
Sean Barker

OSI Model

1

2/11/14

7

Protocols"
•  Protocol: An agreement between two “parties” as to how

information is to be transmitted"
•  More valuable with more users"

•  How do we introduce new protocols if everyone must agree?"

•  Network protocols are typically implemented in software"
•  Adds overhead to communication"

•  Network bandwidth versus application throughput"

•  Small matter of code (rather than hardware) to deploy new
protocol"

•  Examples"
•  Internet Protocol (IP): global packet transmission/addressing"

•  Transmission Control Protocol (TCP): reliable byte stream"

OSI Model"

Presentation"

Application"

Session"

Transport"

Network"

Data link"

Physical"

Ultimate data!
destination"

Format!
conversion"

Reliable, ordered"
delivery"

Routing/!
Internetworking"

Data framing"
over links"

Bits on!
the wire"

Interaction across!
presentation"

Presentation"

Application"

Session"

Transport"

Network"

Data link"

Physical"

Web browser"

ASCII/XDR"

Restartable file!
transfer"

TCP"

IP"

Ethernet, WiFi"

SONET, 100BT"

Example!Function!

OSI Model"

Presentation"

Application"

Session"

Transport"

Network"

Data link"

Physical"

Ultimate data!
destination"

Format!
conversion"

Reliable, ordered"
delivery"

Routing/!
Internetworking"

Data framing"
over links"

Bits on!
the wire"

Interaction across!
presentation"

Function!

Where does security go?"

What about reliability?"

Sean Barker

Protocol Encapsulation

2

2/13/14

2

 Layering in Internet Applications"

app"

socket"

TCP"

IP"

ether"

user"

kernel"

copy"

copy"

Packet!
arrives"

TCP!
revc"

hw intr"

sw intr"

task context"

•  Bottlenecks"
•  Boundary crossings"
•  Copies"
•  Context switches"

•  Layering is a nice way to
logically consider
protocols"
•  May not lead to fastest

implementation"
•  But! Processors are

getting faster… people
are getting more
expensive"

7"

Encapsulation"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Sender" Receiver " 8"

Datalink Layer (Layer 2): !
Ethernet/WiFi"

•  Ethernet frame format"

Preamble" Dst Addr" Src Addr"
Length/

Type" DATA"
Error
Check"

IP! Payload!HTTP!TCP!

9"

Network Layer (Layer 3): !
Internet Protocol (IP)"

•  Service mode: best effort"
•  No guarantees about reliable, in-order, or error-free delivery"

•  Enables IP to “run over anything” (e.g., any type of network)"

Version" HLen" TOS" Length"

Identification" Flags" Offset"

TTL" Protocol" Header Checksum"

Source IP Addr"

Destination IP Addr"

Options (variable)"

Data"

Pad (variable)"

Payload!HTTP!TCP!

10"

IP Address Allocation"

•  Originally, 4 address classes"
•  “A”: 0 | 7 bit network | 24 bit host (1M each)"
•  “B”: 10 | 14 bit network | 16 bit host (64K)"
•  “C”: 110 | 21 bit network | 8 bit host (255)"
•  “D”: 1110 | 28 bit multicast group #"

•  Assign network # centrally, host # locally"
•  Williams probably has class B address "

•  Prefix = 137.165 = 10001001.10100101"

•  We are running out of IP addresses!"
•  (See xkcd and wikipedia)"

11"

Routing: What Happens When
You Click on a Web Link?"

12"

Sean Barker

Ethernet (Data Link, Layer 2)

3

2/13/14

2

 Layering in Internet Applications"

app"

socket"

TCP"

IP"

ether"

user"

kernel"

copy"

copy"

Packet!
arrives"

TCP!
revc"

hw intr"

sw intr"

task context"

•  Bottlenecks"
•  Boundary crossings"
•  Copies"
•  Context switches"

•  Layering is a nice way to
logically consider
protocols"
•  May not lead to fastest

implementation"
•  But! Processors are

getting faster… people
are getting more
expensive"

7"

Encapsulation"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Sender" Receiver " 8"

Datalink Layer (Layer 2): !
Ethernet/WiFi"

•  Ethernet frame format"

Preamble" Dst Addr" Src Addr"
Length/

Type" DATA"
Error
Check"

IP! Payload!HTTP!TCP!

9"

Network Layer (Layer 3): !
Internet Protocol (IP)"

•  Service mode: best effort"
•  No guarantees about reliable, in-order, or error-free delivery"

•  Enables IP to “run over anything” (e.g., any type of network)"

Version" HLen" TOS" Length"

Identification" Flags" Offset"

TTL" Protocol" Header Checksum"

Source IP Addr"

Destination IP Addr"

Options (variable)"

Data"

Pad (variable)"

Payload!HTTP!TCP!

10"

IP Address Allocation"

•  Originally, 4 address classes"
•  “A”: 0 | 7 bit network | 24 bit host (1M each)"
•  “B”: 10 | 14 bit network | 16 bit host (64K)"
•  “C”: 110 | 21 bit network | 8 bit host (255)"
•  “D”: 1110 | 28 bit multicast group #"

•  Assign network # centrally, host # locally"
•  Williams probably has class B address "

•  Prefix = 137.165 = 10001001.10100101"

•  We are running out of IP addresses!"
•  (See xkcd and wikipedia)"

11"

Routing: What Happens When
You Click on a Web Link?"

12"

Sean Barker

Internet Protocol (Network, Layer 3)

4

2/13/14

2

 Layering in Internet Applications"

app"

socket"

TCP"

IP"

ether"

user"

kernel"

copy"

copy"

Packet!
arrives"

TCP!
revc"

hw intr"

sw intr"

task context"

•  Bottlenecks"
•  Boundary crossings"
•  Copies"
•  Context switches"

•  Layering is a nice way to
logically consider
protocols"
•  May not lead to fastest

implementation"
•  But! Processors are

getting faster… people
are getting more
expensive"

7"

Encapsulation"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Presentation"

Application"

Session"

Transport"

Network!

Data link!

Physical"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Payload"HTTP"

Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"

IP" Payload"HTTP"TCP"ETH"

Sender" Receiver " 8"

Datalink Layer (Layer 2): !
Ethernet/WiFi"

•  Ethernet frame format"

Preamble" Dst Addr" Src Addr"
Length/

Type" DATA"
Error
Check"

IP! Payload!HTTP!TCP!

9"

Network Layer (Layer 3): !
Internet Protocol (IP)"

•  Service mode: best effort"
•  No guarantees about reliable, in-order, or error-free delivery"

•  Enables IP to “run over anything” (e.g., any type of network)"

Version" HLen" TOS" Length"

Identification" Flags" Offset"

TTL" Protocol" Header Checksum"

Source IP Addr"

Destination IP Addr"

Options (variable)"

Data"

Pad (variable)"

Payload!HTTP!TCP!

10"

IP Address Allocation"

•  Originally, 4 address classes"
•  “A”: 0 | 7 bit network | 24 bit host (1M each)"
•  “B”: 10 | 14 bit network | 16 bit host (64K)"
•  “C”: 110 | 21 bit network | 8 bit host (255)"
•  “D”: 1110 | 28 bit multicast group #"

•  Assign network # centrally, host # locally"
•  Williams probably has class B address "

•  Prefix = 137.165 = 10001001.10100101"

•  We are running out of IP addresses!"
•  (See xkcd and wikipedia)"

11"

Routing: What Happens When
You Click on a Web Link?"

12"

Sean Barker

Domain Name System (DNS)

5

2/13/14

3

What Happens When You Click !
on a Web Link?"

Internet!

Your computer! www.google.com!

?!

13"

Steps in Retrieving a Web Page"

•  Extract hostname from URL"
•  http://www.google.com/foo  www.google.com"

•  Use DNS to translate www.google.com to IP address"
•  IP address used for Internet routing"

•  Establish a TCP (socket) connection to 74.125.225.83"
•  Protocol agreement for browser and server to speak HTTP"
•  TCP handles network problems (drops, corruption, etc.)"

•  TCP layered on top of IP/Ethernet"

•  Routers determine efficient path to 74.125.225.83"

14"

Different Kinds of Addresses"

•  Domain name (e.g. www.google.com)!
•  Global, human readable!

•  IP Address (e.g. 74.125.225.83)"
•  Global, works across all networks"

•  Some “special” IP addrs are not global… (192.168…)"

•  Ethernet (e.g. 08-00-2b-18-bc-65)"
•  Local; only useful on a particular network"
•  BUT each Ethernet address is globally unique!"

15"

Domain name to IP address: !
Domain Name System (DNS)"

Local"
 DNS server"
(137.165.8.2)"

What’s the IP address for www.google.com?"

Your computer"
(137.165.10.100)"

Oh, you can find it at 74.125.225.83!

But how do we know how to find 137.165.8.2?"

16"

How Do We Know !
Our DNS Server?"

•  IP cannot be configured into hosts when they are produced"

•  DHCP (Dynamic Host Configuration Protocol) allows for
dynamic assignment of IP addresses"

•  When host needs config info, broadcast DHCPDISCOVER"

•  But we still need to know the MAC address in order to
communicate…we eventually need to get to the lowest layer"

17"

IP address to MAC Address: !
Address Resolution Protocol (ARP)"

Ethernet"

Broadcast: Anyone know the !
Ethernet address for 137.165.8.2?!

Ethernet"

Unicast: Yes, I’m at!
08-00-2b-18-bc-65!

(137.165.10.100)" (137.165.8.2)"

Ethernet addresses are only helpful on our local network. Matching
IP address prefixes tell us that we are on the same network!"

Same IP prefix: 137.165"

18"

(139.140.110.78) (139.140.9.20)

Sean Barker

Address Resolution Protocol (ARP)

6

2/13/14

3

What Happens When You Click !
on a Web Link?"

Internet!

Your computer! www.google.com!

?!

13"

Steps in Retrieving a Web Page"

•  Extract hostname from URL"
•  http://www.google.com/foo  www.google.com"

•  Use DNS to translate www.google.com to IP address"
•  IP address used for Internet routing"

•  Establish a TCP (socket) connection to 74.125.225.83"
•  Protocol agreement for browser and server to speak HTTP"
•  TCP handles network problems (drops, corruption, etc.)"

•  TCP layered on top of IP/Ethernet"

•  Routers determine efficient path to 74.125.225.83"

14"

Different Kinds of Addresses"

•  Domain name (e.g. www.google.com)!
•  Global, human readable!

•  IP Address (e.g. 74.125.225.83)"
•  Global, works across all networks"

•  Some “special” IP addrs are not global… (192.168…)"

•  Ethernet (e.g. 08-00-2b-18-bc-65)"
•  Local; only useful on a particular network"
•  BUT each Ethernet address is globally unique!"

15"

Domain name to IP address: !
Domain Name System (DNS)"

Local"
 DNS server"
(137.165.8.2)"

What’s the IP address for www.google.com?"

Your computer"
(137.165.10.100)"

Oh, you can find it at 74.125.225.83!

But how do we know how to find 137.165.8.2?"

16"

How Do We Know !
Our DNS Server?"

•  IP cannot be configured into hosts when they are produced"

•  DHCP (Dynamic Host Configuration Protocol) allows for
dynamic assignment of IP addresses"

•  When host needs config info, broadcast DHCPDISCOVER"

•  But we still need to know the MAC address in order to
communicate…we eventually need to get to the lowest layer"

17"

IP address to MAC Address: !
Address Resolution Protocol (ARP)"

Ethernet"

Broadcast: Anyone know the !
Ethernet address for 137.165.8.2?!

Ethernet"

Unicast: Yes, I’m at!
08-00-2b-18-bc-65!

(137.165.10.100)" (137.165.8.2)"

Ethernet addresses are only helpful on our local network. Matching
IP address prefixes tell us that we are on the same network!"

Same IP prefix: 137.165"

18"

(139.140.110.78) (139.140.9.20)

139.140.9.20?

139.140

Sean Barker

Routing

7

2/13/14

4

Finding Google"

•  So now we know Google’s IP address…"

•  Google’s IP address prefix doesn’t match our IP
address prefix"

•  We must go through our gateway router"

•  Update Ethernet address of our packet so that
destination Ethernet addr is the address of our router
(but never change IP address!)"

19"

How Does a Packet Get Through
the Internet?"

"
"
"
"
"R"

R"

R"

R"R"H"H"

H"

H"

H"

R"

R"H"

R"

Routers send packet
to next closest point"

H: Hosts"

R: Routers"

Each router uses IP prefix matching to get our packet one step
closer to Google. Dest Ethernet addr on packet gets updated

with each hop! Dest IP addr never changes… "

74.125.225.83!
137.165.10.100!

20"

How Do the Routers Know
Where to Send Data?"

•  Forwarding tables at each router"
•  Original Internet: manual update"
•  Today: automatic update based on “cost”"
•  Link State Protocol"

•  Broadcast local connectivity information throughout
the network"

•  Maintain table of cost to get to other destinations"
•  Choose path with smallest cost (remember Dijkstra’s?)"

21"

Link State Example"
•  Flood following information through the network"

•  A: (AC,1) (AB,1)"
•  B: (BA,1) (BC,4)"
•  C: (CA,1) (CB,4) (CD,2)"
•  D: (DC,2) (DE,3)"
•  E: (ED,3)"

•  Each host runs Dijkstra’s algorithm to find shortest path
to all other hosts"
"

A"

B"

C" D E"

1"

4"

1"
2" 3"

22"

Have Address, Know How to
Route, Now Send Data"

•  So now we know how to find Google and send data"
•  Real networks must deal with congestion, bit errors,

etc. that occur during data transmission"
•  Data can be corrupted"

•  Data can get lost"
•  Data might not fit in a single packet"

•  Data can be delivered in the wrong order"
•  …"

23"

What If the Data Gets Corrupted?"

Internet!
GET iex.html"GET index.html"

IP" TCP" Data" TCP Packet Format

sequence number

acknowledgement number

source port destination port

window sizereservedheader
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

0 15 16

TCP checksum urgent pointer

options (if any)

data (if any)

31

20
bytes

Solution: Add a checksum "

24"

139.140.110.78

Sean Barker

IP Hourglass

8

2/13/14

1

CSCI 339!
Distributed Systems"

Lecture 3"
Feb 13, 2014"

Administrative Details"

•  Web server is due Wed, Feb 26 at 11:59pm"
•  You are behind if you haven’t already spent at least 2 hours on it"
•  Simon’s hours: Sun 7pm-10pm, Thur 9pm-11pm"

•  First “written homework” is due now"
•  Note: HTTP/1.1 “Host” header – required by protocol"

•  GET / HTTP/1.1"
"Host: bengali.cs.williams.edu:8888"

•  “…allows the origin server or gateway to differentiate between
internally-ambiguous URLs, such as the root "/" URL of a server
for multiple host names on a single IP address…” "

•  “A client MUST include a Host header field in all HTTP/1.1
request messages.”"

2"

Last Time"

•  Discussed sockets "
•  Reviewed threads vs. processes vs. event queue"
•  Note: the “select” system call is essential for the

event queue model"

•  Learned about network “layers” "

3"

Today’s Outline"

•  Discuss Internet routing"
•  This is an overview! In a networks course we’d

spend weeks on this topic…"

•  Discuss E2E argument and its merits"
•  Begin discussing TCP and UDP (layer 4

protocols)"

4"

OSI Model"

•  OSI standardized before implemented"
•  IETF philosophy: “We reject kings, presidents, and voting.

We believe in rough consensus and working code”"
•  IETF requires two working/interoperable versions before

considering a standard"

•  Modular design, but some boundaries are arbitrary"
•  Why seven layers?"

•  What exactly is the session layer?"
•  Basic network functionality exists at multiple layers"
"

Internet Architecture"

•  IP Hourglass:"
NFS" HTTP" email" rlogin"

RPC"

Telecollaboration"

TCP"
RSVP"

IP"

Ethernet" ATM" packet radio"

UDP"

SONET"

PPP"

air"

modem"

100BT"

•  Layering not strict"
•  Can define new abstractions on any existing protocol"

Sean Barker

User Datagram Protocol (UDP)

9

2/18/14

1

CSCI 339!
Distributed Systems"

Lecture 4"
Layer 4: TCP and UDP"

Feb 18, 2014"

Administrative Details"
•  Written homework 2 is due Thursday"

•  Should be a relatively quick read"

•  Web server is due Wed, Feb 26 at midnight"
•  Don’t forget about HTTP headers"

•  Paper due same day as code"
•  When writing your paper, think about design choices you made"

•  If you run any performance experiments while thinking about
thought questions (recommended), include graphs in paper "

Last Time"

•  We learned about routing (quick overview)"
•  Talked about the E2E argument"
•  Any questions?"

Today’s Outline"

•  Discuss transport layer protocols (layer 4)"
•  UDP - User Datagram Protocol"
•  TCP - Transmission Control Protocol"

•  Focus on flow control in TCP"

End-to-End Protocols"

•  Layers 2 & 3 (Ethernet/WiFi/IP) focus on delivering
packets/frames of data to arbitrary hosts connected to
the Internet"
•  We have routing protocols for getting packets to

destination (Link State Protocol)"
•  IP is best effort delivery (no reliability)"

•  Layer 4 focuses on arbitrary processes communicating
together "
•  Provide illusion that all processes are located on one large

computer"
•  Can deliver data reliably to any process running on any host"

Option 1: UDP"
•  User Datagram Protocol (UDP) - invented in 1980"

•  Simple transport layer protocol"
•  No guarantees about reliability, in-order delivery"

•  “Thin veneer” on top of IP "
•  Adds src/dest port numbers"

•  16 bit port number allows for identification of 65536 unique
communication endpoints per host"

•  Note that a single process can utilize multiple ports"
•  IP addr + port number uniquely identifies all Internet endpoints"

•  UDP Datagram:"

Link-layer" IP" SrcPort" DestPort" Checksum" Len" Data…"

UDP Header"

Sean Barker

Transmission Control Protocol (TCP)

10

2/18/14

2

Option 2: TCP"

•  Transmission Control Protocol (TCP) - 1974/1982"
•  Reliable in-order delivery of byte streams"

•  Full duplex (endpoints simultaneously send/receive)"
•  Two-way traffic is permitted"

•  e.g., single socket for web browser talking to web server"

•  Provides flow control"
•  To ensure that sender does not overrun receiver!

•  e.g., fast server talking to slow client"

•  Provides congestion control"
•  Keep the sender from overrunning the network!
•  e.g., fast sender on low bandwidth Internet connection "

•  Many simultaneous connections across routers (cross traffic)"

TCP Flow & Congestion Control"

•  Sender must determine maximum amount of data in
transit that will not overrun either receiver or
network"

•  Solutions?"

TCP Flow Control"

•  Sender must determine maximum amount of data in
transit that will not overrun receiver"

•  Solutions for flow control:"
•  Maintain “sliding window” to track data in transit"
•  Size of window determined by minimum of “flow window”

and “congestion window”"
•  Receiver ACKs “slide” left side of window forward (right)"

•  Opens up another “slot” at right side of window for transmission"

DataDataDataDataDataDataDataDataDataDataDataDataDataData"

Data in transit"

TCP “Sliding Window” !
Protocol Issues"

•  Need for connection establishment"
•  No dedicated cable"

•  Varying round trip times over life of connection"
•  Different paths, different levels of congestion"

•  Must be ready for very old packets to arrive"
•  Delay-bandwidth product highly variable"

•  Amount of available buffer space at receivers also variable"

•  Sender has no idea what links will be traversed to
receiver in advance"
•  Must dynamically estimate changing end-to-end

characteristics"

TCP Header Format"

SrcPort" DestPort"

SequenceNum"

Acknowledgment"

HdrLen" AdvertisedWindow"Flags"000000"

CheckSum" UrgPtr"

Options (variable – max of 320 bits)"

Data"

0" 4" 10" 16" 31"

•  Without options, TCP header 20 bytes"
•  IP header is also 20 bytes"

•  Thus, typical Internet packet min of 40 bytes (+link header)"

TCP Connection Establishment"
•  Exchange necessary information to begin

communication"
•  Three-way handshake"

•  E.g., server listening on socket"

Client" Server"
SYN, sequence #=x"

ACK, Acknowledgement=y+1"

SYN+ACK, sequence #=y"

Acknowledgment=x+1"

Sean Barker

TCP Three-Way Handshake

11

2/18/14

2

Option 2: TCP"

•  Transmission Control Protocol (TCP) - 1974/1982"
•  Reliable in-order delivery of byte streams"

•  Full duplex (endpoints simultaneously send/receive)"
•  Two-way traffic is permitted"

•  e.g., single socket for web browser talking to web server"

•  Provides flow control"
•  To ensure that sender does not overrun receiver!

•  e.g., fast server talking to slow client"

•  Provides congestion control"
•  Keep the sender from overrunning the network!
•  e.g., fast sender on low bandwidth Internet connection "

•  Many simultaneous connections across routers (cross traffic)"

TCP Flow & Congestion Control"

•  Sender must determine maximum amount of data in
transit that will not overrun either receiver or
network"

•  Solutions?"

TCP Flow Control"

•  Sender must determine maximum amount of data in
transit that will not overrun receiver"

•  Solutions for flow control:"
•  Maintain “sliding window” to track data in transit"
•  Size of window determined by minimum of “flow window”

and “congestion window”"
•  Receiver ACKs “slide” left side of window forward (right)"

•  Opens up another “slot” at right side of window for transmission"

DataDataDataDataDataDataDataDataDataDataDataDataDataData"

Data in transit"

TCP “Sliding Window” !
Protocol Issues"

•  Need for connection establishment"
•  No dedicated cable"

•  Varying round trip times over life of connection"
•  Different paths, different levels of congestion"

•  Must be ready for very old packets to arrive"
•  Delay-bandwidth product highly variable"

•  Amount of available buffer space at receivers also variable"

•  Sender has no idea what links will be traversed to
receiver in advance"
•  Must dynamically estimate changing end-to-end

characteristics"

TCP Header Format"

SrcPort" DestPort"

SequenceNum"

Acknowledgment"

HdrLen" AdvertisedWindow"Flags"000000"

CheckSum" UrgPtr"

Options (variable – max of 320 bits)"

Data"

0" 4" 10" 16" 31"

•  Without options, TCP header 20 bytes"
•  IP header is also 20 bytes"

•  Thus, typical Internet packet min of 40 bytes (+link header)"

TCP Connection Establishment"
•  Exchange necessary information to begin

communication"
•  Three-way handshake"

•  E.g., server listening on socket"

Client" Server"
SYN, sequence #=x"

ACK, Acknowledgement=y+1"

SYN+ACK, sequence #=y"

Acknowledgment=x+1"

Sean Barker

ACKs and Timeouts

12

2/18/14

3

TCP Connection Teardown"

•  Each side of a TCP connection can
independently close the connection"
•  Thus, possible to have a half duplex connection"

•  Possible problems?"
•  Solutions?"

•  Closing process sends a FIN message"
•  Waits for ACK of FIN to come back"

•  This side of the connection is now closed"

Reliability, First Cut: Stop and Wait"

Time" Packet"

ACK"

T
im

eo
ut"

Sender" Receiver"

•  Reliability, two principal mechanisms: "
•  ACKs and timeouts"

•  Send a packet, stop and wait until acknowledgement
arrives before sending next packet "

•  Problems?"

Recovering From Error"

Packet"

ACK"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

Packet"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

T
im

e"

Packet"

ACK"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

ACK lost" Packet lost" Early timeout/"
Delayed ACK"

Problems with Stop and Wait"

•  How to recognize a duplicate transmission?"
•  Solution: Put sequence number in packet"

•  Performance"
•  Unless Latency-Bandwidth product is very small,

sender cannot “fill the pipe”"
•  Solution: Sliding window protocol with

dynamically changing window size"

Keeping the Pipe Full"

•  Bandwidth-Delay product measures network capacity"
•  How much data can you put into the network before the first byte

reaches receiver"

•  Stop and Wait: 1 data packet per RTT (round trip time)"
•  Compute throughput of 1.5-Mbps link with 45-ms RTT and 1KByte data

packet"
•  With Stop-and-wait: 182-Kbps throughput"

•  1 Kbyte = 1024x8 bits, Throughput = 8192 bits / 45 ms = 182 Kbps"

•  Ideally, send enough packets to fill the pipe before requiring first
ACK packet"

Bandwidth"

Delay"
(or roundtrip latency)"

How Do We Keep the Pipe Full?"

•  Send multiple packets without waiting for "
"first to be ACK’d"

•  Reliable, unordered delivery:"
•  Send new packet after each ACK"
•  Sender keeps list of unACK’d packets; "
"resends after timeout"

•  Ideally, first ACK arrives immediately "
"after pipe is filled"
•  Opens up another “slot”"

•  Example: 10 Mbps link, 100 ms RTT:"
•  How much data is needed to keep pipe full?"

•  10x106bps * 100x10-3s = 1,000,000 bits = 125 KB"

Sean Barker

Filling the Pipe

13

2/18/14

3

TCP Connection Teardown"

•  Each side of a TCP connection can
independently close the connection"
•  Thus, possible to have a half duplex connection"

•  Possible problems?"
•  Solutions?"

•  Closing process sends a FIN message"
•  Waits for ACK of FIN to come back"

•  This side of the connection is now closed"

Reliability, First Cut: Stop and Wait"

Time" Packet"

ACK"

T
im

eo
ut"

Sender" Receiver"

•  Reliability, two principal mechanisms: "
•  ACKs and timeouts"

•  Send a packet, stop and wait until acknowledgement
arrives before sending next packet "

•  Problems?"

Recovering From Error"

Packet"

ACK"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

Packet"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

T
im

e"

Packet"

ACK"

T
im

eo
ut"

Packet"

ACK"

T
im

eo
ut"

ACK lost" Packet lost" Early timeout/"
Delayed ACK"

Problems with Stop and Wait"

•  How to recognize a duplicate transmission?"
•  Solution: Put sequence number in packet"

•  Performance"
•  Unless Latency-Bandwidth product is very small,

sender cannot “fill the pipe”"
•  Solution: Sliding window protocol with

dynamically changing window size"

Keeping the Pipe Full"

•  Bandwidth-Delay product measures network capacity"
•  How much data can you put into the network before the first byte

reaches receiver"

•  Stop and Wait: 1 data packet per RTT (round trip time)"
•  Compute throughput of 1.5-Mbps link with 45-ms RTT and 1KByte data

packet"
•  With Stop-and-wait: 182-Kbps throughput"

•  1 Kbyte = 1024x8 bits, Throughput = 8192 bits / 45 ms = 182 Kbps"

•  Ideally, send enough packets to fill the pipe before requiring first
ACK packet"

Bandwidth"

Delay"
(or roundtrip latency)"

How Do We Keep the Pipe Full?"

•  Send multiple packets without waiting for "
"first to be ACK’d"

•  Reliable, unordered delivery:"
•  Send new packet after each ACK"
•  Sender keeps list of unACK’d packets; "
"resends after timeout"

•  Ideally, first ACK arrives immediately "
"after pipe is filled"
•  Opens up another “slot”"

•  Example: 10 Mbps link, 100 ms RTT:"
•  How much data is needed to keep pipe full?"

•  10x106bps * 100x10-3s = 1,000,000 bits = 125 KB"

Sean Barker

TCP Sliding Window

14

2/18/14

4

Reliable, In-Order Delivery !
& Flow Control"

•  To support in-order delivery, add sequence number"
•  Receivers buffer later packets until prior packets arrive"
•  When a packet arrives out of order, receiver ACKs largest sequence #

received in order"
•  What happens when receiver receives 1, 2, 3, 5, 6, 7?"
•  Receiver ACKs 1, 2, 3, 3, 3, 3"

•  Sender must still prevent buffer overflow at receiver"
•  We can’t forget about flow control"

•  Solution?"
•  Sliding window with changing window size"
•  Circular buffer at sender and receiver"

•  # packets in transit <= buffer size "
•  Advance window when sender and receiver agree packets at beginning have

been successfully received"

TCP Flow Control"
•  TCP is a sliding window protocol based on byte

streams, not packets"
•  For window size n, can send up to n bytes without

receiving an acknowledgement "

•  When the data is acknowledged then the window slides
forward"

•  Each packet advertises a window size inside TCP
header field"
•  This number indicates number of bytes the receiver is

willing to buffer"

How does buffering affect !
flow control?"

•  Buffering taking place at multiple places"
•  Only finite space available at each location"
•  System will eventually block (through backpressure)"

Sending App"

OS Buffer"

NIC Buffer"

Recv App"

OS Buffer"

NIC Buffer"
Net!

Transmission"

TCP Flow Control: !
Visualizing the Sliding Window"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window = 6 bytes"
(advertised by receiver)"

usable window"

sent and"
acknowledged"

sent, not ACKed"

can send ASAP"
can’t send until"
window moves"

Left side of window advances when data is acknowledged."
Right side controlled by size of window advertisement."

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and"
acknowledged"

sent, not ACKed"

can send ASAP"
can’t send until"
window moves"

Initial State, Receiver has 6 slots to buffer data"
Bytes 4, 5, 6 sent, but not yet received"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and acknowledged"

sent, "
not ACKed"

can send ASAP"
can’t send until"
window moves"

Receiver to Sender ACK 5, Window 4"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, not read"

Sean Barker

TCP Sliding Window (2)

15

2/18/14

4

Reliable, In-Order Delivery !
& Flow Control"

•  To support in-order delivery, add sequence number"
•  Receivers buffer later packets until prior packets arrive"
•  When a packet arrives out of order, receiver ACKs largest sequence #

received in order"
•  What happens when receiver receives 1, 2, 3, 5, 6, 7?"
•  Receiver ACKs 1, 2, 3, 3, 3, 3"

•  Sender must still prevent buffer overflow at receiver"
•  We can’t forget about flow control"

•  Solution?"
•  Sliding window with changing window size"
•  Circular buffer at sender and receiver"

•  # packets in transit <= buffer size "
•  Advance window when sender and receiver agree packets at beginning have

been successfully received"

TCP Flow Control"
•  TCP is a sliding window protocol based on byte

streams, not packets"
•  For window size n, can send up to n bytes without

receiving an acknowledgement "

•  When the data is acknowledged then the window slides
forward"

•  Each packet advertises a window size inside TCP
header field"
•  This number indicates number of bytes the receiver is

willing to buffer"

How does buffering affect !
flow control?"

•  Buffering taking place at multiple places"
•  Only finite space available at each location"
•  System will eventually block (through backpressure)"

Sending App"

OS Buffer"

NIC Buffer"

Recv App"

OS Buffer"

NIC Buffer"
Net!

Transmission"

TCP Flow Control: !
Visualizing the Sliding Window"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window = 6 bytes"
(advertised by receiver)"

usable window"

sent and"
acknowledged"

sent, not ACKed"

can send ASAP"
can’t send until"
window moves"

Left side of window advances when data is acknowledged."
Right side controlled by size of window advertisement."

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and"
acknowledged"

sent, not ACKed"

can send ASAP"
can’t send until"
window moves"

Initial State, Receiver has 6 slots to buffer data"
Bytes 4, 5, 6 sent, but not yet received"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and acknowledged"

sent, "
not ACKed"

can send ASAP"
can’t send until"
window moves"

Receiver to Sender ACK 5, Window 4"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, not read"

ACK 5,
Window 4

Sean Barker

TCP Sliding Window (3)

16

2/18/14

5

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and acknowledged"

sent, not ACKed"
can’t send until"
window moves"

Sender to Receiver Send 7, 8, 9"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, "
not read"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and acknowledged"
can’t send until"
window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read" can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, not read"

offered window=0"

Receiver to Sender ACK 9, Window 0"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and"
acknowledged" can’t send until"

window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read"

Sender!

Receiver!

ACK’d, not read"

offered window=3"

Available bufs"

Receiver App reads packets 4, 5, 6"
But sender has no way of knowing that more room is available!"

Options for Sender Discovery of!
Increased Advertised Window"

•  Receiver sends duplicate ACK with a larger
advertised window"
•  Complicates receiver design"
•  TCP design philosophy: keep receiver simple"

•  Sender periodically transmits a 1-byte packet"
•  If no space available at receiverpacket dropped, no ACK"

•  If additional space became availableACK contains new
advertised window"

•  NOTE: Advertised window expressed in bytes, not
packets!"

TCP Congestion Control"

Congestion Control"

•  Flow controls helps sender avoid flooding
receiver"

•  Sender also wants to avoid causing congestion
in the network"

•  Questions:"
•  How can we detect congestion?"
•  How should we adjust our sending rate?"

•  How fast should we send initially?"

Send 7, 8, 9

Sean Barker

TCP Sliding Window (4)

17

2/18/14

5

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and acknowledged"

sent, not ACKed"
can’t send until"
window moves"

Sender to Receiver Send 7, 8, 9"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, "
not read"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and acknowledged"
can’t send until"
window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read" can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, not read"

offered window=0"

Receiver to Sender ACK 9, Window 0"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and"
acknowledged" can’t send until"

window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read"

Sender!

Receiver!

ACK’d, not read"

offered window=3"

Available bufs"

Receiver App reads packets 4, 5, 6"
But sender has no way of knowing that more room is available!"

Options for Sender Discovery of!
Increased Advertised Window"

•  Receiver sends duplicate ACK with a larger
advertised window"
•  Complicates receiver design"
•  TCP design philosophy: keep receiver simple"

•  Sender periodically transmits a 1-byte packet"
•  If no space available at receiverpacket dropped, no ACK"

•  If additional space became availableACK contains new
advertised window"

•  NOTE: Advertised window expressed in bytes, not
packets!"

TCP Congestion Control"

Congestion Control"

•  Flow controls helps sender avoid flooding
receiver"

•  Sender also wants to avoid causing congestion
in the network"

•  Questions:"
•  How can we detect congestion?"
•  How should we adjust our sending rate?"

•  How fast should we send initially?"

ACK 9,
Window 0

2/18/14

5

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window"

sent and acknowledged"

sent, not ACKed"
can’t send until"
window moves"

Sender to Receiver Send 7, 8, 9"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

offered window"

ACK’d and"
read"

Available bufs"
can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, "
not read"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and acknowledged"
can’t send until"
window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read" can’t recv until"
window moves"

Sender!

Receiver!

ACK’d, not read"

offered window=0"

Receiver to Sender ACK 9, Window 0"

Visualizing the Window: Example"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"

advertised window=0"

sent and"
acknowledged" can’t send until"

window moves"

4" 5" 6" 7" 8" 9"1" 2" 3" 10" 11" 12"
ACK’d and"

read"

Sender!

Receiver!

ACK’d, not read"

offered window=3"

Available bufs"

Receiver App reads packets 4, 5, 6"
But sender has no way of knowing that more room is available!"

Options for Sender Discovery of!
Increased Advertised Window"

•  Receiver sends duplicate ACK with a larger
advertised window"
•  Complicates receiver design"
•  TCP design philosophy: keep receiver simple"

•  Sender periodically transmits a 1-byte packet"
•  If no space available at receiverpacket dropped, no ACK"

•  If additional space became availableACK contains new
advertised window"

•  NOTE: Advertised window expressed in bytes, not
packets!"

TCP Congestion Control"

Congestion Control"

•  Flow controls helps sender avoid flooding
receiver"

•  Sender also wants to avoid causing congestion
in the network"

•  Questions:"
•  How can we detect congestion?"
•  How should we adjust our sending rate?"

•  How fast should we send initially?"

Sean Barker

TCP Sliding Window (5)

18

Read packets 4, 5, 6

