
Sean Barker

Storage Systems

1

Sean Barker

Chubby Lock Service

2

System Architecture

• A chubby cell consists of a small set of servers (replicas)
– Placed in different racks, so as to minimize chance of correlated failures

• A master is elected from the replicas via Paxos
– Master lease: several seconds
– If master fails, a new one will be elected, but only after master leases expire

• Client talks to the master via the chubby library
– All replicas are listed in DNS; clients discover master by talking to any replica

a replica

6

Sean Barker

Bigtable Data Model

3

Basic Data Model
• “A BigTable is a sparse, distributed, persistent

multi-dimensional sorted map”
(row:string, column:string, time:int64) Æ string

Webtable

Row key: up to 64KB,
10-100B typically,
sorted by reverse URL

column families cell w/ timestamped
versions + GC 28

Sean Barker

Bigtable Hierarchy

4

Sean Barker

Bigtable API Example

5

4/11/14

2

Bigtable: A Distributed Storage
System for Structured Data"

Written By:!
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber, Google, Inc.!

!

OSDI 2006 "

Introduction"
•  Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large size"
•  i.e., petabytes of data across thousands of commodity servers"

•  Essentially Google’s version of a database (with a slightly different
interface)"

•  Bigtable achieved wide applicability, scalability, and high
availability"
•  Used by more than sixty Google products and projects (probably

much more than this now)"

•  Uses Chubby locks for consistency and coordination"
•  Optional paper posted on course webpage"

•  Easy to put MapReduce “over” Bigtable"

Chubby Locks"

•  Chubby lock service provides coarse-grained locking for
distributed systems"
•  Long leases (hours and days rather than seconds and minutes)"

•  Provides reliable low-volume storage for loosely-coupled
systems"
•  But only for small files (impose a file size limit)"

•  Chubby’s design mainly concentrates on availability and
reliability rather than high performance"
•  Don’t expect to see any performance graphs…"

•  Support tens of thousands of clients simultaneously"

“Contents:”! “anchor:cnnsi.com”! “anchor:my.look.ca”!

“com.cnn.www”! “CNN”" “CNN.com”"
t3!

t5!
t6! t9! t8!

<html>"<html>"
<html>"

Bigtable Data Model"

•  Bigtable is a multi-dimensional sorted map"
•  Map is indexed by row key, column key and timestamp"
•  i.e. (row: string , column: string , time:int64) → string"
•  Row keys are reversed URLs "
•  Column keys are grouped into sets called column families"

•  Contents column contains page contents"
•  Anchor columns contain text of anchors that refer to page"

•  Timestamps are indicated by “t” values"

Writing to Bigtable:"
// Open the table"
"
Table *T = OpenOrDie("/bigtable/web/webtable");"
"
// Write a new anchor and delete an old anchor"
"
RowMutation r1(T, "com.cnn.www");"
"
r1.Set("anchor:www.c-span.org", "CNN");"
"
r1.Delete("anchor:www.abc.com");"
"
Operation op;"
"
Apply(&op, &r1);"

Taken From paper

Bigtable API"
Reading from Bigtable:"
Scanner scanner(T);"
"
ScanStream *stream;"
"
stream = scanner.FetchColumnFamily("anchor");"
"
stream->SetReturnAllVersions();"
"
scanner.Lookup("com.cnn.www");"
"
for (; !stream->Done(); stream->Next()) {"
"
printf("%s %s %lld %s\n","

"scanner.RowName(),"
"stream->ColumnName(),"
"stream->MicroTimestamp(),"
"stream->Value());"

 }"
Taken From paper

Bigtable API"

Sean Barker

Storage Systems

6

Sean Barker

RAID 0: Striping

7

Computer Science Lecture 18, page Computer Science

Tapes

• Compared to a disk, a tape is less expensive and holds more data,
but random access is much slower.

• Tape is an economical medium for purposes that do not require
fast random access, e.g., backup copies of disk data, holding huge
volumes of data.

• Large tape installations typically use robotic tape changers that
move tapes between tape drives and storage slots in a tape library.
– stacker – library that holds a few tapes
– silo – library that holds thousands of tapes

• A disk-resident file can be archived to tape for low cost storage;
the computer can stage it back into disk storage for active use.

CS377: Operating Systems 13

Computer Science Lecture 18, page Computer Science

RAID Storage
• RAID – multiple disk drives provides
reliability via redundancy.

• Disk striping uses a group of disks as
one storage unit.

• RAID schemes improve performance
and improve the reliability of the
storage system by storing redundant
data.
– Mirroring keeps duplicate of each disk.
– Block interleaved parity uses much less

redundancy.

• RAID is arranged into six different
levels

CS377: Operating Systems 14

Sean Barker

RAID 1: Mirroring

8

Computer Science Lecture 18, page Computer Science

Tapes

• Compared to a disk, a tape is less expensive and holds more data,
but random access is much slower.

• Tape is an economical medium for purposes that do not require
fast random access, e.g., backup copies of disk data, holding huge
volumes of data.

• Large tape installations typically use robotic tape changers that
move tapes between tape drives and storage slots in a tape library.
– stacker – library that holds a few tapes
– silo – library that holds thousands of tapes

• A disk-resident file can be archived to tape for low cost storage;
the computer can stage it back into disk storage for active use.

CS377: Operating Systems 13

Computer Science Lecture 18, page Computer Science

RAID Storage
• RAID – multiple disk drives provides
reliability via redundancy.

• Disk striping uses a group of disks as
one storage unit.

• RAID schemes improve performance
and improve the reliability of the
storage system by storing redundant
data.
– Mirroring keeps duplicate of each disk.
– Block interleaved parity uses much less

redundancy.

• RAID is arranged into six different
levels

CS377: Operating Systems 14

Sean Barker

RAID 3: Parity Disk

9

4/11/14

5

Redundant Array of Inexpensive Disks!
RAID 3: Parity Disk"

P"

10010011"
10101101"
10010111"

. . ."
 logical record" 1"

0"
0"
1"
0"
0"
1"
1"

1"
0"
1"
0"
1"
1"
0"
1"

1"
0"
0"
1"
0"
1"
1"
1"

1"
0"
1"
0"
1"
0"
0"
1"

•  P contains sum of other
disks per stripe mod 2
(“parity”)"

•  If disk fails, subtract P from
sum of other !
disks to find missing
information"

•  Stripe at byte level"

Striped physical"
records"

RAID 3"

•  Sum computed across recovery group to protect
against hard disk failures, stored in P disk"

•  Logically, a single high capacity, high transfer rate
disk: good for large transfers"

•  But byte level striping is bad for small files (both
reads and writes, all disks involved)"

•  Parity disk is still a bottleneck "

Inspiration for RAID 4"
•  RAID 3 stripes data at the byte level. RAID 4 stripes at block

level"
•  RAID 3 relies on parity disk to discover errors on read"
•  But every sector on disk has an error detection field"
•  Rely on error detection field on disk to catch errors on read,

not on the parity disk"
•  Allows independent reads to different disks simultaneously"
•  Increases read I/O rate since only one disk is accessed rather

than all disks for a small read"

Redundant Arrays of Inexpensive Disks !
RAID 4: High I/O Rate Parity"

D0! D1! D2! D3! P!

D4! D5! D6! P!D7!

D8! D9! P!D10! D11!

D12! P!D13! D14! D15!

P!D16! D17! D18! D19!

D20! D21! D22! D23! P!

.!

.!
.!
.!

.!

.!
.!
.!

.!

.!

Disk Columns"

Increasing"
Logical"
Disk "

Address"

Stripe!

Insides of 5
disks"

Example:"
small read !
D0 & D5, !

large write
D12-D15"

Inspiration for RAID 5"
•  RAID 4 works well for small reads"
•  Small writes (write to one disk): "

•  Option 1: read other data disks, create new sum and write to
Parity Disk (P)"

•  Option 2: since P has old sum, compare old data to new data,
add the difference to P"

•  Small writes are still limited by Parity Disk in RAID 4:
Write to D0, D5, both also write to P disk "

D0! D1! D2! D3! P!

D4! D5! D6! P!D7!

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity"

Independent
writes"

possible
because of"
interleaved

parity"

D0! D1! D2! D3! P!

D4! D5! D6! P! D7!

D8! D9! P! D10! D11!

D12! P! D13! D14! D15!

P! D16! D17! D18! D19!

D20! D21! D22! D23! P!

.!

.!
.!
.!

.!

.!
.!
.!

.!

.!
Disk Columns"

Increasing"
Logical"
Disk "

Addresses"

Example:
write to D0,

D5 uses
disks 0, 1, 3,

4"

4/11/14

5

Redundant Array of Inexpensive Disks!
RAID 3: Parity Disk"

P"

10010011"
10101101"
10010111"

. . ."
 logical record" 1"

0"
0"
1"
0"
0"
1"
1"

1"
0"
1"
0"
1"
1"
0"
1"

1"
0"
0"
1"
0"
1"
1"
1"

1"
0"
1"
0"
1"
0"
0"
1"

•  P contains sum of other
disks per stripe mod 2
(“parity”)"

•  If disk fails, subtract P from
sum of other !
disks to find missing
information"

•  Stripe at byte level"

Striped physical"
records"

RAID 3"

•  Sum computed across recovery group to protect
against hard disk failures, stored in P disk"

•  Logically, a single high capacity, high transfer rate
disk: good for large transfers"

•  But byte level striping is bad for small files (both
reads and writes, all disks involved)"

•  Parity disk is still a bottleneck "

Inspiration for RAID 4"
•  RAID 3 stripes data at the byte level. RAID 4 stripes at block

level"
•  RAID 3 relies on parity disk to discover errors on read"
•  But every sector on disk has an error detection field"
•  Rely on error detection field on disk to catch errors on read,

not on the parity disk"
•  Allows independent reads to different disks simultaneously"
•  Increases read I/O rate since only one disk is accessed rather

than all disks for a small read"

Redundant Arrays of Inexpensive Disks !
RAID 4: High I/O Rate Parity"

D0! D1! D2! D3! P!

D4! D5! D6! P!D7!

D8! D9! P!D10! D11!

D12! P!D13! D14! D15!

P!D16! D17! D18! D19!

D20! D21! D22! D23! P!

.!

.!
.!
.!

.!

.!
.!
.!

.!

.!

Disk Columns"

Increasing"
Logical"
Disk "

Address"

Stripe!

Insides of 5
disks"

Example:"
small read !
D0 & D5, !

large write
D12-D15"

Inspiration for RAID 5"
•  RAID 4 works well for small reads"
•  Small writes (write to one disk): "

•  Option 1: read other data disks, create new sum and write to
Parity Disk (P)"

•  Option 2: since P has old sum, compare old data to new data,
add the difference to P"

•  Small writes are still limited by Parity Disk in RAID 4:
Write to D0, D5, both also write to P disk "

D0! D1! D2! D3! P!

D4! D5! D6! P!D7!

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity"

Independent
writes"

possible
because of"
interleaved

parity"

D0! D1! D2! D3! P!

D4! D5! D6! P! D7!

D8! D9! P! D10! D11!

D12! P! D13! D14! D15!

P! D16! D17! D18! D19!

D20! D21! D22! D23! P!

.!

.!
.!
.!

.!

.!
.!
.!

.!

.!
Disk Columns"

Increasing"
Logical"
Disk "

Addresses"

Example:
write to D0,

D5 uses
disks 0, 1, 3,

4"

Sean Barker

RAID 5: Distributed Parity

10

Computer Science Lecture 18, page Computer Science

Tapes

• Compared to a disk, a tape is less expensive and holds more data,
but random access is much slower.

• Tape is an economical medium for purposes that do not require
fast random access, e.g., backup copies of disk data, holding huge
volumes of data.

• Large tape installations typically use robotic tape changers that
move tapes between tape drives and storage slots in a tape library.
– stacker – library that holds a few tapes
– silo – library that holds thousands of tapes

• A disk-resident file can be archived to tape for low cost storage;
the computer can stage it back into disk storage for active use.

CS377: Operating Systems 13

Computer Science Lecture 18, page Computer Science

RAID Storage
• RAID – multiple disk drives provides
reliability via redundancy.

• Disk striping uses a group of disks as
one storage unit.

• RAID schemes improve performance
and improve the reliability of the
storage system by storing redundant
data.
– Mirroring keeps duplicate of each disk.
– Block interleaved parity uses much less

redundancy.

• RAID is arranged into six different
levels

CS377: Operating Systems 14

Sean Barker

RAID 1+0: Mirroring and Striping

11

4/11/14

6

Problems of Disk Arrays: !
Small Writes"

D0" D1" D2" D3" P"D0'"

+"

+"

D0'" D1" D2" D3" P'"

new!
data!

old!
data!

old !
parity!

XOR"

XOR"

(1. Read)" (2. Read)"

(3. Write)" (4. Write)"

RAID-5: Small Write Algorithm!

1 Logical Write = 2 Physical Reads + 2 Physical Writes"

RAID-0+1"

•  (FYI, RAID 6 extends RAID 5 with extra
parity block)"

•  Striping + mirroring"
•  High storage overhead/cost"
•  For small write-intensive apps, may be

better than RAID-5 (write data twice,
but no reads or XORs required)"

D0 D0 D1 D1

RAID-1+0"

•  Mirroring + striping (strip of mirrors)"
•  High storage overhead/cost"
•  Preferable RAID level for IO-intensive

applications like database, email, and web
servers"

•  Provides better throughput and latency
than all other levels (except RAID 0,
which wins in throughput)"

D0 D0 D1 D1

But what about the network?"

•  How does the network complicate things?"
•  What can we do about it?"
•  Can you think of any papers we have read that

address some of these storage issues?"

•  What new challenges are introduced by a
distributed file system in addition to scalable
storage?"

•  Think about the Hadoop DFS"

Distributed File System Requirements"

•  Transparency"
•  Access, location, mobility, performance, scaling"

•  Concurrent file updates"
•  File replication"
•  Hardware and OS heterogeniety"
•  Fault tolerance"
•  Consistency"
•  Security"
•  Efficiency"

Distributed File Systems and RAID"

•  Distributed file systems require higher reliability and
capacity at higher loads than a local file system"

•  RAID was created to address the limitations"
•  Most work in distributed file systems ignores the

disk level details (like which RAID is being used)"
•  But all work assumes that the disks themselves are

reliable, scalable, and have high performance which
can be accomplished using RAID"

•  Next up: Distributed file systems (NFS, AFS, and
GFS)"

