4"
Ack 4"
Ack 4"
Ack 4"

Ack 3"

 4"

Fast "
Retransmit"

(don’t wait for timeout)"

Fast recovery"
(increase cwnd by 1)"

 8"

Ack 9"

3 Dup Acks"

Fast Recovery in Action"

Fast recovery

TCP vs. UDP"

TCP"
•  Connection oriented"
•  On-going conversation"

•  Heavy-weight"

•  Reliable delivery"

•  In-order delivery"

•  Connection setup and tear down
required"

•  Flow & congestion control"

•  What apps need TCP? "

UDP"
•  Connection-less"
•  No notion of conversation"
•  Light-weight"
•  No reliability"
•  No in-order delivery"
•  No connection setup or tear

down"
•  No flow or congestion control"
•  What apps don’t need TCP (and

can use UDP)?"

What if Two TCP !
Connections Share Link?"

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)"

What if TCP and UDP Share Link?"
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left."
Sender! Receiver!

ACK 486"

Data 4381:5841"

Data 1461:2921"Data 2921:4381"
Data 5841:7301"

ACK 973"

ACK 1461"

Data 1:1461"

Cheating TCP: !
ACK splitting"

•  Rule: grow window by one"
 full-sized packet for each"
 valid ACK received "
 "
•  Send M ACKs for one pkt"

•  Growth factor proportional"
 to M! "
 "

Round-"
Trip"
Time"
(RTT)

Sean Barker

TCP Link Sharing

3

2/18/14

8

Fast Retransmit & Recovery"

 1"

 2"

Ack 2"

 3"

 4"
 5"
 6"
 7"

Sender" Receiver"

Ack 4"

Ack 4"
Ack 4"
Ack 4"
Ack 4"

Ack 3"

 4"

Fast "
Retransmit"

(don’t wait for timeout)"

Fast recovery"
(increase cwnd by 1)"

 8"

Ack 9"

3 Dup Acks"

Fast Recovery in Action"

Fast recovery

TCP vs. UDP"

TCP"
•  Connection oriented"
•  On-going conversation"

•  Heavy-weight"

•  Reliable delivery"

•  In-order delivery"

•  Connection setup and tear down
required"

•  Flow & congestion control"

•  What apps need TCP? "

UDP"
•  Connection-less"
•  No notion of conversation"
•  Light-weight"
•  No reliability"
•  No in-order delivery"
•  No connection setup or tear

down"
•  No flow or congestion control"
•  What apps don’t need TCP (and

can use UDP)?"

What if Two TCP !
Connections Share Link?"

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)"

What if TCP and UDP Share Link?"
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left."
Sender! Receiver!

ACK 486"

Data 4381:5841"

Data 1461:2921"Data 2921:4381"
Data 5841:7301"

ACK 973"

ACK 1461"

Data 1:1461"

Cheating TCP: !
ACK splitting"

•  Rule: grow window by one"
 full-sized packet for each"
 valid ACK received "
 "
•  Send M ACKs for one pkt"

•  Growth factor proportional"
 to M! "
 "

Round-"
Trip"
Time"
(RTT)

Sean Barker

TCP/UDP Sharing

4

2/18/14

8

Fast Retransmit & Recovery"

 1"

 2"

Ack 2"

 3"

 4"
 5"
 6"
 7"

Sender" Receiver"

Ack 4"

Ack 4"
Ack 4"
Ack 4"
Ack 4"

Ack 3"

 4"

Fast "
Retransmit"

(don’t wait for timeout)"

Fast recovery"
(increase cwnd by 1)"

 8"

Ack 9"

3 Dup Acks"

Fast Recovery in Action"

Fast recovery

TCP vs. UDP"

TCP"
•  Connection oriented"
•  On-going conversation"

•  Heavy-weight"

•  Reliable delivery"

•  In-order delivery"

•  Connection setup and tear down
required"

•  Flow & congestion control"

•  What apps need TCP? "

UDP"
•  Connection-less"
•  No notion of conversation"
•  Light-weight"
•  No reliability"
•  No in-order delivery"
•  No connection setup or tear

down"
•  No flow or congestion control"
•  What apps don’t need TCP (and

can use UDP)?"

What if Two TCP !
Connections Share Link?"

•  Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)"

What if TCP and UDP Share Link?"
•  Independent of initial rates, UDP will get priority!

TCP will take what’s left."
Sender! Receiver!

ACK 486"

Data 4381:5841"

Data 1461:2921"Data 2921:4381"
Data 5841:7301"

ACK 973"

ACK 1461"

Data 1:1461"

Cheating TCP: !
ACK splitting"

•  Rule: grow window by one"
 full-sized packet for each"
 valid ACK received "
 "
•  Send M ACKs for one pkt"

•  Growth factor proportional"
 to M! "
 "

Round-"
Trip"
Time"
(RTT)

Sean Barker

Network Service Components

5

2/20/14

3

Benefits of Network Services"
•  Access anywhere, anytime"

•  This is even more true now than it was in 2001"
•  Cloud computing?"

•  Availability via multiple devices"
•  Also more true…"

•  Groupware support"
•  Calendaring, teleconferencing, messaging, etc."

•  Lower overall cost"
•  Multiplex infrastructure over active users"
•  Dedicated resources are typically at least 96% idle"
•  Central administrative burden, simplified end devices"

•  Simplified service updates"
•  Update the service in one place, or 100 million?"

Network Service Components"

1
2

3

4 Server"

5

6

Clusters as Building Blocks"
•  No alternative to clusters for building network

services that can scale to global use "
•  Do you think this is still true? (What about P2P? Clouds?

Are clouds=clusters?)"

•  Key question: what is the lowest-level building block
of a cluster?"
•  Commodity processors or higher-end “super-computer”?"

•  Cluster benefits:"
•  Incremental scalability"

•  Adding one machine typically linearly improves performance"

•  Independent components"
•  Cost and performance"

•  Brewer advocates extreme symmetry. Why? "

Load Management"

•  Started with “round-robin” DNS in 1995"
•  Map hostname to multiple IP addresses, hand out

particular mapping in a round robin fashion to clients"
•  Does not hide failure or inactive servers"

•  Exposes structure of underlying service"

•  Today, “fancy” L4 and L7 switches can inspect TCP
session state or HTTP session state"
•  Perform mapping of requests to back end servers based

on dynamically changing membership information"

F5 Networks 3DNS"
Load Management Option 1: !

Service Replication"

Sean Barker

Example: F5 Networks 3-DNS

6

2/20/14

3

Benefits of Network Services"
•  Access anywhere, anytime"

•  This is even more true now than it was in 2001"
•  Cloud computing?"

•  Availability via multiple devices"
•  Also more true…"

•  Groupware support"
•  Calendaring, teleconferencing, messaging, etc."

•  Lower overall cost"
•  Multiplex infrastructure over active users"
•  Dedicated resources are typically at least 96% idle"
•  Central administrative burden, simplified end devices"

•  Simplified service updates"
•  Update the service in one place, or 100 million?"

Network Service Components"

1
2

3

4 Server"

5

6

Clusters as Building Blocks"
•  No alternative to clusters for building network

services that can scale to global use "
•  Do you think this is still true? (What about P2P? Clouds?

Are clouds=clusters?)"

•  Key question: what is the lowest-level building block
of a cluster?"
•  Commodity processors or higher-end “super-computer”?"

•  Cluster benefits:"
•  Incremental scalability"

•  Adding one machine typically linearly improves performance"

•  Independent components"
•  Cost and performance"

•  Brewer advocates extreme symmetry. Why? "

Load Management"

•  Started with “round-robin” DNS in 1995"
•  Map hostname to multiple IP addresses, hand out

particular mapping in a round robin fashion to clients"
•  Does not hide failure or inactive servers"

•  Exposes structure of underlying service"

•  Today, “fancy” L4 and L7 switches can inspect TCP
session state or HTTP session state"
•  Perform mapping of requests to back end servers based

on dynamically changing membership information"

F5 Networks 3DNS"
Load Management Option 1: !

Service Replication"

Sean Barker

Load Management: Replication

7

2/20/14

3

Benefits of Network Services"
•  Access anywhere, anytime"

•  This is even more true now than it was in 2001"
•  Cloud computing?"

•  Availability via multiple devices"
•  Also more true…"

•  Groupware support"
•  Calendaring, teleconferencing, messaging, etc."

•  Lower overall cost"
•  Multiplex infrastructure over active users"
•  Dedicated resources are typically at least 96% idle"
•  Central administrative burden, simplified end devices"

•  Simplified service updates"
•  Update the service in one place, or 100 million?"

Network Service Components"

1
2

3

4 Server"

5

6

Clusters as Building Blocks"
•  No alternative to clusters for building network

services that can scale to global use "
•  Do you think this is still true? (What about P2P? Clouds?

Are clouds=clusters?)"

•  Key question: what is the lowest-level building block
of a cluster?"
•  Commodity processors or higher-end “super-computer”?"

•  Cluster benefits:"
•  Incremental scalability"

•  Adding one machine typically linearly improves performance"

•  Independent components"
•  Cost and performance"

•  Brewer advocates extreme symmetry. Why? "

Load Management"

•  Started with “round-robin” DNS in 1995"
•  Map hostname to multiple IP addresses, hand out

particular mapping in a round robin fashion to clients"
•  Does not hide failure or inactive servers"

•  Exposes structure of underlying service"

•  Today, “fancy” L4 and L7 switches can inspect TCP
session state or HTTP session state"
•  Perform mapping of requests to back end servers based

on dynamically changing membership information"

F5 Networks 3DNS"
Load Management Option 1: !

Service Replication"

Sean Barker

Load Management: Partitioning

8

2/20/14

4

Load Management Option 2: !
Service Partitioning"

Case Study: Search"
•  Map keywords to a set of documents containing all words"

•  Optionally rank the document set in decreasing relevance"
•  E.g., PageRank from Google"

•  Need a web crawler to build inverted index"
•  Data structure that maps keywords to list of all documents that

contains that word"

•  Multi-word search"
•  Perform join operation across individual inverted indices"

•  Where to store individual inverted indices?"
•  Too much storage to place all on each machine (esp if you also

need to have portions of the document avail as well)"

Partitioning Keywords in Search"
•  Think about keywords as columns and documents as rows"
•  Vertical partitioning"

•  Split inverted index across multiple nodes (nodes=data storage devices) "

•  Each node contains as much of index as possible for a particular keyword"
•  Essentially like reducing the number of columns in table, and using extra

tables to store remaining columns "

•  Horizontal partitioning"
•  Each node contains portion of inverted index for all keywords"

•  Have to visit every node in system to perform full join (or search)"
•  Essentially like splitting table up into multiple tables (with same number of

columns) by putting different (complete) rows in different tables"

Replication versus Partitioning"

•  Replication"
•  Any replica can serve any request"
•  Failure reduces system capacity but not data availability"
•  Must make sure replicas are kept in-sync"

•  Partitioning"
•  Nodes are no longer identical so certain requests need to

be sent to individual nodes"
•  No need for coherence traffic for syncing data"
•  Failure reduces data availability and may reduce capacity"

•  Optimal solution? Which is better?"

Availability Metrics"

•  Mean time between failures (MTBF)"
•  Mean time to repair (MTTR)"
•  Availability = (MTBF – MTTR)/MTBF"
•  Can improve availability by increasing MTBF

or by reducing MTTR"
•  Ideally, systems never fail but much easier to test

reduction in MTTR than improvement in MTBF"

•  Uptime: fraction of time service is handling
traffic (usually measured in “nines”)"

Harvest and Yield"

•  yield = queries completed/queries offered!
•  In some sense more interesting than availability

because it focuses on client perceptions rather
than server perceptions"

•  If a service fails when no one was accessing it…"

•  harvest = data available/complete data!
•  How much of the database is reflected in each

query?"

•  Should faults affect yield, harvest, or both?"

