
Powerstrip: High-Performance Compression for Energy Data
John R. Ward∗

Okta, Inc.
jack.ward@okta.com

Sean K. Barker
Bowdoin College

sbarker@bowdoin.edu

ABSTRACT
The proliferation of smart outlets and meters with submetering
capabilities has led to an explosion in the availability of device-level
energy data. The increasing volume of current and historical data
presents a storage and distribution challenge, particularly for utili-
ties and large-scale energy datasets. To address these challenges,
we present Powerstrip, a fast, e�ective, and nearly-lossless com-
pression algorithm for integer energy data. Powerstrip is optimized
for device-level measurements and exploits common characteristics
of real-world energy consumption to achieve typical compression
rates over 90% on such data. We evaluate Powerstrip on real-world
energy data and compare against multiple state-of-the-art compres-
sion algorithms. Our experiments show that when compared to the
best reference algorithms, Powerstrip achieves the highest com-
pression ratios (by up to 35%) as well as the fastest speeds (by up
to 70%). We also present case studies demonstrating the potential
of Powerstrip for large-scale energy data storage and distribution.

CCS CONCEPTS
• Information systems ! Data compression; Data encoding
and canonicalization; • Hardware! Energy metering.

KEYWORDS
Energy dataset, data compression, smart meter, integer coding
ACM Reference Format:
John R. Ward and Sean K. Barker. 2020. Powerstrip: High-Performance
Compression for Energy Data. In The Eleventh ACM International Conference
on Future Energy Systems (e-Energy’20), June 22–26, 2020, Virtual Event,
Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3396851.3397716

1 INTRODUCTION
Modern smart buildings are dependent on high-quality data col-
lection describing the building, occupants, activity patterns, etc.
Interest in sustainable smart buildings has been driven in large part
by the widespread availability of energy data, traditionally gath-
ered from household smart meters. From 2011 to 2016, American
residential smart meter coverage rose from about a quarter of all
homes to almost half, for a total of 69 million installations [43].
∗Work performed while a student at Bowdoin College.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
e-Energy’20, June 22–26, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8009-6/20/06. . . $15.00
https://doi.org/10.1145/3396851.3397716

Traditional smart meters collect electrical usage data at the ag-
gregate level only—i.e., recording the consumption of an entire
building. However, such data is inherently limited; many optimiza-
tions require device-level data, such as knowing the �ne-grained
consumption of air conditioners or a dryer in a home to determine
optimized device schedules or �atten peak energy consumption [4].
Furthermore, �eld studies have shown signi�cant energy consump-
tion reductions through customers’ knowing their own detailed en-
ergy patterns [3]. The importance of device-level data has spawned
the active research area of non-intrusive load monitoring (NILM),
which seeks to break down aggregate readings into individual de-
vices [19]. However, accurate NILM in real-world environments
(e.g., with hundreds of devices) remains largely unsolved.

As a more scalable solution, modern energy meters increasingly
o�er submetering capabilities and can directly record circuit or
device-level readings. Consumer-grade meters such as eGauge [14]
or Brultech [9] can be installed in an existing building for a few
hundred dollars and provide data from each individual circuit. Smart
outlets and device-level meters provide even �ner-grained data and
can be purchased for around $20 USD, providing visibility into
speci�c devices on multi-device circuits.

While �ner-grained energy data presents many opportunities for
energy optimization and analysis, a resulting challenge to address
is the corresponding explosion in data to be stored. Relative to the
historical standard of building-level data, the data increase in a typ-
ical home might be 2 orders of magnitude (roughly 100 individual
devices, ranging from small devices to larger appliances) or even
more in o�ce buildings. The increasing time granularity of meter
data over time further compounds this data collection challenge.
For example, assuming a 1 Hz data resolution and a conservative
4 bytes per power reading (and ignoring all likely metadata, e.g.,
timestamps) a home with 100 devices would generate roughly 33
MB of data per day. While reasonable for a small number of homes,
this rate of data collection becomes much more challenging when
conducted at a city or utility scale – e.g., a utility with 100,000
customers would generate roughly 100 TB of data each month.
Distribution of such data to users is particularly problematic, but
has not received signi�cant attention owing to the typical sizes
of existing public device-level energy datasets, which rarely span
more than around ten buildings [12]. Going forward, however, we
expect larger-scale datasets in the style of Dataport [37] to become
increasingly popular for conducting city-scale data analyses.

The natural approach to addressing this problem is data com-
pression, a widely-studied area with decades of historical work.
Real-world energy data exhibits a number of useful properties that
can be e�ectively exploited for compression, such as long periods
of inactivity and gradual energy changes over time. However, while
a multitude of compression algorithms exist that may be applied to
energy data, we are aware of no e�orts to compress energy data
that speci�cally target these properties.

e-Energy’20, June 22–26, 2020, Virtual Event, Australia John R. Ward and Sean K. Barker

Contributions. In this paper, we present Powerstrip, a fast,
highly-compressive, and nearly-lossless compression algorithm for
integer energy data. Our primary contributions are threefold:

1. Analysis. Using a real-world dataset, we highlight a number
of useful properties of energy data that can be exploited to e�ciently
compress such data. These properties (such as inactivity periods
and small power steps) are especially prevalent in the device-level
data for which Powerstrip is optimized.

2. Compression.We present the Powerstrip integer compres-
sion algorithm,which leverages the propertieswe identify to achieve
aggressive compression rates with low overhead on large-scale
datasets. The algorithm is fast, nearly lossless, and regularly achieves
compression rates over 90% on many kinds of power data.

3. Evaluation. We evaluate Powerstrip against a wide variety of
state-of-the art compression algorithms, including time series com-
pressors, dictionary compressors, and integer coders. Experiments
and case studies using multiple real-world datasets demonstrate
that Powerstrip regularly achieves the best speeds and compression
rates of the algorithms tested by signi�cant margins.

We �rst discuss notable existing compression methods in Sec-
tion 2 that can be applied to energy data. We then present a study
of real-world smart meter data in Section 3 that motivates our
compression design. The Powerstrip compression algorithm itself
is presented in Section 4 and our implementation summarized in
Section 5. We evaluate Powerstrip against the reference algorithms
in Section 6 and �nally conclude in Section 7.

2 RELATEDWORK
Energy data normally consists either of low-frequency power mea-
surements (typically 1 Hz or less) or high-frequency waveform
measurements (typically 5 kHz or more). While high-frequency
data is especially suited to compression [26], collecting such data
generally requires specialized equipment [18, 27]. As such, we fo-
cus on lower-frequency readings, and outline several well-known
techniques that may be used to compress such data below.

2.1 Quantization and Downsampling
Simple lossy approaches trade o� data �delity and storage size by
compressing either the power resolution of the data (quantization)
or the time resolution of the data (downsampling). Quantization
maps a large range of values (e.g., the continuous interval [0, 100])
to a discrete set S (e.g., {5, 15, . . . , 95}), which can then be coded
using dlo�2(|S |)e symbols. The number and size of the bins trade
o� compression and �delity to the original data. Uniform quantiza-
tion partitions the range of the signal into n uniform bins, while
Gaussian quantization uses thinner bins near the mean and wider
bins at the tails of the distribution. This approach has been used
to compress 1 Hz smart meter data by over 99% while maintaining
accuracy in a random forest classi�er [45].

Downsampling methods include simple decimation (pick every
nth value) and Piecewise Aggregate Approximation [24], in which
the time series is represented as a series of constant functions
placed at the average of the data aggregated underneath. Piecewise
regression extends this technique to higher degree polynomials [15].
Clustering algorithms are evaluated on power data in [30] and [17]

Time (15 minutes)
0

100

200

300

W
at

ts

Original
Uniform quant.
Gaussian quant.
PAA

Figure 1: Refrigerator load data compressed using quantiza-
tion or downsampling.

for varying time resolutions and �nd strong performance on 8-
minute resolution that degrades signi�cantly at 1-hour resolution.
A notable limitation of quantization and downsampling methods is
a tendency to miss outliers (which often signal events of interest).

A visual comparison of quantization and downsampling methods
is shown in Figure 1, which depicts a 1 Hz refrigerator load signal
compressed using uniform quantization (using 50 bins), Gaussian
quantization (using 50 bins), and PAA downsampling (using func-
tions placed at intervals of 40).

2.2 Transform Coding
Signal processing has produced many other techniques that may be
used to compress energy data. Popular early approaches included
various linear transforms [33], which project a given signal onto
some basis in a vector space, yielding coe�cients of the basis vec-
tors that can be coded. These transforms aim to code a signal x as
x = D� , for coe�cients � of rows of a dictionary D. Most trans-
formmethods on power load signals use either the DiscreteWavelet
Transform orWavelet Packet Transform [38], which decompose the
signal into a basis of short wave bursts known as wavelets. These
methods are e�ective at high resolutions (e.g., thousands of Hz) but
less so at the lower resolutions (e.g. 1 Hz) typical of most power
meters. At lower resolutions, oscillations and periodic features will
have a period less than the sampling resolution, and so sample
points will capture very little of the oscillation’s actual structure.
For example, the Daubechies wavelet transform is applied to load
data with samples every 15 to 60 minutes in [47] and achieves high
compression but with signi�cant error. Other challenges encoun-
tered by these methods include the di�culty of representing both
spikes and periodic activity using mathematically-convenient bases
of only impulses (spikes) or sinusoids (oscillations) [39].

2.3 Dictionary Coding
In dictionary coding, a basis larger than the signal dimensionality is
used (i.e., an overcomplete basis) in order to approximate the origi-
nal signal. In this context, the core problem is sparse approximation,
in which n scaled basis vectors (or “atoms”) are chosen from the
overcomplete basis (dictionary) such that the di�erence between
the sum of the scaled atoms and the signal being approximated is
minimized. Formally, given a signal f , a target of n atoms from a
dictionaryD, and | |� | |0 non-zero entries in� , the goal is to compute:

min
�

| | f � D� | |22 subject to | |� | |0  n

Powerstrip: High-Performance Compression for Energy Data e-Energy’20, June 22–26, 2020, Virtual Event, Australia

This problem is NP-hard, so various e�cient approximations
exist. Matching Pursuit [29] is a simple greedy algorithm: for every
iteration, simply choose the atom that best matches the di�erence
between the signal and the current approximation. More recent
methods include Orthogonal Matching Pursuit [13], which updates
all coe�cients on every iteration, and Basis Pursuit [10], which
converts the optimization into a linear programming problem.

A key challenge in dictionary coding is building dictionaries that
e�ectively approximate the signal. A well-known dictionary learn-
ing algorithm is K-SVD [1], which alternates between coding and
dictionary improvement using k-means clustering and Orthogonal
Matching Pursuit. K-SVD has been used in [44] to approximate ag-
gregate load data by learning a dictionary of partial usage patterns.

Lossless data compression methods like LZ77, LZ78, and LZMA
are also considered “dictionary coders," though they share little
in common with Matching Pursuit or K-SVD. In these methods,
symbols are encoded as references to past instances of the same
symbol through a sliding window history or other dictionary model.
However, since power data rarely has exact repeats due to noise [8],
exact dictionary coders are less e�cient for power data than for
other data. These methods have achieved high compression ratios
on very high resolution energy data (e.g., 10 kHz) [22, 40], but have
shown poorer performance on lower resolutions [41].

2.4 Integer Encodings
Integer coders can be used to compactly represent integer data se-
quences, such as (integer-valued) energy data time series. A classic
technique is a variable-byte (“varint") encoding [46], which encodes
integers in blocks of 8 bits, using the lower 7 bits to store data of the
actual integer and the top bit to indicate whether another block for
the integer follows. In addition to simplicity, a signi�cant bene�t
of varint encoding is typically high performance due to the byte
alignment of the data [35].

Examples of more advanced integer coders include Simple8b [2]
and FastPFOR [28]. Simple8b codes values in blocks of 64 bits, with
the �rst 4 bits denoting the number of bits used for each integer
packed into the other 60 bits. FastPFOR uses a similar approach
but adds special handling for outliers and SIMD vectorization for
performance gains.

3 LOAD DATA PROPERTIES
Real-world power load data exhibits many useful characteristics
that can be exploited for e�ective compression. Here, we highlight
several such properties that motivate the design of Powerstrip by
conducting a data analysis on real-world load data from the well-
known REDD dataset [25]. This dataset consists of consumption
data from over 100 circuits across six residential homes (including
dedicated circuits on many typical appliances, e.g., refrigerator,
dishwasher, etc), and is collected at 1 Hz aggregate resolution and
roughly 1/3 Hz resolution on the individual circuits.

3.1 Frequent Inactivity
Even during periods of low activity (such as when occupants are
away or sleeping), buildings consume highly variable levels of
energy. For example, background energy events such as refrigerator
compressor cycles occur regularly even during relatively dormant

Time (4 hours)
0

100

200

W
at

ts

Time (4 hours)
0

5

10

W
at

ts

Figure 2: Power consumption of a refrigerator (top) showing
oscillations during inactivity (bottom, zoom-in).

Washer/dryer

Dishwasher
Furnace

Kitchen
Lighting

Fridge

Aggregate

Device

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 In

ac
tiv

e

Figure 3: Most individual devices spend themajority of their
time in an inactive state.

periods, resulting in a variable pattern of energy consumption at
the building level.

At the device level, however, most devices exhibit frequent,
lengthy periods of inactivity—either when switched o� completely
(such as a toaster) or when simply not in use (such as an idle com-
puter). During such periods, energy consumption is largely �at
(though not necessarily zero). Inactivity may not produce constant
power readings, however, due to noise, meter error, averaged mea-
surement intervals, etc. For example, Figure 2 shows the consump-
tion of a refrigerator (top) along with a zoom-in of inactive periods
(bottom). While the inactive periods are trivial to recognize visually,
readings during these periods slightly but continuously oscillate.

As a simple way to measure such periods, we consider the fol-
lowing method: choose the mode of the data (i.e., the most common
consumption level), and label all readings below (mode + �) watts
as “inactive” for some reasonably small � . This approach is likely
to �ag most periods of inactivity, whether they manifest as near-
zero consumption or otherwise. Using � = 5, Figure 3 shows the
proportion of time spent in an inactive state for a variety of device
types in the REDD dataset, averaged across all devices of that type.
Most devices are considered inactive for well over 50% of the data,
and many exceed 90%; several prominent large appliances (such
as dishwashers and washers/dryers) show inactivity of over 99%.
Even a typical “always-on” device such as a refrigerator shows
(on average) inactivity of 66%. In contrast, the average aggregate
signal in the data is inactive for less than 10% of the time. This
result re�ects that while individual devices are largely dormant, the
aggregation of many such devices is highly active.

e-Energy’20, June 22–26, 2020, Virtual Event, Australia John R. Ward and Sean K. Barker

1 2 3 4 5 6 7 8 9 10+
Delta size (watts)

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

no
n-

ze
ro

 d
el

ta
s

Figure 4: Delta distribution for the complete REDD dataset.

1 2 3 4 5 6 7 8 9 10+
Delta size (watts)

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

no
n-

ze
ro

 d
el

ta
s

Figure 5: Delta distribution for a single refrigerator.

3.2 Small Deltas
In most cases, the datapoints of most interest in energy traces are
the largest steps, as these deltas typically signify events of interest.
For instance, a 60W positive delta for a light likely indicates that the
bulb was turned on, while a 100W positive delta for a refrigerator
likely indicates the start of a compressor cycle. However, large steps
such as these are infrequent in real data when compared to smaller
steps of only a few watts. Figure 4 shows the proportion of non-zero
deltas in the REDD dataset for a variety of delta sizes. The resulting
distribution shows a typical “long tail” shape: 1W deltas are the
most prevalent by far (nearly 80% of all non-zero deltas), while less
than 10% of non-zero deltas are 10W or greater.

This distribution is true of most individual devices as well. For
example, Figure 5 shows the delta distribution for the refrigerator
previously pictured in Figure 2. For this device, the middle 98% of
deltas fall within the range [�6, 5], even though the full set of deltas
(including most events of interest, such as compressor activations)
spans the much larger range [�200, 250].

3.3 Imperfect Repetitions
Given the number of periodic devices in buildings (refrigerators,
ACs, etc.), typical energy data contains frequent repetitions of de-
vice behavior. For example, the refrigerator in Figure 2 appears as
the same basic usage pattern repeated at a mostly regular interval.

To investigate the actual degree of data repetition in this device,
we analyzed the number of repetitions of ten-symbol words in the
data (i.e., ten particular readings occurring consecutively). Table 1
shows the proportion of words with occurrences falling under
several illustrative thresholds. We see that a signi�cant majority of
ten-symbol words are very uncommon in the data—e.g., over half
of the words in the data (56.2%) occur less than 0.1% of the time
within the data. In fact, the only frequently occurring pattern in
the data is the constant word k,k, . . . ,k (primarily during inactive

Occurrence Proportion of words

< 0.01% 28.1%
< 0.1% 56.2%
< 1% 82.2%
< 10% 87.6%

Table 1: Most ten-symbol words in data from a refrigerator
occur less than 0.1% of the time.

1000 2000 3000 4000 5000 6000 7000 8000
Time (6 hours)

0

50

100

150

200

250

300

350

W
at

ts

Original
Approximation

Figure 6: An approximation of a refrigerator constructed us-
ing a single compressor cycle.

periods). In short, the number of exact data repetitions is quite low,
even in a highly regular device such as a refrigerator.

A natural alternative to looking for exact repetitions is to employ
approximations. As a case study of this approach, we approximated
the refrigerator data by replacing each compressor cycle over a
6-hour period with copies of a single (representative) compres-
sor cycle, as depicted in Figure 6. We then measured the resulting
root mean square error (RMSE) to evaluate the accuracy of the
approximation. While the approximation appears visually accurate,
a nontrivial amount of error is introduced relative to the original
data. In fact, the error introduced by regularizing the compressor
cycles (RMSE=45.1) is 75x larger than by �attening out all oscilla-
tions between compressor cycles (RMSE=0.6). This result suggests
that approximations may be more cheaply applied to inactive peri-
ods than to active periods. This insight in�uences the compression
design of Powerstrip, as described in Section 4.

4 COMPRESSION DESIGN
Here, we present the Powerstrip compression algorithm for integer
energy data. Powerstrip is designed to exploit empirical properties
of real-world energy data (detailed in Section 3) and is particularly
suited to compressing device-level data. Although a small degree
of lossiness is leveraged to improve compression, the degree of
this loss is near-zero in practice. Furthermore, Powerstrip is ex-
tremely lightweight, achieving compression and decompression
speeds faster than both general-purpose solutions (e.g., gzip) and
more specialized compression algorithms.

A data sequence compressed by Powerstrip consists of a series
of blocks, each encoding a contiguous chunk of the original data. In
the expected case of multiple devices, each device is represented
by a separate data sequence and compressed independently. Pow-
erstrip itself does not encode timestamps or other index values
(as in time series databases and other related work [7]). As such,

Powerstrip: High-Performance Compression for Energy Data e-Energy’20, June 22–26, 2020, Virtual Event, Australia

reconstructing a time series of (time, watts) pairs requires either
a consistent recording interval and two pieces of metadata (start
time and interval size) or external storage of index values.

For a given data sequence input, Powerstrip begins by dividing
the uncompressed input data into �xed-sized blocks (by default,
128 KB each) and then compresses each block independently. Com-
pression of each block operates in three phases:

(1) Detection and �attening of inactive intervals.
(2) Delta and zigzag encoding.
(3) Bit-packing and Hu�man coding.

The output of the �nal phase is a compressed block of variable
size (up to the original block size). Each of the three compression
phases are detailed below.

4.1 Inactivity Flattening
The goal of the �rst phase is to identify and �atten periods of
inactivity in the block, such that they need not be stored at all. As
shown in Section 3.1, real-world devices exhibit a high proportion
of such periods, even for “always-on” background devices.

A basic approach is to use run-length encoding (i.e., storing start
times and durations) to compress consecutive duplicate readings.
However, as observed previously in Figure 2, periods of inactiv-
ity often manifest as irregular oscillations within a small range
rather than duplicate readings, largely defeating run-length encod-
ing. Instead, we use a slight variant of the approach introduced
in Section 3.1 to estimate periods of inactivity. Given the mode
of the data within the block (which we term the blockmode) and
global parameter � , we label all data within the range [blockmode �
�,blockmode + �] as inactive, and replace all such data with the
blockmode itself. In doing so, all such datapoints can be eliminated,
as the blockmode simply becomes the “default” value within the
block. Note that this default value may vary for di�erent devices,
as well as for di�erent blocks of the same device. The setting of �
determines the degree of �attening, and trades o� between com-
pression and lossiness. In practice, the default setting of � = 3 is
su�cient to capture most gains without introducing signi�cant
lossiness (demonstrated in Section 6).

E�ective �attening assumes that the block actually contains pe-
riods of inactivity. Some highly active blocks may not contain such
periods, however, in which case �attening may incur data loss with-
out signi�cant compression bene�t. To guard against this case, we
only apply �attening if the blockmode represents at least 10% of the
data readings. To justify this choice, Figure 7 shows the frequency
of the mode across all devices of several representative types in the
REDD dataset (broken down by quartiles), along with the aggre-
gated data. We see that the only cases where the mode occurs less
than 10% of the time are aggregate readings and a small number
of devices with unusual characteristics (e.g., a highly variable �oor
– though the proportion within individual blocks would likely be
higher). Thus, we are able to apply the �attening step in the major-
ity of cases while still protecting against pathological cases where
unnecessary loss might be introduced.

We note that the inactivity �attening step is the only (slightly)
lossy step in the complete algorithm. If � is set to 0, then Powerstrip
operates as a fully lossless compression algorithm.

Washer/dryer
Dishwasher

Furnace
Kitchen

Lighting
Fridge

Aggregate

Device type

0%

20%

40%

60%

80%

100%

Fr
eq

ue
nc

y
of

 m
od

e
(a

s
pr

op
or

tio
n)

Figure 7: Most devices have a frequently occurring mode.

4.2 Delta Encoding
Once inactive periods are removed via �attening, the remaining
active periods (which we term segments) are extracted as (index,
length) pairs marking their positions within the original data. Note
that these values do not convey time in any way, but are merely
relative to the original integer sequence (which may or may not
consist of fully regular readings).

We apply two techniques to compress the data within each
segment. We �rst apply delta coding, which replaces each value
by the di�erence from the preceding value. For example, the se-
quence {3, 5, 5, 6, 2, 0} would be delta-coded to {3, 2, 0, 1,�4,�2}.
We then apply variable-length zigzag encoding [16] to the result-
ing deltas. Intuitively, this encoding orders the signed integers as
{0,�1, 1,�2, 2, . . .} and then uses the minimum number of bits nec-
essary to encode the values (e.g., only 2 bits would be needed to
encode values in the set {0,�1, 1}). For k-bit source integers and
following delta coding, encoding and decoding is performed using
standard C bitwise operators as follows:

encode(x) = (x << 1) ^ (x >> k � 1)
decode(x) = (x >> 1) ^ �(x & 1)

Following the analysis in Section 3, we expect most deltas to be
small and therefore �t within the zigzag encoding using only a few
bits. However, the small number of larger deltas typical in power
data may explode the number of bits required to represent the entire
set. We handle this problem using an outlier array, similar to [48].
Speci�cally, we �xm bits to be used in zigzag encoding and then
designate all values outside the representable [�2m�1, 2m�1] range
as outliers. Outliers are then stored in a separate array as (k + 1)-bit
deltas (the extra bit is needed to move from the largest values to
the smallest or vice versa). The special value consisting of allm
1’s is used as an outlier marker, indicating that the corresponding
delta is stored in the outlier array rather than zigzag encoded.

The value ofm is chosen on a per-block basis in order tominimize
the �nal compressed size. Speci�cally, if f (m) is the fraction of the
signal that can �t inm bits, we solve the following for k-bit inputs:

min
m2[1,k]

m · f (m) + (k + 1) · (1 � f (m))

Given a small value of k , solving this optimization problem is
easily done by building a histogram during a single pass over the
data. The default setting of k is 16, which allows for signed data
values up to 32767 (positive or negative).

e-Energy’20, June 22–26, 2020, Virtual Event, Australia John R. Ward and Sean K. Barker

segments blockmode# outliers packed lengths bits needed

segment indicesm
et

ad
at

a

segment lengths

outliers

deltas

total len.

Figure 8: The data layout of a single compressed block.

4.3 Bit-packing and Hu�man coding
Following delta and zigzag encoding, each block is stored in a 3-part
format, as shown in Figure 8:

(1) Metadata – the blockmode, segment information, bits used
for zigzag encoding, etc.

(2) Outliers – the outlier array from the encoding phase.
(3) Deltas – the encoded deltas (normally the largest section).

Two additional techniques are then applied to compress the
block further. First, the outlier and delta sections are bit-packed
using o�-the-shelf methods from SIMDComp [28], a fast vectorized
bit-packer that makes use of SSE SIMD instructions to improve
performance. Second, the entire block is compressed using Hu�man
coding [20] (a standard form of entropy encoding). The order of
these steps could be reversed, but Hu�man coding is relatively
expensive (and thus better applied to smaller bit-packed data), and
Hu�man-coded data does not bene�t signi�cantly from subsequent
bit-packing. Both of these factors have been previously noted in [7].

The �nal output for a given device consists of all its compressed
blocks laid out sequentially within a single �le.

4.4 Decompression
Decompression in Powerstrip follows intuitively from the compres-
sion design. Speci�cally, decompressing each block requires only a
few low-level operations and a bit-unpacking call, as follows: (1)
delta unpacking; (2) zigzag decoding; (3) setting the blockmode via
a single memset call; and (4) copying active segments into place.

4.5 Limitations
The primary limitation of Powerstrip is a natural consequence of its
design as an integer coder, which makes it unsuitable for data that
requires �oating-point precision. Such data most notably includes
high-frequency measurements of current and voltage waveforms
(generally taken at 5 kHz or greater). However, our focus is on data
collected from typical utility and consumer meters, which generally
cannot record high-frequency waveform data [18, 27].

Additionally, the compression e�ectiveness achieved by Pow-
erstrip is largely dependent on the expected data characteristics
described in Section 3. These characteristics are less prevalent in
aggregate data than in device-level data, limiting Powerstrip’s ad-
vantages when applied to aggregate data. However, the volume of
device-level data (when such data is available) is typically much
greater than of aggregate data. Thus, Powerstrip is most e�ective
in the cases where compression is most important.

5 IMPLEMENTATION
Powerstrip is implemented in C++ as an open-source, publicly
available1 command-line compression and decompression library,
with bit-packing provided by the SIMDComp library [36]. The
command-line utilities convert between the binary, compressed
data layout of Powerstrip and a decompressed, 16-bit binary format.
For a typical dataset consisting of multiple device traces, each trace
is stored in a separate and fully independent �le.

Powerstrip neither requires nor stores any timestamp informa-
tion in the data �les. In the simplest case of a perfectly regular time
series, a user wishing to distribute the time series would provide the
compressed data �le along with the timestamp of the �rst reading
and the measurement interval. For data that is not fully regular
or contains missing datapoints, several approaches are possible.
If there are few missing readings, two reasonable approaches are
either �lling in missing readings with the previous measurement or
storing the timestamps of missing datapoints outside of the main
compressed �le. For more irregular data, explicit timestamps may
need to be stored alongside the compressed power readings. In this
case, timestamps can be compressed using double-delta coding (i.e.,
assuming a default inter-data interval and storing deltas from this
interval), which will replace consistently-spaced intervals with 0’s.

While our current implementation operates on a single machine,
a real-world deployment of Powerstrip would likely be in a server
or data center environment on behalf of a utility. In such a scenario,
massive amounts of meter data would be collected and stored for
later analysis (e.g., user analytics, evaluation of NILM algorithms,
demand response techniques, etc). A utility or other data aggregator
might also wish to anonymize the data to maintain privacy; while
such issues are orthogonal to the compression goals of Powerstrip,
privacy-preserving techniques [21, 32] could be applied prior to
compression to provide privacy guarantees.

6 EVALUATION
We evaluate the compression, accuracy, and e�ciency of Powerstrip
using real-world data from the REDD dataset [25] and compare to
the 10 reference algorithms listed in Table 2. The reference algo-
rithms include state-of-the-art compression algorithms spanning
most well-known approaches (integer coders, time series coders,
dictionary coders, etc). For Ztsd, we consider three con�gurations:
fastest (Zstd-1), best compression (Zstd-22), and an intermediate
level (Zstd-5). For Sprintz, we use the most compressive variant
(FIRE forecasting and Hu�man coding). Quantization and PAA
(which lack reference implementations) are implemented in Mat-
lab. For all other algorithms, we use highly-tuned, o�-the-shelf
implementations integrated into the lzbench benchmarking tool.

As lossy algorithms are normally tunable between compression
and lossiness, we consider lossless and lossy algorithms separately.
We evaluate Powerstrip along three general metrics:

(1) Compression – the storage savings achieved by Powerstrip
versus the lossless reference algorithms.

(2) Lossiness – the compression vs. lossiness tradeo� achieved
by Powerstrip versus the lossy reference algorithms.

(3) Speed – the compression and decompression speeds achieved
by Powerstrip versus the fastest reference algorithms.

1https://github.com/joliv/powerstrip

Powerstrip: High-Performance Compression for Energy Data e-Energy’20, June 22–26, 2020, Virtual Event, Australia

Name Type Description

libde�ate [6] Lossless LZ77 dictionary coder, as in gzip
LZMA [31] Lossless Extension of LZ77
Zstd [11] Lossless LZ77+asymmetric numeral systems
Simple8b [2] Lossless Integer coder
FastPFOR [28] Lossless Optimized integer coder
Sprintz [7] Lossless IoT integer time series compressor
Uniform quant. Lossy Quantization
Gaussian quant. Lossy Quantization
PAA Lossy Downsampling
K-SVD [34] Lossy Sparse dictionary learning
Table 2: The reference compression algorithms considered.

Powerstrip
libdeflate

LZMA
Zstd -1

Zstd -5
Zstd -22

Simple8b

FastPFOR
Sprintz

0

5

10

15

20

Co
m

pr
es

sio
n

Ra
tio

Figure 9: Powerstrip achieves superior compression ratios to
the lossless algorithms on the entire REDD dataset.

Test data is drawn from REDD unless otherwise noted. As a
preprocessing step, we convert the original CSV text data into a
binary format of signed 16-bit integers and eliminate all additional
metadata (e.g., timestamps).

6.1 Compression
We �rst consider compression e�ectiveness in Powerstrip by mea-
suring the compression ratio of the entire REDD dataset (including
an “aggregate” circuit per home), computed as the uncompressed
size divided by the compressed size (larger is better). The com-
pression ratios attained by Powerstrip and the 6 reference lossless
algorithms (plus the two additional Zstd variants) are shown in
Figure 9. We see that Powerstrip achieves the greatest compression
(a 94.8% size reduction), resulting in a compressed size 23% smaller
than that of the best reference algorithm (Sprintz).

We next consider compression of individual circuits in the dataset.
For each algorithm, Figure 10 shows the distribution of compressed
sizes across all circuits, with aggregated circuit results plotted sep-
arately. To account for size variations across devices, results are
plotted relative to Simple8b as a baseline. Outlier circuits are plotted
separately to demonstrate the “worst-case” devices for compres-
sion. We see that Powerstrip consistently outperforms all of the
reference algorithmswhen compressing individual devices (i.e., non-
aggregated readings). For these devices, Powerstrip also demon-
strates more consistent compression than the other algorithms,
with a spread between the mean and worst outlier of only 25%. For

Powerstrip
libdeflate LZMA

Zstd -1 Zstd -5
Zstd -22

FastPFOR
Sprintz

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Co
m

pr
es

se
d

siz
e,

 re
la

tiv
e

to
 S

im
pl

e8
b

Simple8b
Aggregates

Figure 10: Compressed size distributions across circuits for
Powerstrip and reference lossless algorithms.

aggregated circuits, Powerstrip is competitive but not signi�cantly
superior to the best reference algorithms. The likely reason for
this di�erence is the deactivation of inactivity removal on many of
the aggregated circuits (degrading compression but making Power-
strip fully lossless in these cases). Overall, Powerstrip demonstrates
best-in-class compression performance across all devices and signif-
icantly outperforms the reference algorithms on individual circuits.

6.2 Lossiness
The lossy reference algorithms we consider are tunable between
compression and data �delity. As such, we �rst conduct an exper-
iment in which we compress a refrigerator trace using a variety
of parameter settings for each reference algorithm. For K-SVD, we
�x 4 atoms and 10 training iterations, then vary the size of the
dictionary from 10 to 1000. For uniform and Gaussian quantization,
we vary the number of bins from 10 to 1000. Finally, for PAA down-
sampling, we vary the timestep from 1 to 100. For each compression
run, we measure the compressed size and the root mean square
error (RMSE), calculated for a signal x and compressed signal x̂ of
length n as the following:

RMSE =

vt n’
i=1

(x̂i � xi)2

The compressed sizes and RMSEs for all runs are shown in Fig-
ure 11, demonstrating the tradeo� curves between compression and
error. The lossy algorithms display a wide variation of behavior—
e.g., K-SVD generally achieves high accuracy but poor compression,
while PAA downsampling generally achieves high compression
but poor accuracy. The single run of Powerstrip, however, exhibits
the least error of any test run, while achieving better compression
than all other methods except for aggressive downsampling (which
incurs high error). In short, Powerstrip achieves much greater com-
pression at substantially lower cost than the other methods tested.

Next, we considermultiple devices using a set of �xed parameters—
a 100-atom dictionary for K-SVD, 100 bins for quantization, and a
PAA timestep of 100. We then compress all devices within several
sets of representative devices (e.g., all dishwashers).

e-Energy’20, June 22–26, 2020, Virtual Event, Australia John R. Ward and Sean K. Barker

0 5 10 15 20 25 30 35 40
RMSE (watts)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

se
d

si
ze

 (%
 o

f o
rig

in
al

)

Powerstrip
Uniform quant.
Gaussian quant.
PAA
K-SVD

Figure 11: Powerstrip achieves a superior compression/error
tradeo� to the other lossy algorithms considered when com-
pressing a refrigerator power trace.

Washer/dryer

Dishwasher
Furnace

Kitchen
Lighting

Fridge

Aggregate
0

10

20

30

40

C
om

pr
es

si
on

 R
at

io

Powerstrip
Uniform quant.
Gaussian quant.
PAA
K-SVD

Washer/dryer

Dishwasher
Furnace

Kitchen
Lighting

Fridge

Aggregate

Device Type

10-1

100

101

102

R
M

SE
 (w

at
ts

, l
og

-s
ca

le
)

862 328 58 247 448

Figure 12: Average compression ratios (top) and error (bot-
tom) of lossy methods on several device classes.

Figure 12 shows the average compression ratio (top) and RMSE
(bottom, log-scale) for each device set. We see that Powerstrip
achieves the best average compression ratio in nearly all cases
(sometimes by multiple orders of magnitude), though aggregate
data is a notable (but expected) outlier. More important, however, is
that Powerstrip achieves these compression results with an average
RMSE of less than 0.2 watts. This level of error is likely less than
the error of the meter itself and is unlikely to be signi�cant for any
application already operating on low-frequency power data (which
is inherently lossy over the measurement interval even if perfectly
compressed). We also note that the design of Powerstrip limits

Powerstrip LZMA
libdeflate

Zstd -1
Zstd -5

Zstd -22
Simple8b

FastPFOR
Sprintz

0

2000

4000

6000

8000

M
b/

s

Compression
Decompression

Figure 13: Average compression and decompression rates of
Powerstrip and reference lossless algorithms.

instantaneous errors to a few watts or less (so the error distribution
over time should be fairly uniform) and does not introduce any
error at all during active periods.

6.3 Speed
We next measure compression and decompression rates across
the entire REDD dataset on a 2.7 GHz Intel i5 processor with no
parallelization. We report speed results for Powerstrip and the 8
lossless algorithms – as mentioned previously, the lossy approaches
are omitted due to a lack of competitive implementations.

Figure 13 shows the average compression and decompression
speeds across the entire dataset. The best overall performance is
achieved by the integer coders Simple8b and FastPFOR – however,
these algorithms achieve much less compression (see Figure 9).
Among algorithms with comparable compression results, Power-
strip displays best-in-class decompression speed (3430 MB/sec –
over 5x faster than Sprintz) and competitive compression speed (448
MB/sec – comparable to Sprintz and over 80x faster than Ztsd-22).

In practice, the compression speeds achieved by Powerstrip are
orders of magnitude larger than needed for on-the-�y compression
in individual buildings. As such, it is entirely feasible to perform
on-site compression using a low-power device (e.g., a smart home
hub) prior to sending data to centralized or cloud storage.

6.4 Inactivity Flattening Window Size
The range of values �attened around each blockmode is controlled
by the setting of � . The �attening window should be large enough
to �atten most periods of inactivity but small enough to e�ectively
constrain lossiness. To investigate its impact on compression, we
varied � from its default value (� = 3) and recompressed the com-
plete REDD dataset. Figure 14 shows the resulting compression
ratios for � ranging from 0 to 10. Note that � = 0 represents a
lossless con�guration in which no �attening occurs (although the
blockmode itself is still e�ectively removed). The most signi�cant
jump in compression occurs when moving from � = 0 to � = 1,
re�ecting the large number of 1W oscillations that occur during
inactive periods. Modest but diminishing gains occur as � is further
increased (e.g., minimal incremental bene�t beyond � = 5).

Powerstrip’s standard con�guration of � = 3 (used for all experi-
ments unless otherwise noted) is a relatively conservative setting,
which captures most gains while limiting lossiness to steps of 6W
or less around the blockmode (most of which are transient steps of
only a few watts). However, more aggressive compression may be

Powerstrip: High-Performance Compression for Energy Data e-Energy’20, June 22–26, 2020, Virtual Event, Australia

0 1 2 3 4 5 6 7 8 9 10
Window Size ()

0

10

20

30

C
om

pr
es

si
on

 R
at

io

Figure 14: Powerstrip compression ratios on REDD dataset
for a variety of �attening windows (� values).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bits per sample

0

2

4

6

Si
ze

 (M
B)

Bit-packed
Outliers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bits per sample

0

50

100

150

200

Si
ze

 (k
B)

Bit-packed
Outliers

Figure 15: Compressed size of a refrigerator (top) and
washer/dryer (bottom) for �xedm (bits per sample).

achieved by modestly increasing � . We note that even � = 1 (which
limits possible errors to steps of at most 2W) achieves greater com-
pression than Zstd-22 and Sprintz on the full dataset.

6.5 Impact of Bit Selection
We also investigate the impact ofm (the number of bits used in delta
encoding), which a�ects both the number of outliers and the total
data size. Smaller values ofm result in more outliers but a smaller
chunk of bit-packed data, while larger values ofm result in fewer
outliers but a larger chunk of bit-packed data. Powerstrip optimizes
m in order to e�ciently trade o� between these approaches.

Figure 15 shows the compressed size of two device traces asm
is varied: a refrigerator (top) and a washer/dryer (bottom). Here,
we �xm across all blocks and measure the total compressed size of
each device, broken down between outliers and deltas (metadata
contributes an insigni�cant amount to the total). We see that at
the smallest values ofm, the data is almost entirely outliers, while
at higher values ofm, the data contains almost no outliers. More
importantly, however, we see that the optimal value varies substan-
tially across devices. In the case of the refrigerator, the optimal value
ism = 4, while for the washer/dryer, the optimal value ism = 9
(and choosingm = 4 for this device results in roughly doubling
the compressed size). This result demonstrates the importance of
Powerstrip’s optimization ofm and shows that a static value may
perform poorly across multiple devices. Note that Powerstrip’s
optimization ofm is more �exible than illustrated here, since we
optimizem on a per-block basis rather than a per-device basis.

Overall Non-Aggregate Aggregate
0%

100%

200%

300%

400%

500%

Co
m

pr
es

se
d

siz
e

(re
la

tiv
e

to
 b

as
el

in
e)

No flattening
No delta encoding
No bit-packing

Figure 16: Compression ratios on REDD when one of the
compression phases is disabled.

6.6 Compression Phases
To investigate the impact of each of the three compression phases
used in Powerstrip (inactivity �attening, delta encoding, and bit-
packing/Hu�man coding), we disable one of the three phases and
then recompress the REDD dataset. For each disabled phase, Fig-
ure 16 shows the resulting compressed size relative to the full algo-
rithm (i.e., a larger bar indicates that the disabled phase contributes
more to total compression). In addition to the overall results for the
complete dataset, we also show results for just the aggregate data
and for just the non-aggregate devices.

We see that the largest compression gains come from the bit-
packing phase, but we note that these gains are easily achieved
“o�-the-shelf”, without any particular design speci�c to Powerstrip.
Powerstrip’s competitive advantage is instead primarily due to the
�rst two phases – especially inactivity �attening, which contributes
very little to aggregate data (as expected), but contributes roughly
100% to individual devices. We see that the delta encoding phase is
bene�cial to all devices but more so to aggregate data, re�ecting
that aggregate data is substantially more active.

Some of the gains of inactivity �attening can be captured by sim-
ply replacing datapoints with the blockmode as a data preprocessing
step, followed by running any lossless algorithm (as opposed to the
latter phases of Powerstrip). We tested this idea using Sprintz and
Zstd-22 and found that a “Flattening+Sprintz” hybrid algorithm
produced the best compression of all (exceeding Powerstrip itself by
about 13%), albeit with 70% slower decompression than Powerstrip.
The better compression of this con�guration is likely due in part
to the FIRE forecasting algorithm used in Sprintz (which is a more
compressive but slower alternative to delta coding).

6.7 Case Studies: Real-World Datasets
We next consider the use of Powerstrip as a tool to aid in the distri-
bution of real-world datasets. Here, we consider three other well-
known public energy datasets in addition to REDD: UK-DALE [23]
(1 Hz data only), iAWE [5], and Dataport [37]. Dataport in partic-
ular is a much larger dataset than the others: we use Dataport’s
curated, 1 Hz time series dataset, which consists of 6 months of
circuit-level data from 50 homes.We compress each of these datasets
using Powerstrip as well as the two best-performing reference al-
gorithms (Zstd-22 and Sprintz). The resulting compression ratio of
each dataset is shown in Figure 17. Powerstrip achieves the high-
est compression ratio on all datasets, outperforming Sprintz (the
second-best performer) by margins ranging from 18% (on iAWE) to
35% (on UK-DALE, which Powerstrip compresses by 97%).

e-Energy’20, June 22–26, 2020, Virtual Event, Australia John R. Ward and Sean K. Barker

REDD UK-DALE iAWE Dataport
Dataset

0

10

20

30

C
om

pr
es

si
on

 R
at

io Powerstrip
Zstd -22
Sprintz

Figure 17: Compression ratios on multiple public datasets.

REDD UK-DALE iAWE Dataport
0

200

400

C
om

pr
es

si
on

 (M
B/

s)

REDD UK-DALE iAWE Dataport
Dataset

0

2000

4000

6000

D
ec

om
pr

es
si

on
 (M

B/
s)

Powerstrip
Zstd -22
Sprintz

Figure 18: Compression rates (top) and decompression rates
(bottom) on multiple public datasets.

Format Size Compress Decompress
gzip (baseline) 3.9 GB — —

Powerstrip (� = 3) 1.9 GB 87s 18s
Zstd-22 3.4 GB 6.2h 30s
Sprintz 3.3 GB 80s 57s

Table 3: Compressed sizes and compression/decompression
times for the compacted Dataport dataset.

Figure 18 shows compression speeds (top) and decompression
speeds (bottom) for each dataset. Across all datasets, Powerstrip’s
overall compression rate is comparable to that of Sprintz and over
70x faster than that of Zstd-22. More importantly, decompression in
Powerstrip is 4.7x faster than Sprintz and 1.8x faster than Zstd-22.

For real-world context, we consider the particular task of dis-
tributing the Dataport dataset to users. As distributed by the pub-
lishers, this dataset consists of roughly 20 GB of gzip-compressed
text �les (over 170 GB uncompressed). Much of this size is due to
textual metadata (especially timestamp strings), so we �rst chrono-
logically order all power readings and then discard all extraneous
metadata, resulting in 34.6 GB of uncompressed data. This com-
pacted data compresses to 3.9 GB using gzip, which establishes a
“baseline” distribution size for the dataset.

We next consider distributing this dataset using Powerstrip, Zstd-
22, or Sprintz. Table 3 shows the resulting compressed sizes, as well
as the compression and decompression times required in each case
on our test machine (omitted for gzip due to the textual data for-
mat). Powerstrip produces the smallest data archive by a signi�cant
margin using the default � = 3, saving over 1.5 GB compared to

1 second 1 minute 15 minutes
Resolution

0

5

10

15

20

C
om

pr
es

si
on

 R
at

io Powerstrip
Zstd -22
Sprintz

Figure 19: Compression ratios on Dataport data of multiple
resolutions.

both Zstd-22 and Sprintz and more than halving the baseline gzip-
compressed size. Using a more conservative � = 1, Powerstrip
produces a data size of 2.9 GB – about 50% larger than � = 3 but still
smaller than both Zstd-22 and Sprintz. These results demonstrate
that Powerstrip is uniquely well-suited to distributing large-scale
energy datasets to users.

6.8 Data Resolution
We lastly investigate the impact of data resolution on Powerstrip’s
performance using lower-resolution data provided in Dataport
alongside the primary 1-second data. Here, we use both the 1-
second resolution data as well as 1-minute and 15-minute data from
the same 50 houses over the same 6 month period. We also include
1-minute and 15-minute data from 23 additional houses (homes in-
cluded in Dataport’s curated time series dataset for which 1-second
data is not currently available). Figure 19 shows the compression
ratios achieved on each of the three Dataport subsets – the pri-
mary 1-second data (50 homes), the 1-minute data (73 homes), and
the 15-minute data (73 homes). We see that compression generally
improves when moving to higher resolutions, as has been demon-
strated previously [42]. However, only Powerstrip demonstrates a
signi�cant improvement at 1-second, which likely stems from the
greater degree of �attening possible at higher resolutions.

7 CONCLUSIONS
This paper presents Powerstrip, a compression algorithm for integer
energy data that focuses on device-level data, high compression ra-
tios, and low overhead. The design of Powerstrip leverages common
characteristics of real-world energy data, along with a minimal de-
gree of lossiness, in order to provide fast but e�ective compression.
We conduct experiments on multiple real-world datasets and com-
pare to 10 di�erent state-of-the-art compression algorithms. Our
results show that Powerstrip regularly exceeds the compression
ratios of the reference algorithms (by as much as 35% compared
to the best reference algorithm) while simultaneously o�ering the
fastest decompression speeds by wide margins. We also �nd that
Powerstrip introduces near-zero data loss in practice. Our case stud-
ies demonstrate the potential of Powerstrip for large-scale energy
data storage and distribution, challenges that will only grow in
importance as the quantity of energy data increases over time.

Acknowledgements. We would like to thank our shepherd
and the anonymous reviewers for their thoughtful feedback and
suggestions that improved this work.

Powerstrip: High-Performance Compression for Energy Data e-Energy’20, June 22–26, 2020, Virtual Event, Australia

REFERENCES
[1] M. Aharon, M. Elad, and A. Bruckstein. 2006. K-SVD: An Algorithm for Designing

Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal
Processing 54, 11 (Nov. 2006), 4311–4322. https://doi.org/10.1109/TSP.2006.881199

[2] Vo Ngoc Anh and Alistair Mo�at. 2010. Index Compression Using 64-Bit Words.
Softw. Pract. Exper. 40, 2 (Feb. 2010), 131–147.

[3] Ian Ayres, Sophie Raseman, and Alice Shih. 2009. Evidence from Two Large Field
Experiments That Peer Comparison Feedback Can Reduce Residential Energy Usage.
Technical Report w15386. National Bureau of Economic Research, Cambridge,
MA. https://doi.org/10.3386/w15386

[4] Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht.
2012. SmartCap: Flattening Peak Electricity Demand in Smart Homes. In 2012
IEEE International Conference on Pervasive Computing and Communications. IEEE,
Lugano, Switzerland, 67–75. https://doi.org/10.1109/PerCom.2012.6199851

[5] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B. Srivastava. 2013. It’s
Di�erent: Insights into Home Energy Consumption in India. In Proceedings
of the 5th ACM Workshop on Embedded Systems For Energy-E�cient Buildings
- BuildSys’13. ACM Press, Roma, Italy, 1–8. https://doi.org/10.1145/2528282.
2528293

[6] Eric Biggers. 2016. Libde�ate.
[7] Davis Blalock, Samuel Madden, and John Guttag. 2018. Sprintz: Time Series

Compression for the Internet of Things. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 2, 3 (Sept. 2018), 1–23. https:
//doi.org/10.1145/3264903

[8] Davis W. Blalock and John V. Guttag. 2016. EXTRACT: Strong Examples from
Weakly-Labeled Sensor Data. In 2016 IEEE 16th International Conference on Data
Mining (ICDM). IEEE, Barcelona, Spain, 799–804. https://doi.org/10.1109/ICDM.
2016.0093

[9] Brultech (2019). BrulTech ECM-1240 Energy Monitor. http://www.brultech.com/
products/ECM1240/. Accessed January 2020.

[10] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. 1998. Atomic
Decomposition by Basis Pursuit. SIAM Journal on Scienti�c Computing 20, 1 (Jan.
1998), 33–61. https://doi.org/10.1137/S1064827596304010

[11] Yann Collet and Chip Turner. 2016. Smaller and Faster Data Compression with
Zstandard.

[12] Datasets (2019). Public Data Sets for NIALM. http://blog.oliverparson.co.uk/
2012/06/public-data-sets-for-nialm.html. Accessed January 2020.

[13] G. Davis, S. Mallat, and M. Avellaneda. 1997. Adaptive Greedy Approximations.
Constructive Approximation 13, 1 (March 1997), 57–98. https://doi.org/10.1007/
BF02678430

[14] Egauge (2019). eGauge EnergyMonitoring Solutions. http://egauge.net. Accessed
January 2020.

[15] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. 2015. A
Time-Series Compression Technique and Its Application to the Smart Grid. The
VLDB Journal 24, 2 (April 2015), 193–218.

[16] Google. 2019. Protocol Bu�ers Encoding: Signed Integers.
[17] Ramon Granell, Colin J. Axon, and David C. H. Wallom. 2015. Impacts of Raw

Data Temporal Resolution Using Selected Clustering Methods on Residential
Electricity Load Pro�les. IEEE Transactions on Power Systems 30, 6 (Nov. 2015),
3217–3224. https://doi.org/10.1109/TPWRS.2014.2377213

[18] A. U. Haq, T. Kriechbaumer, M. Kahl, and H. Jacobsen. 2017. CLEAR – A circuit
level electric appliance radar for the electric cabinet. In Proceedings of the 2017
IEEE International Conference on Industrial Technology (ICIT ’17). 1130–1135.

[19] G.W. Hart. 1992. Nonintrusive Appliance Load Monitoring. Proc. IEEE 80, 12
(Dec. 1992), 1870–1891. https://doi.org/10.1109/5.192069

[20] D. A. Hu�man. 1952. A Method for the Construction of Minimum-Redundancy
Codes. Proceedings of the IRE 40, 9 (Sep. 1952), 1098–1101.

[21] Ruoxi Jia, Fisayo Caleb Sangogboye, Tianzhen Hong, Costas Spanos, and
Mikkel Baun Kjærgaard. 2017. PAD: Protecting Anonymity in Publishing Build-
ing Related Datasets. In Proceedings of the 4th ACM International Conference on
Systems for Energy-E�cient Built Environments (Delft, Netherlands) (BuildSys ’17).
Association for Computing Machinery, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/3137133.3137140

[22] Richard Jumar, Heiko Maaß, and Veit Hagenmeyer. 2018. Comparison of Lossless
Compression Schemes for High Rate Electrical Grid Time Series for Smart Grid
Monitoring and Analysis. Computers & Electrical Engineering 71 (Oct. 2018),
465–476. https://doi.org/10.1016/j.compeleceng.2018.07.008

[23] Jack Kelly. 2015. UK Domestic Appliance Level Electricity (UK-DALE) - Dis-
aggregated (6s) Appliance Power and Aggregated (1s) Whole House Power.
https://doi.org/10.5286/UKERC.EDC.000001

[24] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
2001. Locally Adaptive Dimensionality Reduction for Indexing Large Time
Series Databases. ACM SIGMOD Record 30, 2 (June 2001), 151–162. https:
//doi.org/10.1145/376284.375680

[25] J. Zico Kolter and Matthew J. Johnson. 2011. REDD: A Public Data Set for Energy
Disaggregation Research. In SustKDD 2011. San Diego, California.

[26] Thomas Kriechbaumer, Daniel Jorde, and Hans-Arno Jacobsen. 2019. Waveform
Signal Entropy and Compression Study of Whole-Building Energy Datasets. In
Proceedings of the Tenth ACM International Conference on Future Energy Systems
(e-Energy ’19) (Phoenix, AZ, USA) (e-Energy ’19). Association for Computing
Machinery, New York, NY, USA, 58–67.

[27] Thomas Kriechbaumer, Anwar Ul Haq, Matthias Kahl, and Hans-Arno Jacobsen.
2017. MEDAL: A Cost-E�ective High-Frequency Energy Data Acquisition System
for Electrical Appliances. In Proceedings of the Eighth International Conference
on Future Energy Systems (e-Energy ’17) (Shatin, Hong Kong). Association for
Computing Machinery, New York, NY, USA, 216–221.

[28] D. Lemire and L. Boytsov. 2015. Decoding Billions of Integers per Second through
Vectorization. Software: Practice and Experience 45, 1 (Jan. 2015), 1–29. https:
//doi.org/10.1002/spe.2203

[29] S.G. Mallat and Zhifeng Zhang. Dec./1993. Matching Pursuits with Time-
Frequency Dictionaries. IEEE Transactions on Signal Processing 41, 12 (Dec./1993),
3397–3415. https://doi.org/10.1109/78.258082

[30] Antonio Notaristefano, Gianfranco Chicco, and Federico Piglione. 2013. Data Size
Reduction with Symbolic Aggregate Approximation for Electrical Load Pattern
Grouping. IET Generation, Transmission & Distribution 7, 2 (Feb. 2013), 108–117.
https://doi.org/10.1049/iet-gtd.2012.0383

[31] Igor Pavlov. 1998. 7ZIP.
[32] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor. 2011. Smart meter

privacy: A utility-privacy framework. In 2011 IEEE International Conference on
Smart Grid Communications (SmartGridComm). 190–195.

[33] Ron Rubinstein, Alfred M Bruckstein, and Michael Elad. 2010. Dictionaries
for Sparse Representation Modeling. Proc. IEEE 98, 6 (June 2010), 1045–1057.
https://doi.org/10.1109/JPROC.2010.2040551

[34] Ron Rubinstein, Michael Zibulevsky, and Michael Elad. 2008. E�cient Implemen-
tation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit. Technical
Report CS-2008-08.revised. Technion Israel Institute of Technology, Haifa, Israel.
15 pages.

[35] Falk Scholer, Hugh E.Williams, John Yiannis, and Justin Zobel. 2002. Compression
of Inverted Indexes For Fast Query Evaluation. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval - SIGIR ’02. ACM Press, Tampere, Finland, 222. https://doi.org/10.1145/
564376.564416

[36] simdcomp (2019). SIMDComp: A simple C library for compressing lists of integers
using binary packing. https://github.com/lemire/simdcomp. Accessed January
2020.

[37] Pecan Street. (2019). Dataport. https://dataport.pecanstreet.org/. Accessed
January 2020.

[38] Michel P. Tcheou, Lisandro Lovisolo, Moises V. Ribeiro, Eduardo A. B. da Silva,
Marco A. M. Rodrigues, Joao M. T. Romano, and Paulo S. R. Diniz. 2014. The
Compression of Electric Signal Waveforms for Smart Grids: State of the Art
and Future Trends. IEEE Transactions on Smart Grid 5, 1 (Jan. 2014), 291–302.
https://doi.org/10.1109/TSG.2013.2293957

[39] J.A. Tropp. 2004. Greed Is Good: Algorithmic Results for Sparse Approximation.
IEEE Transactions on Information Theory 50, 10 (Oct. 2004), 2231–2242. https:
//doi.org/10.1109/TIT.2004.834793

[40] Andreas Unterweger and Dominik Engel. 2016. Lossless Compression of High-
Frequency Voltage and Current Data in Smart Grids. In 2016 IEEE International
Conference on Big Data (Big Data). IEEE, Washington DC,USA, 3131–3139. https:
//doi.org/10.1109/BigData.2016.7840968

[41] Andreas Unterweger, Dominik Engel, and Martin Ringwelski. 2015. The E�ect
of Data Granularity on Load Data Compression. In Energy Informatics, Sebastian
Gottwalt, Lukas König, and Hartmut Schmeck (Eds.). Vol. 9424. Springer Interna-
tional Publishing, Cham, 69–80. https://doi.org/10.1007/978-3-319-25876-8_7

[42] Andreas Unterweger, Dominik Engel, and Martin Ringwelski. 2015. The E�ect of
Data Granularity on Load Data Compression. In Proceedings of the 4th D-A-CH
Conference on Energy Informatics - Volume 9424 (Karlsruhe, Germany) (EI 2015).
Springer-Verlag, Berlin, Heidelberg, 69–80.

[43] U.S. Energy Information Administration. 2017. Nearly Half of All U.S. Electricity
Customers Have Smart Meters.

[44] Yi Wang, Qixin Chen, Chongqing Kang, Qing Xia, and Min Luo. 2017. Sparse and
Redundant Representation-Based Smart Meter Data Compression and Pattern
Extraction. IEEE Transactions on Power Systems 32, 3 (May 2017), 2142–2151.
https://doi.org/10.1109/TPWRS.2016.2604389

[45] Tri KurniawanWijaya, Julien Eberle, and Karl Aberer. 2013. Symbolic Representa-
tion of SmartMeter Data. In Proceedings of the Joint EDBT/ICDT 2013Workshops on
- EDBT ’13. ACMPress, Genoa, Italy, 242. https://doi.org/10.1145/2457317.2457357

[46] H. E. Williams. 1999. Compressing Integers for Fast File Access. Comput. J. 42, 3
(March 1999), 193–201. https://doi.org/10.1093/comjnl/42.3.193

[47] Shiyin Zhong, Robert Broadwater, and Steve Ste�el. 2015. Wavelet Based Load
Models from AMI Data. arXiv:1512.02183 [cs] (Dec. 2015). arXiv:1512.02183 [cs]

[48] M. Zukowski, S. Heman, N. Nes, and P. Boncz. 2006. Super-Scalar RAM-
CPU Cache Compression. In 22nd International Conference on Data Engineering
(ICDE’06). IEEE, Atlanta, GA, USA, 59–59. https://doi.org/10.1109/ICDE.2006.150

