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Abstract—The Internet of Things (IoT) is growing rapidly, with
increasingly sophisticated networking, sensing, and actuation
functions embedded into everyday devices. One important IoT
application is managing a building’s energy usage by monitoring
and controlling its electrical devices. Many existing IoT-enabled
devices operate through low-cost, convenient power line networks,
using protocols such as X10 and Insteon for communication.
However, as these technologies have traditionally targeted low-
bandwidth device control, they are often not readily suited to
higher bandwidth uses such as continuous energy monitoring. In
this paper, we consider the challenge of leveraging existing low-
bandwidth PLC networks for energy monitoring, and present sev-
eral techniques that enable reliable, high-resolution monitoring in
such networks. As a case study, we consider the popular Insteon
protocol, and show that intelligent polling and event detection
methods can reduce the bandwidth requirements and undetected
power events in a real-world Insteon network by 50% or more
versus naive methods. Our techniques have been employed in a
real IoT-enabled smart home, which has collected much of the
data publicly released in the UMass Smart* energy dataset.

Index Terms—Smart home, home automation, energy, sensor,
actuator, power-line communication, Insteon

I. INTRODUCTION

The Internet of Things (IoT) is experiencing rapid growth,
with many companies embedding networking, sensing, and
actuation functions in everyday household devices. Prominent
examples include the Nest thermostat, Belkin’s WeMo line of
IoT devices, Philips’ Hue light bulb, and Samsung’s Smart
Washing Machine and Dryer. One important IoT application
is the granular management of building energy consumption
by monitoring and controlling the energy usage of these IoT-
enabled devices. In doing so, “smart” buildings are capable of
using demand-side energy management to reduce their overall
energy consumption and peak power usage, while also better
aligning consumption with renewable generation [1]. Demand-
side management requires buildings to continuously monitor
devices’ power usage, and remotely control when and how
much energy they consume.

Since buildings do not generally have wired Ethernet in
power outlets, thermostats, or wall switches, most devices
must rely on various other types of networking mediums
and protocols. One popular networking option uses Power
Line Communication (PLC), which leverages the physical
electrical wiring of the building to send and receive messages.
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Since all buildings (smart or otherwise) contain extensive
existing electrical wiring, networks that operate over the power
line infrastructure offer key benefits, such as rapid adoption,
minimal infrastructure cost, and easy integration into existing
building environments. However, while remote control and
monitoring in smart buildings are closely coupled, two disjoint
sets of technologies have evolved to perform these tasks.

e Control. Power line based Home Automation (HA) pro-
tocols, such as X-10 and Insteon, were designed explicitly
for remote device control and are widely used in smart
buildings. The protocols enable programatic actuation of
outlets and switches (i.e., turning on or off) using a build-
ing’s power line for communication. Since remote control
typically only requires infrequent, brief commands, these
protocols offer little bandwidth, and cannot support direct
monitoring of power at high resolutions. However, they are
often more reliable than wireless communication, owing
to specific design choices that sacrifice bandwidth for
reliability (e.g., Insteon devices act as message repeaters).

e Monitoring. In contrast to PLC protocols like Insteon,
wireless network substrates and protocols have received
more attention for energy monitoring. Researchers have
developed numerous techniques to enable high resolution
wireless monitoring of a device’s energy consumption
at various spatial and temporal dimensions. Several past
efforts focus on outlet- and switch-level monitoring using
wireless technologies, such as Z-Wave, ZigBee, and WiFi.
WiFi is especially attractive, since it enables devices to
connect directly to the Internet in buildings that already
support a WiFi network. Of course, wireless protocols
that support high-bandwidth monitoring are also capable
of supporting low-bandwidth control commands. Under
ideal conditions, wireless communication offers enough
bandwidth to monitor and control the energy usage of
hundreds of outlets at high resolution, e.g., every second.

Unfortunately, in practice, since outlet and switch boxes are
embedded in walls and may be behind large appliances or in
the extremities of a building, wireless communication often
exhibits interference that severely degrades its performance
and reliability. In addition, commercial off-the-shelf devices
that support wireless monitoring and control via WiFi, such
as the Belkin WeMo Insight Switch, have only been widely
available in the last few years. In contrast, PLC-based HA
devices are widely deployed, having been available for many
years (X10 since the 1970s and Insteon since 2005).
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Thus, while monitoring and control systems are important
for managing smart buildings, they have evolved indepen-
dently using disjoint protocols and standards. In particular,
even though low-bandwidth PLC-based protocols have been
deployed and used extensively for building control, they have
not been used for high resolution energy monitoring, likely
due to their extreme bandwidth limitations. In this paper,
we examine how to unify a smart building’s monitoring and
control substrates into a single PLC infrastructure. Our goal
is to enable reliable, high resolution energy monitoring and
control across every device in a smart building, using only
a low-bandwidth power line network, such as Insteon. While
prior work attempts to mitigate the reliability issues of wireless
communication [2], [3], we take the opposite approach by fo-
cusing on exploiting HA protocols to perform high resolution
monitoring, which is motivated by the extensive deployment of
PLC-based HA protocols for control. Despite the lack of prior
work considering HA protocols for monitoring, these protocols
have a number of advantages that make them attractive.
Commercial Availability. HA products have been commer-
cially available for many years for a variety of devices,
including appliances, lamps, wall switches, and outlets. In
contrast, wireless energy monitoring and control was viewed as
a research topic only a few years ago [4]. Thus, fewer wireless
outlet and switch meters are commercially available, and the
ones that are, such as the Z-Wave Smart Energy Switch or
Belkin’s WeMo Switch, only recently went on the market.
Open Standards. HA protocols are open standards that ven-
dors can integrate directly into devices. In contrast, wireless
devices often use proprietary protocols, such as Z-Wave, that
complicates using them with third-party devices.

Backwards Compatibility. Since many smart buildings al-
ready use power line based HA protocols, our approach will
augment existing deployments with monitoring functions. For
instance, due to their maturity, HA protocols have already been
adopted in many early demand-side management field trials.
Reliability. HA protocols’ use of power line communication
does not suffer from the interference problems that hinder
wireless communication at large scales, and, thus, provides
a reliable foundation for remote monitoring and control.
Unobtrusiveness. To reduce interference, wireless meters are
usually not embedded in walls, but installed externally, e.g. by
plugging into outlets, which makes them obtrusive. In contrast,
HA devices are embedded into “normal” outlets and switches.

Despite the benefits, using power line based HA protocols
for energy monitoring poses significant challenges.

e Scalability. HA protocols were not designed to support
continuous monitoring traffic. For example, the MAC lay-
ers for HA protocols do not employ “standard” features,
such as collision avoidance. Thus, monitoring the energy
usage of even tens of devices at high resolution is chal-
lenging. Thus, a key challenge is scaling HA protocols
to monitor many devices despite their limitations.

e Accuracy. HA protocols are capable of monitoring power
state changes for switches and low resolution power usage
for outlets. Thus, another key challenge is accurately
translating switch state change events and coarse outlet
power data into high resolution power measurements.
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Contributions. In this paper, we make the following contri-
butions. First, we detail and experimentally quantify Insteon’s
limitations for monitoring. Second, we develop a simple a
model that describe’s Insteon’s reliability at different query
rates. Third, we design a set of techniques that leverage a
building-wide power meter to provide high resolution energy
monitoring on top of the existing control capabilities in HA
protocols such as Insteon. In particular, we focus on two
such techniques: i) learning switch power by correlating state
changes with changes in building-wide power usage, and
ii) continuously monitoring outlet power usage via “smart
polling” that judiciously uses the minimal bandwidth available.
Our techniques have been employed for high-fidelity energy
monitoring and control in a real smart home, which includes
62 HA-enabled wall switches and power outlets. Our system
serves as the foundation for our publicly-released UMass
Smart* energy dataset [5].

II. OVERVIEW

The primary drawback in using power line based HA
protocols for energy monitoring at large scales is their extreme
bandwidth limitations. While more recent power line based
protocols, such as HomePlug, provide plentiful bandwidth
(adapters capable of over 1Gbps are now available), they
have not traditionally been used for HA. Instead, these new
protocols target high-bandwidth data from general Internet
traffic and multimedia devices, such as televisions. HomePlug
is not typically embedded into standard outlets, switches, or
devices due to cost, power/heat, and form factor constraints.
While HomePlug Green PHY (or HomePlug GP) was recently
introduced to mitigate these constraints, it is not in wide use.
We focus on Insteon in our deployment, since it is a mature
technology that extends the original X10 HA protocol with
greater reliability and more bandwidth.

Figure 1 depicts our architecture, which includes Insteon-
enabled wall switches (Insteon SwitchLincs) and outlets (In-
steon iMeters). We assume a building “operating system” (OS)
running on a server implements our monitoring and control
system by interacting with these Insteon-enabled devices.
Our techniques could be implemented within any building
0OS, including Microsoft’s HomeOS [6], Apple’s HomeKit,
openHAB, BOSS [7], etc. To support control, the OS sends
wall switches and outlets commands via a Power Line Modem
(PLM) to alter their power state, such as turning devices on
or off. To support monitoring, Insteon-enabled wall switches
send asynchronous notifications to the OS whenever someone
toggles the switch, while the OS must explicitly query Insteon-
enabled outlets for their power usage. To understand Insteon’s
limitations for monitoring, we describe the protocol below and
develop a simple model that captures its reliability.

A. Insteon Protocol

In the Insteon protocol, senders broadcast messages over
a building’s power line, while receivers listen for messages
and send acknowledgements upon receipt. The protocol limits
transmissions to brief intervals near where the alternating
current (AC) crosses zero, which occurs twice every 16.6 ms
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Fig. 1. Our monitoring and control architecture.

at 60Hz AC, since electrical noise impairs communication
and is at minimum during the zero crossing. However, due to
harmonic noise from power supplies or signal attenuation over
long distances, devices may still not receive every message.

Thus, to increase reliability and range, all Insteon devices
also act as repeaters that automatically repeat messages they
hear a fixed number of times, based on a configurable hops
field. Additional hops effectively increase each message’s
length by a factor of (1+hops). The simple broadcasts and hops
alleviate the need for complex routing protocols to transfer
messages. The protocol also avoids flooding and collisions
when repeating messages, since all devices synchronize re-
transmissions using the 60Hz AC power line frequency—
each transmission begins exactly 800 microseconds before the
zero crossing and ends exactly 1023 microseconds after the
zero crossing. Thus, when repeating, all devices transmit the
same data at exactly the same time for the same number of
times, which serves to further amplify and strengthen every
transmission against electrical interference.

The Insteon protocol supports two types of messages: 10
byte standard messages and 24 byte extended messages, which
require 6 and 13 zero crossings to transmit, respectively.
Since there are 120 zero crossings per second with 60Hz AC
power, a standard message takes 50ms to transmit and an
extended message takes 108.33ms, with no additional hops.
While Insteon’s maximum theoretical bandwidth is 2880bps,
in practice, devices typically use three hops and acknowledge-
ments, which reduces the maximum bandwidth by 16x to
180bps. In addition to repeated messages, a sender that does
not receive an acknowledgement within a specified timeout
will retransmit a message up to five times. Thus, for noisy
lines that require retransmissions, actual bandwidth may be
much less than 180bps with three hops.

Insteon also uses 900MHz wireless communication to sup-
plement the power line and increase its reliability and range,
while also enabling it to cross phases in multi-phase power
systems. The wireless communication mirrors the powerline
communication in that all messages broadcast over the power
line are also broadcast wirelessly at precisely the same time.

Finally, note that Insteon does not prevent multiple devices
from sending different messages at the same time, although,
since all devices act as repeaters, they inherently wait for in-
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transit messages to end before starting a new transmission.
While repeating messages avoids flooding and collisions due
to the synchronized retransmissions, Insteon has no collision
avoidance mechanism, akin to exponential backoff in Ethernet,
to prevent multiple devices from sending messages at the same
time, thereby causing a collision and the loss of both messages.
At high message rates, this lack of backoff combined with
its static number of multiple hops and retransmissions results
in repeated collisions, causing bandwidth to collapse. Insteon
likely does not employ any collision avoidance mechanism
because it was originally designed for low bandwidth con-
trol, where collisions are highly unlikely. In contrast, high
bandwidth monitoring dramatically increases the likelihood of
collisions by using near the maximum available bandwidth.

B. Protocol Limitations

Insteon sacrifices its already limited bandwidth to increase
reliability. However, the available bandwidth affects both the
maximum rate the OS can query each outlet’s power usage
as well as the percentage of asynchronous switch notifications
and control commands lost due to bandwidth saturation and
collisions. Setting the query rate for outlets presents a tradeoff:
a rate too high will saturate the available bandwidth and
result in the loss of either asynchronous switch notifications
or control commands, while a rate too low will result in
coarser and less accurate outlet power data. To understand this
tradeoff, we experiment with our own smart home deployment
by varying the rate of outlet queries, and then determining both
the percentage of queries lost (Figure 2) and the percentage
of switch notifications lost (Figure 3). For each data point,
we issue outlet queries at the specified interarrival time on
the x-axis for 10 minutes, while turning wall switches on and
off 50 times, such that the time between toggling the switch is
uniformly random between 0 and 20 seconds. We also perform
a similar experiment in isolation in a separate building with
no other devices attached to the power line.

Each power outlet query includes three standard Insteon
messages and one extended message: a standard query mes-
sage from the PLM to the outlet requesting the current power,
an extended response message from the outlet to the PLM with
the outlet’s current average power usage, and a standard ac-
knowledgement for each message. We use the default number
of three hops for the initial message in all experiments. Note
that altering the number of hops does not significantly alter
the results, as we can only control the number of hops for the
initial message sent from the PLM; the two acknowledgements
and the extended message response always use three hops and
originate from device firmware that we cannot change. Based
on the Insteon protocol specification, each outlet query should
take 4%(0.05+0.05+0.1083+0.05) = 1.0333 seconds, including
the original message and the three additional hops.

Below, we use the specification to model the percentage
of outlet queries we expect to receive, and the percentage
of switch notifications we expect to lose for different query
rates. We construct a simple model of the probability of losing
a switch notification (Sj,s.) as a function of the interarrival
time of outlet queries (7;) and the length of an individual
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Fig. 2. Insteon does not support high outlet query rates.

query (1, = 1.0333). For simplicity, our model assumes
that when transmissions collide, the transmission from the
device physically closer to the PLM is successful, which is
likely to be the case in practice. Our model also assumes
one retransmission due to power line noise, and no additional
retransmissions due to collisions. Thus, the model divides the
length of an individual query (7}) by two times the interarrival
time between queries (7;), where the two in the denominator
approximates the effect of one extra retransmission.

T,  0.5166
2«7, T

We also model the probability of receiving a query Qeceive

below. If we issue queries at an interval greater than the query

length, then we expect to receive every query. For intervals less
than the query length, we expect queries to collide.

e T, > 1.0333
Qreceive = I _ _T; :T; < 1.0333

Slose = (1)

T, — 1.0333
Figure 2 shows that, as expected, issuing queries faster than
the 1.0333 seconds it takes to complete them rapidly degrades
network performance. In isolation, our results show an abrupt
drop in the percentage of outlet queries received once the
interarrival time hits the protocol’s saturation point at 1.0333
seconds. The actual drop is more sudden than our model, since
the model is in isolation and does not account for multiple re-
transmissions of a lost message, which immediately collapses
the available bandwidth. Our deployment also shows more
query losses than our model before the saturation point, which
is likely due to 1) additional losses from powerline noise due
to other devices and ii) collisions with switch notifications and
the resulting retransmissions. Figure 3 shows the percentage of
switch notifications lost during the same experiment. We lose
slightly fewer switch notifications after the saturation point at
1.0333 seconds than our model predicts. This indicates that,
as expected for these infrequent switch notifications, multiple
retransmissions of lost switch notifications (which our model
does not capture) serve to slightly increase the percentage of
successfully transmitted notifications.

C. Observations

Our results highlight the limitations of using Insteon for
monitoring the energy usage of many devices. To illustrate,
consider a simple approach to querying outlets that issues
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Fig. 3. Switch events may collide with outlet queries.

one query every 10 seconds to a new outlet in round-robin
fashion. Thus, given N outlets in a building, this approach
can query each outlet once every 10 x IV seconds. Since our
home deployment has thirty Insteon-enabled outlets, we are
able to measure each outlet’s power once every five minutes.

A five minute data resolution is not effective at monitoring
the energy usage of most types of devices. As we show in prior
work [8], [9], many non-linear electronic devices, such as LCD
televisions, exhibit rapid and significant changes in power,
e.g., >100W every second, when turned on. Other high-
power resistive and inductive devices also exhibit complex
patterns of power usage that change every second. Further,
since many devices, such as a microwave or toaster, have
operating times much less five minutes, this approach cannot
detect their operation. In fact, the only devices this simple
approach can accurately detect are low-power resistive devices,
which exhibit highly stable power usage, that are left on
for more than five minutes. The only prominent low-power
resistive devices are incandescent light bulbs, which are slowly
being phased out. Of course, additional outlets will further
decrease the power data resolution that can be supported.

Even when employing such a low query rate, the probability
of losing a switch notification or a control command is still
near 5%. Since the building OS issues control commands,
losing them does not present a significant issue, since it
can recognize their loss at application-level and resend them.
However, our simple approach to monitoring would have
no way to detect a lost switch notification, so it will miss
5% of them at this query rate. Thus, our results motivate a
more efficient approach to monitoring outlet power usage that
judiciously controls the number of outlet queries.

Finally, while Insteon wall switches issue asynchronous
notifications whenever an occupant toggles a switch, these
switches generally do not have energy monitoring functions
embedded into them. However, even if switched loads had
energy monitoring functions, it would not be an efficient
use of bandwidth to query switched loads for their energy
usage. As we discuss, since switched loads by definition
are capable of toggling between a discrete number of well-
defined power states, it is more bandwidth-efficient to infer
the power usage of switched loads by correlating changes in
switch state, which are reported asynchronously, with changes
in building power recorded by a centralized smart meter.
Thus, we develop techniques for correlating state changes
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with a building-wide “smart” power meter, which is typically
available on modern buildings. These techniques are effective,
assuming the available bandwidth is not saturated by the outlet
monitoring above, and consumes minimal bandwidth.

Thus, we develop techniques to both i) accurately correlate
switch events with changes in building-wide power to infer
each switched loads power usage, and ii) efficiently poll outlet
power usage to balance bandwidth and accuracy.

III. AUTOMETER DEPLOYMENT

Our goal is to develop a system that reliably controls and
monitors each electrical device in a building at a high resolu-
tion. While our system enables demand-side energy manage-
ment, as we discuss in Section I, our original motivation for
designing it was much more practical: to enable research into
building energy-efficiency by collecting and analyzing fine-
grained energy data from each of a building’s devices. We
have publicly released much of the data we have collected
as part of this effort as the Smart* home energy dataset [5],
which has been downloaded over 2500 times to date and been
used as the basis for a variety of different research projects,
including benchmarking Non-Intrusive Load Monitoring al-
gorithms [10], [11], comparing home energy usage across
countries [12], and developing data privacy techniques [13],
[14], [15]. Our particular approach to designing our monitoring
system stems from previous (unsuccessful) attempts to reliably
gather such fine-grained data at large scales using various
wireless protocols, e.g., ZigBee, Z-Wave, WiFi, etc. These
attempts led us to value Insteon’s high reliability over the
potential for higher bandwidth via wireless communication.

Here, we describe our AutoMeter prototype, which uses the
switch learning and smart polling techniques described in the
next section to enable high resolution energy monitoring with
low-bandwidth PLC protocols. We deployed our prototype in
a 3-bedroom, 2-bath house. The house has 34 wall switches,
which control lights and exhaust fans. We replaced 30 of these
mechanical wall switches with 20 Insteon SwitchLinc Relays
and 10 Insteon SwitchLinc Dimmers. The 30 switches control
24 loads, since the house has two 4-way switches and two 3-
way switches. As discussed below, we use an eGauge meter to
monitor other switches. We use 30 Insteon iMeters to monitor
plug loads in the home. The iMeters monitor all but 12 of
the home’s permanent plug loads. The unmonitored loads,
e.g., night lights, electric toothbrushes, etc. consume little
power in aggregate. We use an eGauge meter in the home’s
electrical panel to measure building-wide power consumption
each second, which transmits data over the power line to a
gateway server. Since eGauge is also able to monitor power for
the home’s circuits using additional CTs, we use it to monitor
loads not connected to SwitchLincs or iMeters, including a
clothes dryer, garbage disposal, dishwasher, basement lights,
HRV duct heater, and the electrical components of the gas
furnace, including an exhaust fan.

We implement AutoMeter’s controller on a low-power and
compact Raspberry Pi server. The server attaches to an Insteon
PLM, which plugs into a standard outlet, via USB. Our
software leverages the open-source plmtools package, which
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listens on the PLM’s USB serial connection to send and
receive binary data from the Insteon network. The package
includes the plmsend and plmcat programs to send and
receive raw Insteon messages using the PLM.

We wrote an Insteon monitoring daemon using these pro-
grams to 1) detect and record asychronous notifications broad-
cast on the power line whenever a switch turns on, off, or dims,
and 2) monitor outlet power usage by using our smart polling
techniques described in the next section. Since the switch
notifications do not encode the dim percentage (from 0% to
100%) for dimmable switches, our daemon issues a status
query to determine it whenever the dim level changes. Unfortu-
nately, the commercial software that supports the iMeter is not
designed for constant monitoring, since users must manually
enter daily events that specify iMeter query times, which must
be at least one minute apart. Thus, we reverse-engineered the
iMeter protocol and modified the insteon command-line
program in the plmtools package to support querying iMeter
power, as well as sending asynchronous messages, i.e., not
waiting for a reply from plmcat. The modifications allow us
to issue iMeter queries at arbitrarily fast rates; we use this
functionality for the experiments in the previous section.

Our fork of plmtools (plmtools—imeter), turns the
iMeter into an easily scriptable meter which can be queried
using a simple, one line Linux command. We have also
extended plmtools in several other ways, such as adding more
robust error handling (which is important given the potential
for powerline packet collisions), human-readable descriptions
of observed packets in real-time, and the decoupling of packet
deliveries from receipts. The latter enhancement allows, for
example, a single process to receive and process all incoming
packets, while other processes asynchronously dispatch com-
mands over the power line. This is useful when simultaneously
listening for interrupts (such as from Insteon wall switches)
and dispatching commands (such as iMeter queries).

AutoMeter’s controller stores a timestamped record of each
switch event and plug meter power usage in a SQLite database.
We store the devices’s name and the event timestamp, in
addition to either the on-off-dim state between 0 and 100 or
the plug power consumption. The controller also fetches the
second-level eGauge data from eGauge’s webserver, and stores
it in the database. The controller uploads its SQLite database
to a centralized off-site MySQL database each morning for
long-term storage. We have released AutoMeter’s underlying
software as open-source for others to use, including the
updated plmtools package.!

IV. HIGH-FIDELITY MONITORING AND CONTROL

AutoMeter combines two techniques—switch event corre-
lation and smart polling—to perform accurate high resolution
energy monitoring using low-bandwidth power line protocols.
Switch event correlation infers the power usage of load
switch events (which generally do not have embedded power
readings) with readings from a building-wide smart meter.
In doing so, switched loads can be accurately monitored
without consuming any of the available bandwidth for explicit

ICode available at http://traces.cs.umass.edu/index.php/Smart/Tools
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Fig. 4. Error between our deployment home’s aggregate electricity data and
the sum of all the individual circuits

polling. Thus, with the bandwidth limitations of HA power
line protocols, inferring the power usage of switched loads
is preferable, even if switched loads had energy monitoring
functions built into them. For all general devices, which may
not necessarily switch between discrete power states, smart
polling intelligently queries the power usage of a (potentially
large) set of devices to optimize the use of low-bandwidth
power line communication. Below, we present and evaluate
multiple approaches for each technique.

A. Switch Event Correlation

We first consider the problem of learning the power of
switched loads. While individual switched loads (primarily
lights) do not consume much power in isolation, they are
the 12th largest load in our deployment home in aggregate.
Further, if we remove summer-only loads, e.g., A/Cs, fans,
then the switched loads are the 5th largest load. In addition,
recent estimates attribute 5-10% of home energy and 20-
50% of building use to lighting [16], which is the primary
switched load. Finally, correlating loads that switch between
discrete power states with building-wide power data is more
efficient than querying their power usage using our smart
polling techniques. Smart polling is better-suited for devices
with variable power usage or that contain internal switches
that cannot be controlled externally.

As described previously, switched loads generate asyn-
chronous notifications when toggled or dimmed, but do not
report actual energy usage. In principle, learning a switched
load’s power consumption should be straightforward: simply
record the change in the building-wide power data whenever
a switch changes state. However, learning switch power is
complicated by two issues: 1) power sensing and timing errors
may occur in the building meter, and 2) multiple power events
may occur within the building meter’s monitoring granularity.
In particular, we observe frequent timing errors that delay new
power readings due to communication problems. To illustrate,
Figure 4 shows the error between the aggregate energy usage
for our home (sensed via instrumenting the incoming power
lines) and the sum of the of the power usage of all the home’s
circuits (sensed separately via instrumenting each individual
circuit). The graph quantifies the extent of the relative error
in the meter. For example, in this case, nearly 10% of the
per-second readings for the entire home and the sum of the
circuits are more than 2% of each other, while nearly 1% of
readings are more than 4% of each other. These errors occur
for two primary reasons. First, the sensors themselves have
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a 1% error, as rated by the manufacturer. Second, since the
sensors are physically different, the timing of processing and
releasing the readings may differ.

While we also observe multiple simultaneous power events,
monitoring building-wide power every second mitigates their
impact. For example, Figure 5 shows a histogram of the
number of per-second readings that fall within a concurrent
power event across all circuits our home on a single day. In
this case, we define an event as a change in power greater
than 10W, with an associated margin M of either 0 seconds
or 3 seconds that determines the duration (or ‘length’) of an
event. If a change occurs at time 7T and the margin is M
seconds, then any other change in power is concurrent if it
occurs between 7'+ M and T'— M. Figure 5 shows that the
vast majority of per-second readings, e.g., x = 0 or x = 1, are
not part of concurrent events (with a threshold of 10W and
a margin of 3 seconds). While the number of readings that
fall within concurrent events (z > 2) is approximately 10,000
for M = 3, most of these are caused by a small number
of highly variable loads. If we remove the HRV (the most
variable load), the number of readings falls by more than 10x
to approximately 900, while removing the furnace and living
room loads results in an additional 3x reduction to roughly
300 readings. Thus, simultaneous events are a more significant
issue for coarser monitoring intervals.

Below, we discuss both proactive and reactive techniques to
learn switch power consumption that is robust to both coarse
data and data errors. As noted above, while simultaneous
events are not a significant issue, our techniques must take
into account the likelihood of sensor error, particularly our
reactive technique.

Proactive Switch Learning. In our proactive approach, we
write a simple program to remotely toggle each switch one by
one from the Insteon PLM, and observe the change in building
power 2 seconds before and 10 seconds after toggling. For the
experiment, we turn off most loads in the home to decrease
simultaneous power events from other devices and data errors,
which are proportional to the home’s total load. Table I reports
the power for each switch, as well as the switched load’s
rated power, and shows the approach is over 93% accurate
on average across all loads. While the proactive approach is
accurate, not all buildings will be able to shutdown most loads
to reduce errors and cycle through every load in order to
determine power usage. Thus, we explore a reactive approach
that learns power usage over time based on collected data.

Reactive Switch Learning. The reactive approach also com-
putes the change in building-wide power whenever a switch
changes state; again, we use 2 seconds before and 10 seconds
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[ Name [ Proactive | Reactive (#) | Actual |
kitchen:lights:dim 257TW 290W (62) 260W
kitchen:sink 67TW 69W (15) 65W
kitchen:lights1:dim 190W 192W (13) 195W
hall:lights1:dim 193W 39W (5) 195W
guest:lights:dim 255W 279W (10) 260W
guestbath:fan 51W 147W (36) S50W
guestbath:overheadlight 101W 100W (107) 100W
guestbath:sinklight 5TW 60W (55) 60W
livingroom:dininglights:di 128W 38W (25) 130W
livingroom:firelights:dim 148W 925W (8) 130W
livingroom:sideporch:dim 121W 850W (7) 130W
livingroom:lights1:dim 255W 361W (9) 260W
livingroom:lamp 17W 18W (61) 18W
frontporch:light 12W 185W (16) 20W
stairs:light1 T2W T0W (20) 65W
masterbath:overheadlight 102W 100W (147) 100W
masterbath:fan 54W 110W (114) S50W
masterbath:sinklight 58W 59W (313) 60W
master:lights:dim 256W 26W (19) 260W
master:closet:a 12w 20W (57) 20W
master:closet:b 12w IW (15) 20W
bedroom:lights:dim 254W 258W (21) 260W
bedroom:maincloset 18W 19W (14) 20W
bedroom:linencloset 22W 20W (38) 20W
bedroom:closet 22W 22W (35) 20W

TABLE 1

TABLE OF SWITCH POWER USING PROACTIVE AND REACTIVE LEARNING
VERSUS ACTUAL POWER CONSUMPTION.

kitchen:lights:dim ——
f(X)=(-13/5)x ---rrrre

200 |
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Fig. 6. Power usage is a linear function of a light’s dim level.

after the change. We normalize the power step by a switch’s
dim level: if the dim level is 50% then we multiply the power
step by two. We confirmed the linear relationship between
power and dim level by recording the change in building-
wide power as we vary the dim level from 1% to 100%, as
shown in Figure 6. Due to power and timing errors or other
loads changing their power consumption, the power step over
the interval will not always correspond to a switch’s power
consumption. However, our premise is that over long periods
with many events, the plurality of power steps will be near the
actual power consumption of the switch, since building loads
alter their power states at human time-scales, e.g., minutes
to hours. Thus, our reactive approach groups every observed
power step for each state change for a given switch into bins,
e.g., 5-15W, 15-25W, 25W-35W, etc. We then select the bin
with the most events, average its values, and record that value
as the switch’s power consumption.

Table I shows the results of the reactive approach for 2
weeks of data, as well as the total number of switch events in
parenthesis.> We find that the reactive approach is accurate for

>The table has less than 30 switches, since we only learn a single value
for each set of multi-way switches.

http://dx.doi.org/10.1109/JI0T.2017.2703916

switches with many events over the 2 week period, and less
accurate for rarely-used switches. Interestingly, the approach
is not accurate for the exhaust fan in each bathroom, since they
nearly always change state at the same time as a 100W over-
head light or a 60W sinklight. We are currently augmenting
the technique to identify these correlated switches. Figure 7
shows a histogram of the number of events in each bin for
three of the thirty switches. The data demonstrates how power
and timing errors in the building data, as well as simultaneous
power events, cause a wide range of power values for each
switch event, which complicates learning switch power.

B. Smart Energy Polling

For devices other than switches, interrupts cannot be used,
as the notion of an ‘event’ is difficult to define for any general
(non-switch) device. Instead, the simple types of energy meters
and outlets popular in HA deployments (such as the Insteon
iMeter Solo) must be polled in order to monitor energy
consumption, resulting in many devices competing for limited
global bandwidth. Since many widely-used PLC networks
such as Insteon have extremely limited bandwidth, we design
several smart polling techniques to accurately monitor many
devices without saturating the network. Our system is capable
of several different types of polling approaches, which we
describe in detail below and then evaluate in simulation to
highlight the tradeoffs of using each approach.

Round-robin polling. The simplest approach is to continu-
ously query monitored outlets in a round-robin fashion at a
static query rate. While straightforward, this approach suffers
the most from bandwidth limitations, since devices that rarely
change state (such as lights) are polled at the same rate as
highly variable devices (such as a washing machine).
Frequency-based polling. The second technique we consider,
which we call frequency-based polling, is a slight modification
of round-robin polling in which devices are polled at different
rates based on their activity level or priority. Highly active
or important devices are polled more frequently to more
accurately capture their behavior, while more static (or less
important) devices are polled less frequently. Here, we define
a device’s level of ‘importance” as its frequency of energy
state changes (i.e., power increases or decreases) that the
device exhibits over a typical day. Given the state change
frequency for each outlet, our system polls each outlet at a
rate proportional to its frequency, scaled such that the system
continuously polls at a fixed global query rate (as in round-
robin). Note that other device orderings besides state change
frequency are also possible, such as the maximum power of a
device (i.e., prioritizing high-power devices such as heaters),
or a custom ordering favoring specific devices (e.g., for a
particular application).

Event-driven polling. Our third technique makes use of a
centralized “smart” meter that monitors power for an entire
building at high resolution. Such smart meters are widely
available commercially, and are increasingly being installed
by utilities: in 2011, nearly 500 utilities in the U.S. had
collectively installed more than 37 million smart meters [17].
We use an eGauge meter installed in the electrical panel, which
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Fig. 7. Histogram of events for each 10W power bin for selected switches using the reactive learning technique.

measures building-wide average power usage as well as per-
phase average voltage and frequency each second [18].
Given such a centralized meter, our third technique, which
we call event-driven polling, analyzes live data from the smart
meter to determine when to poll outlets on-demand as energy
events occur. Since the meter records aggregate energy, an
energy event stemming from any individual device will be
reflected in the aggregate data. We assume, of course, that
the centralized meter can be queried at the same rate as the
meters (and in tandem). When an energy event is detected, the
remaining task is to attribute the change to a specific device.
To do so, we conduct a round of frequency-based polling of
individual outlets, and stop once we find the matching energy
change. As a result, in most cases, only a small subset of
devices must be polled to identify the source of an event.

C. Smart Polling Evaluation

To evaluate the three polling approaches, we conduct a
simulation study using real-world, device-level data gathered
from our home deployment. Our sample dataset consists of
3 days of 1 Hz data from 22 distinct outlets. We replay
this data while simulating polling at a variable rate ranging
from 0.25 to 5 seconds. The polling interval also determines
the duration of a poll (i.e., the delay between issuing a
poll and receiving the response). For the round-robin and
frequency-based approaches, we assume that polls are issued
continuously as quickly as possible, given the polling interval.
Energy Breakdown. We first consider a classical monitoring
application — determining the energy used by each device over
the course of a day (e.g., for providing an energy breakdown).
Figure 8 shows the average percentage difference between the
energy use of each device in the monitored trace and its true
usage over the course of a day (i.e., its usage error).

We see that in all cases (even with a simple round-robin
approach), the usage error is quite low, remaining consistently
under 10% for polling intervals up to roughly 2 seconds and
only increasing slowly for slower polling intervals. This result
is an encouraging (albeit simplistic) indication that even a
highly bandwidth constrained network can provide an accurate
coarse-grained breakdown of device energy usage.

The event-driven approach does slightly worse than the
others, which is likely due to possible errors in assigning
energy events to devices (e.g., a 30W change that is assigned
to the wrong device, thus contributing to the usage error of
the correct device that was not polled). We also evaluated a
slight variation on our frequency-based polling approach in
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Fig. 8. Even low-frequency polling results in accurate per-device energy usage
information.
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Fig. 9. Frequency- and event-driven polling capture more energy events than
basic round-robin polling.

which the order of polls is based on the typical aggregate
usage of the device rather than its number of state changes, as
depicted by the “usage-based” polling label in Figure 8. While
we would naturally expect this approach to improve on simple
round-robin polling, the measured improvement is minimal.
Energy Event Detection. We next consider capturing ‘events’
in the monitored traces, where an event is defined as a 1-
second power change of at least 10W. Events provide a useful
measure of fine-grained monitoring accuracy (as opposed to
a coarse-grained energy breakdown), and are important for a
range of applications, including occupancy monitoring [19],
[20]. For each polling approach, the percentage of events
missed is shown in Figure 9 as the polling interval is varied.
Here we immediately see the limitation of the simplistic
round-robin approach, which misses significantly more events
(at least 2X) than the frequency-based or event-driven ap-
proaches. The poor performance of round-robin is largely
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Fig. 10. Event-driven polling drastically decreases the bandwidth required to
monitor a set of outlets.

due to a small number of highly-variable devices, such as a
TV and washing machine, which exhibit numerous and rapid
power changes when active. Frequency-based and event-driven
polling compensate for these devices by polling them much
more rapidly, which ensures that most events continue to be
captured. While event-driven polling marginally outperforms
the frequency-based approach, the strong performance of the
frequency-based approach is significant since this approach
does not rely on the presence of a building-wide smart meter.
Bandwidth usage. The key benefit of event-driven polling
is that due to its on-demand nature, polling may be stopped
completely when no events are occurring. To demonstrate
this, Figure 10 shows the aggregate bandwidth consumption
over the course of the trace period using the event-driven
approach. While round-robin and frequency-based polling
both poll continuously (effectively using 100% of available
bandwidth assuming a minimized polling interval), the event-
driven polling employs far fewer polls — less than 20% — to
achieve the high accuracy seen in Figure 9. Thus, we expect
the event-driven approach to scale well to large number of
devices, and also preserves bandwidth for other messages (e.g.,
control messages) that may otherwise collide with polling
messages. This result highlights the utility of combining a
building-wide meter with intelligent outlet-level polling.

Note that the combination of event-initiated polling rounds
and the frequency order within a round serves to opportunisti-
cally use bandwidth when needed to capture most events. For
example, some types of devices issue almost continuous events
when active, and thus require back-to-back polls of the same
device to avoid missing many events. To illustrate, we consider
a different time period in which a heat recovery ventilator
(a highly oscillating load) is active for a significant period
and compare the round-robin approach with the event-driven
approach. The bandwidth usage and percentage of missed
events for both approaches is shown in Figure 11.

Unlike in Figure 10, here, the event-driven approach does
not save a significant amount of bandwidth, using roughly 95%
of the total available bandwidth to repeatedly query the HRV.
However, in doing so, the event-driven approach maintains
less than 20% event loss up to a 2 second poll interval. In
contrast, even with only a 1 second poll interval, the round-
robin approach loses over 80% of all events (substantially
worse than in Figure 9 in which the HRV was not active).
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Fig. 11. Event-driven polling effectively utilizes bandwidth to monitor highly
variable devices.

D. Scalability and Commercial Buildings

The evaluation presented above focuses on a home envi-
ronment, in which the number of devices is relatively small
compared to what would be found in a large commercial
building. However, our techniques should still be useful in
such an environment. The primary scalability issue in switch
event correlation is the possibility of simultaneous events
— however, as demonstrated in Section IV-A, simultaneous
events are quite rare in practice. For very large buildings
with many occupants, devices, and (potentially simultaneous)
events, a power meter providing finer-grained data (e.g., floor-
level or circuit-level readings, which are provided by some
meters such as the eGauge) could serve to mitigate most of
these issues by isolating events within switch subsets.

For smart polling, the fixed amount of bandwidth in a PLC
network like Insteon limits the number of devices that could
be feasibly monitored, even employing the techniques dis-
cussed. However, a subset of devices could still be effectively
monitored in a large building by simply polling those devices
and ignoring all others. Doing so would result in a reduction
in efficiency for event-driven polling, since events caused by
non-monitored devices would still trigger polling rounds, but
the impact of these extra polling rounds would be limited by
the number of monitored devices. Hence, monitoring a subset
of the most important devices (e.g., larger, energy-intensive
loads) should remain feasible. As with switch correlation, a
finer-grained smart meter could also solve these challenges.

E. Summary

In AutoMeter, we demonstrate how to monitor a large set
of devices at high resolution using only a low-bandwidth PLC
network. In particular, our monitoring infrastructure makes
use of switch event correlation to monitor switched loads
without any polling at all, while other devices are queried
using “smart polling” techniques that minimize the number of
messages required without significantly sacrificing accuracy.
We demonstrate that our event correlation is over 93% accurate
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in our home at learning the consumption of wall switches,
while smart polling decreases the bandwidth used to monitor
a set of devices by over 80% and reduces the number of
energy events lost by over 50%. While our specific AutoMeter
deployment is built using Insteon components in a home
environment, we expect our approach to work well in other
low-bandwidth PLC environments as well.

V. RELATED WORK

We know of no work that exploits existing low-bandwidth
HA power line protocols for high fidelity energy monitoring.
Prior work has largely focused on the higher-bandwidth power
line protocols, such as HomePlug, which are not as appropriate
for the relatively simple tasks of energy monitoring and device
control [21], [22], [23]. High-bandwidth power line protocols
are more appropriate for serving as part of the network
backbone [23] and transmitting high-bandwidth data, such as
video. The advantage of low-bandwidth protocols, such as
X10 and Insteon, is that their cost is much lower [22], which
is important when embedding simple energy monitoring and
control into the hundreds of switches, outlets, and devices
present in modern homes.

There is much prior work on both developing wireless en-
ergy monitoring sensors [24], [4] and deploying large networks
of wireless energy monitoring sensors [3]. Prior work has
also addressed the challenges of deploying and maintaining
large wireless sensor networks (for energy monitoring and
otherwise) [2]. Our work is complementary to this prior
work on wireless monitoring. In part, our work serves to
fill a void, since researchers have not focused on exploiting
low-bandwidth power line protocols for simple energy mon-
itoring and control. Further work is necessary to compare
the advantages and disadvantages of using various wireless
protocols versus low-bandwidth power line protocols in dif-
ferent environments and to determine the most appropriate
implementation technique.

VI. CONCLUDING REMARKS

This paper discusses the challenges of enabling energy mon-
itoring and control in smart buildings using low-bandwidth
power line communication protocols, such as Insteon. In
particular, we describe our own deployment and architecture
for whole-house monitoring and control using Insteon, and
empirically quantify the limitations of the Insteon protocol.
We then present several techniques for switch event correlation
and smart polling used in our deployment, which address the
limitations of low-bandwidth PLC with focus on correlating
switch events with a whole-house power meter and polling
energy usage on highly active devices. Finally, we evaluate
our techniques using data collected from our real-world home.
In particular, we show that our smart polling techniques out-
perform naive polling approaches in both monitoring accuracy
(increased by 2X) and total bandwidth consumption (decreased
by 80%), thereby improving the feasibility and scalability of
low-cost, low-bandwidth monitoring networks.
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