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ABSTRACT
One of the key barriers to widespread deployment of disaggregation

algorithms is the difficulty that these algorithms have in real-world

environments containing many devices. While a greater number

of devices inevitably results in “noisier” aggregate consumption,

different devices will have varying impacts on the overall difficulty

of disaggregation. To investigate the extent of this effect, we con-

duct an empirical study in which we disaggregate fixed appliance

loads from real-world data while systematically varying the set

and complexity of other loads present. Our study highlights the

outsized impact of certain device types and suggests paths towards

scaling disaggregation algorithms to more complex environments.
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1 INTRODUCTION
Energy disaggregation (also known as non-intrusive load monitor-

ing or NILM) refers to decomposing aggregate energy consumption

collected at the building level into all of its component loads [4].

Ideally, the sum of the resulting disaggregated loads equals the ag-

gregate consumption, providing a complete breakdown of energy

usage. However, owing to the large number of electrical devices

present in most buildings and the difficulty of accurately mod-

eling all of them, it is often impractical in real environments to

provide a full breakdown. Disaggregation often focuses instead

on specific devices of interest, such as large appliances or power-

intensive devices. In doing so, disaggregation can provide useful

insights without having to handle the large number of other de-

vices present. In this work, we refer to non-disaggregated devices as

background devices, which have also been termed ‘standby loads’ or
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simply ‘noise’ – the latter referring to consumption from unknown

sources [3, 12]. We similarly term the devices to be disaggregated

foreground devices. While simple disaggregation scenarios may in-

volve only foreground devices, most real-world scenarios will also

involve some number of background devices.

The presence of background devices will clearly have some im-

pact on disaggregation performance. However, the extent of this

impact is unlikely to be linear; for example, a background device

that is highly active is likely to have more impact than a background

device that is rarely used. Thus, disaggregation difficulty may stem

from specific, highly impactful devices rather than from a large

number of total devices. Investigating the impact of specific devices

can inform how to scale NILM to noisy, real-world environments.

In this paper, we explicitly consider the impact of background

devices on disaggregation performance by conducting an empirical

study on building environments of systematically varied complexity.

In doing so, we aim to increase our understanding of practical NILM

scalability. Our study explores the impact of background devices on

widely-used disaggregation algorithms and points to the outsized

impact of some of these devices.

2 METHODOLOGY
The primary goal of our study is to identify and characterize the

devices most impactful on disaggregation – particularly devices that

may themselves not be part of the disaggregation (i.e., background

devices). Formally, consider a building containing the set of devices

𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛}. The set 𝐷 is decomposed into the set 𝐹 of

foreground devices to be disaggregated and the remaining set 𝐵 of

background devices – that is, 𝐷 = 𝐵∪𝐹 . Devices in 𝐵 are part of the

aggregate consumption but are not themselves disaggregated and

may not even be known to the disaggregation algorithm. While the

classic definition of NILM consists exclusively of foreground devices

(𝐷 = 𝐹 ), in practice, studies often focus on a small set of foreground

devices (typically larger appliances) [5]. To assess the impact of

background devices, we fix 𝐹 while varying 𝐵. As 𝐵 grows, the

aggregate data becomes noisier and degrades performance. While

disaggregation studies such as [10] perform a similar operation by

injecting artificial noise into the aggregate trace, we instead modify

disaggregation complexity via the background device set.

2.1 Ranking Device Impact
A simple approach to investigating the relative impact of different

devices is to progressively add background devices to 𝐵, re-running

disaggregation on the same foreground devices with each addition

tomeasure the effect. However, such an approach is of limited utility,

as the impact of adding a given device is highly dependent on the

devices already added (or not yet added). We instead formulate the

problem by considering a complete device set𝐷 fromwhichwewish

to identify the most impactful 𝑘 devices. We can find the optimal

set of 𝑘 devices by considering every possible set of 𝑘 devices
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and re-testing with each set held back from 𝐷 . Unfortunately, this

optimal approach is computationally intractable for larger numbers

of devices – e.g., for |𝐷 | = 50 and 𝑘 = 5, there are over a million

possible combinations of the 45 background devices to consider.

We instead propose a greedy algorithm to approximate the top de-

vices. As outlined in Algorithm 1, for a given starting configuration

of foreground set 𝐹 and background set 𝐵, we run |𝐵 | disaggregation
trials in which we remove a single device from 𝐵 (i.e., leaving |𝐵 | −1
background devices). In each trial, we disaggregate the devices in 𝐹

and then score the results relative to the baseline where all devices

in 𝐵 are included. The highest-scoring trial determines the single

next device to remove from 𝐵 (i.e., the most impactful device) dur-

ing subsequent rounds. With this approach, we can estimate the

top 𝑘 devices using only 𝑂 ( |𝐵 | × 𝑘) disaggregation trials.

Algorithm 1 Disaggregation Impact Ranking Algorithm

1: procedure FindTopK(𝐹, 𝐵, 𝑘)
2: 𝑡𝑜𝑝𝐾 ← []
3: for 𝑖 from 1 to 𝑘 do ⊲ for each of 𝑘 rounds

4: 𝑏𝑎𝑠𝑒 ← 𝑑𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐹, 𝐵) ⊲ current round baseline

5: 𝑠𝑐𝑜𝑟𝑒𝑠 ← []
6: for each 𝑑𝑒𝑣𝑖𝑐𝑒 in 𝐵 do
7: 𝐵.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑑𝑒𝑣𝑖𝑐𝑒)
8: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑑𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐹, 𝐵) ⊲ re-test on 𝐹

9: 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 (𝑟𝑒𝑠𝑢𝑙𝑡, 𝑏𝑎𝑠𝑒, 𝐹 ) ⊲ scoring function

10: 𝑠𝑐𝑜𝑟𝑒𝑠.𝑎𝑑𝑑 (𝑠𝑐𝑜𝑟𝑒)
11: 𝐵.𝑎𝑑𝑑 (𝑑𝑒𝑣𝑖𝑐𝑒) ⊲ replace device

12: 𝑠𝑐𝑜𝑟𝑒𝑠.𝑠𝑜𝑟𝑡 ()
13: 𝑡𝑜𝑝𝐾.𝑎𝑑𝑑 (𝑠𝑐𝑜𝑟𝑒𝑠 [0]) ⊲ top-scoring device

14: 𝐵.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑜𝑝) ⊲ remove from future rounds

15: return 𝑡𝑜𝑝𝐾

2.2 Scoring Results
Algorithm 1 does not specify how the scoring function works (line

9) – i.e., how do we compute the improvement in disaggregating the

foreground device set? This problem is nontrivial owing to the lack

of standardization and multiple metrics used in NILM performance

measurement [6–9]. Here, we optimize a single (configurable) met-

ric, as follows: for any standard disaggregation metric (MAE, RMSE,

F1 score, etc.), we sum the absolute improvement versus the prior

baseline across all devices in 𝐹 . This sum excludes any devices that

see degraded performance, as these cases can be safely ascribed

to algorithmic randomness or noise. Although our present scoring

function uses only a single metric at once, more sophisticated ap-

proaches could consider multiple metrics at once, particularly in

complimentary ways (such as proposed in [7]).

3 ALGORITHMS, DATA, AND METRICS
We conduct our study using the latest version of the NILMTK disag-

gregation toolkit [1, 2]. Since our aim is not to focus on any specific

disaggregation algorithm, we run our experiments using a vari-

ety of classic and cutting-edge NILM algorithms implemented in

NILMTK: Edge Detection (Edge), Combinatorial Optimization (CO),

Exact Factorial Hidden Markov Model (FHMM), Denoising Autoen-

coder (DAE), Sequence-to-Sequence (S2S), Sequence-to-Point (S2P),

and Recurrent Neural Network (RNN). Neural networks are trained

for 50 epochs with a batch size of 128. All other algorithm-specific

parameters are left at their default values within NILMTK.

Our experiments are conducted using real-world device data

from Dataport [11] with a sampling rate of 10. Since this dataset is

circuit-level rather than device-level (as with most larger datasets),

there is the possibility of multi-device circuits, but most typical

appliances and larger devices exist on dedicated circuits. As such,

we treat circuits and devices equivalently in this study.

We are not concerned with the specific building from which

each device originates, but simply treat the dataset as a repository

of device traces from which to construct test buildings. We thus

discard the Dataport aggregates in favor of synthetic aggregates

constructed by summing all foreground and background devices

under consideration. Our total device set consists of 35 circuits se-

lected to encompass all common device types in the dataset (typical

appliances, lighting, HVAC, etc.) while ensuring that each device

exhibits some activity over the month-long training and testing

periods (two months of data in total). Each of our experiments is

run on a synthetic house containing a subset of the 35 circuits.

We focus on two complimentary evaluation metrics, following

the example of [10] and others. First, we consider mean absolute

error (MAE), which measures the predictive error between the

disaggregated consumption over time and the real consumption.

Second, we consider F1 score, which labels each time period using

a binary active/inactive classification and measures the accuracy of

the disaggregated labeling versus ground truth. Both are standard

metrics widely used in disaggregation work [7].

4 RESULTS
As detailed in Section 2, each of our experiments is configured as a

particular set of foreground devices to disaggregate in the presence

of zero or more background devices. We focus on disaggregation

performance of four typical appliances: a refrigerator, dishwasher,

microwave, andwashingmachine. These device types are popular in

disaggregation studies and are varied in their usage patterns (e.g., a

refrigerator is frequent and regular, while a microwave is infrequent

and less predictable). These four devices comprise the foreground

devices in all experiments while we vary the background device set.

We consider two baseline configurations: no background devices

(the “easiest” case), which we term BG-0, and all 31 background

devices (the “hardest” case), which we term BG-31.
In all experiments, the disaggregation performance of FHMM

and CO was poor relative to all other algorithms. Hence, for brevity

and clarity, we only report results from the other five disaggregation

algorithms (Edge, DAE, S2S, S2P, and RNN).

4.1 Scaling Disaggregation Complexity
We first disaggregate the BG-0 configuration and then progres-

sively add background devices until arriving at BG-31, re-running
disaggregation with each added device. The order of added de-

vices is chosen arbitrarily. Figure 1 shows the averaged MAE and F1

scores across all foreground devices for each test run.We see that all

algorithms experience a continuous but relatively smooth degrada-

tion as background activity increases, though the magnitude varies
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(a) MAE (b) F1 Score

Figure 1: Average MAE and F1 score for all foreground devices as background activity increases.

(a) Refrigerator (b) Dishwasher (c) Washing Machine (d) Microwave

Figure 2: MAE for individual foreground devices as background activity increases.

(a) Refrigerator (b) Dishwasher (c) Washing Machine (d) Microwave

Figure 3: F1 scores for individual foreground devices as background activity increases.

substantially by device – in particular, the refrigerator and dish-

washer appear to be most sensitive. The simple Edge algorithm is

reliably the lowest performer, particularly in noisier environments,

while the other approaches (all based on neural nets) are generally

competitive. However, the best-performing algorithm (S2P) still

experiences a 59% drop in average F1 score and 8X increase in

average MAE between BG-0 and BG-31.

Figures 2 and 3 depict MAE and F1 scores for each individual

foreground device across each test run. We see that the refrigerator

is relatively easy to disaggregate (even using simple edge detection),

but experiences the most notable degradation with increasing com-

plexity. The dishwasher also exhibits fairly smooth degradation. In

contrast, the washing machine and microwave are harder to disag-

gregate in general, but display less pronounced trends across runs

(i.e., the addition of background devices less consistently degrades

performance). These results suggest that while highly-accurate

disaggregation is difficult in noisy or complex environments, main-

taining a lower butmore stable level of performancemay be possible

even in noisy environments.

4.2 Most Impactful Devices
We next employ the ranking algorithm described in Section 2.2

to estimate the five most impactful background devices from the

entire set. We consider the nine different ranking configurations

shown in Table 1 to choose the top five devices. Each configuration

is described by (1) which algorithm (S2P or Edge) is used to disag-

gregate in each round, (2) the number of rounds used – in the case

of a single round, the top five devices are chosen immediately based

on the results of the first round, and (3) which metric (MAE or F1)

is used to produce the ranking in each round. We also consider a

manual configuration (denoted TYPE), in which we manually select

devices matching similar devices type to the foreground devices.

We see from the resulting device sets that there are significant

variations across configurations, though several devices are highly

ranked by most or all configurations (e.g., AirwindowUnit-5746
and Freezer-142). The device type does not appear to be strongly

predictive of a high ranking, as some background devices of the

same type as a foreground device (e.g., Refrigerator-3700 are

not ranked except by TYPE. We also see that picking all 5 devices

from only one round can produce a notably different set of devices

– for example, SP-5F and SP-1F share only two of five top devices.

To evaluate the quality of each configuration and the impact of

the chosen devices, we remove the top five ranked devices from

the full set of 31 background devices and then disaggregate the

foreground devices with the remaining 26 background devices.

Owing to the globally superior disaggregation performance of S2P

versus Edge, S2P is used to perform the disaggregation for each

configuration regardless of whether S2P or Edge was used to choose
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Name Rank Alg Rounds Metric Top Five Devices (ranked)
SP-5M S2P 5 MAE LightsPlug-2096, Air-2361, AirwindowUnit-5746, Freezer-142, Heater-2318

SP-1M S2P 1 MAE LightsPlug-2096, AirwindowUnit-5746, Air-2361, Car-1222, WellPump-1222

SP-5F S2P 5 F1 Score Microwave-3700, Air-2361, Heater-2318, Bedroom-5746, Furnace-3488

SP-1F S2P 1 F1 Score Microwave-3700, Car-1222, AirwindowUnit-5746, Housefan-5058, Heater-2318

ED-5M Edge 5 MAE Freezer-142, AirwindowUnit-5746, Dryer-1222, Air-2361, WellPump-1222

ED-1M Edge 1 MAE Freezer-142, AirwindowUnit-5746, Dryer-1222, Air-2361, Garage-4373

ED-5F Edge 5 F1 Score AirwindowUnit-5746, Freezer-142, Air-2361, LightsPlug-2096, Furnace-3488

ED-1F Edge 1 F1 Score AirwindowUnit-5746, Freezer-142, LightsPlugs-2096, Air-2361, Microwave-3700

TYPE Manual N/A Device Type AirwindowUnit-5746, Freezer-142, Microwave-3700, Refrigerator-3700, Range-558

Table 1: Ranking configurations and corresponding top five devices (in ranked order for each configuration).

Figure 4: Average MAE and F1 scores across all foreground
devices for baselines and each ranking configuration from
Table 1 when disaggregated using S2P.

(a) MAE (b) F1 Score

Figure 5: IndividualMAEand F1 scores for S2P disaggregation
using ED-5M ranking configuration.

the top devices for that configuration. Figure 4 depicts the average

MAE and F1 scores across all foreground devices for each of the

nine configurations plus the two baselines BG-0 and BG-31.

Interestingly, we see that the most impactful (i.e., “best”) ranking

is produced by the ED-5M configuration, and more generally, that

the rankings produced using Edge are significantly superior to

those produced using S2P (even when disaggregation is ultimately

performed using S2P rather than Edge, as is the case in all results

shown in Figure 4). We suspect that this is due to the relative

simplicity of Edge; only significant and reliable improvements are

likely to be captured at all by Edge rankings, and hence, the devices

chosen by these rankings are strongly impactful even when a more

sophisticated disaggregation algorithm is ultimately used. In all

cases other than SP-5F, all of the 5-round configurations are superior

to their otherwise-identical 1-round counterparts.

We also consider the impact of the most significant devices on

individual foreground devices. Figure 5 shows the individual MAE

and F1 scores for S2P disaggregation as the top devices chosen by

ED-5M are removed one at a time (in order of significance). We

see significant improvements in F1, MAE, or both for all devices

except for the microwave, which sees minimal improvement from a

poor starting baseline. This result reflects that while some devices

may be impacted primarily by a few specific other devices and thus

easily improved, other devices may be more inherently difficult to

recognize irrespective of specific background activity.

An important question is the extent to which removing the “top”

devices bridges the performance distance between the BG-31 and

BG-0 baselines. Numerically, removing the top five devices chosen

by ED-5M (representing only 14% of the total devices) eliminates

40% of the overall F1 delta and 48% of the overall MAE delta between

BG-31 and BG-0. These results reflect the outsized influence that

these few devices have on the complexity of the aggregate data.

Extending the ED-5M configuration out to 10 rounds (i.e., ED-10M)

and removing the resulting top 10 devices eliminated 65% of the F1

delta and 66% of the MAE delta between BG-31 and BG-0.

Qualitatively, most of the top-ranked devices (across all configu-

rations, as listed in Table 1) are characterized by frequent activity

(e.g., cyclic devices such as freezers and air conditioners are heavily

represented), and, to a lesser extent, high power consumption. As

our experiments demonstrate, these devices are significantly more

impactful on disaggregation than average, and removing them from

a device set to be disaggregated (such as by installing a small num-

ber of dedicated plug-level meters on such devices) may have an

outsized impact on the feasibility of disaggregating other devices.

5 CONCLUSION
Performing accurate disaggregation in buildings containing large

numbers of devices remains a difficult problem. This study explores

the extent to which this difficulty may stem from specific, highly

impactful devices, as opposed to simply the total number of devices

present. Our results show that a small number of cyclic, frequently

operating devices may have an outsized impact on disaggregation

performance, and thus are especially important to consider when

scaling NILM to larger homes and buildings. As future work build-

ing on this study, we intend to characterize highly impactful devices

in more depth and explore practical, minimally-invasive techniques

to identify such devices in novel operating environments. This work

represents a step towards effectively deploying NILM algorithms

in real-world buildings containing many and varied devices.
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