
NON-VANISHING OF RANKIN-SELBERG CONVOLUTIONS FOR

HILBERT MODULAR FORMS

ALIA HAMIEH AND NAOMI TANABE

Abstract. In this paper, we study the non-vanishing of the central values of the Rankin-
Selberg L-function of two adèlic Hilbert primitive forms f and g, both of which have
varying weight parameter k. We prove that, for sufficiently large k, there are at least

k
(log k)c

adèlic Hilbert primitive forms f of weight k for which L( 1
2
, f ⊗ g) are nonzero.

1. Introduction

Chowla conjectured in [5] that L(1
2 , χ) is non-zero for all primitive quadratic charac-

ters χ. Indeed, it is widely believed that such a statement should hold for all primitive
Dirichlet characters. Chowla’s conjecture remains open to this day, but there have been
significant advances towards its resolution. On this front, a breakthrough was achieved by
Soundararajan who showed in [20] that a remarkably high proportion of quadratic Dirichlet
L-functions do not vanish at the critical point s = 1

2 . Likewise, it is also believed that the
central values of modular L-functions are non-vanishing unless there is a trivial (e.g. sign in
the functional equation) or an arithmetical reason for these values to vanish. The purpose
of this paper is to study the non-vanishing of the family of central values of the Rankin-
Selberg L-functions associated with two adèlic Hilbert modular forms both of which have
varying weight parameter k. More precisely, it is our aim to prove the following theorem.

Theorem 1.1. Let F be a totally real number field such that the Dedekind zeta function ζF
has no Landau-Siegel zero. Let g be an adèlic Hilbert modular form in Πk(n), the (finite)
set of all primitive forms of weight k and level n over F . Then there exists an absolute
constant c > 1 such that

#

{
f ∈ Πk(OF ) : L

(
1

2
, f ⊗ g

)
6= 0

}
� k

logc k
, as k →∞.

Such a result is obtained by establishing asymptotics for certain twisted first and second
moments. The classical approach for estimating the second moment is very complicated in
our setting. To surmount this difficulty, we apply a short and simple alternative by using
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the Rankin-Selberg unfolding method as elegantly employed by Blomer [3]. Non-vanishing
results that are similar in strength to our work are known for L-functions L(1

2 , f) of classical
modular forms by the work of Duke [6] and Lau-Tsang [14]. However, for Rankin-Selberg
L-functions, the best known weight aspect result prior to our work is a lower bound of order
k1−ε due to Liu and Masri [15] which is also based in parts on [3].

We mention here that another family worth studying is one in which the Hilbert modular
forms involved have different weights, one of which is fixed and the other is varying. More
precisely, let g ∈ Πl(n) for some fixed l ∈ 2Nn and n ⊂ OF . By obtaining an asymptotic
formula for the harmonic sum of the values L(1

2 , f ⊗ g) as f varies in Πk(OF ) (which the

authors showed in [11, Proposition 2.4]) and using the subconvexity bound L(1
2 , f ⊗ g) �

kδ+ε in [17], one could show that #
{
f ∈ Πk(OF ) : L

(
1
2 , f ⊗ g

)
6= 0
}
� k1−δ−ε. However,

establishing a sharper bound will undoubtedly require more elaborate techniques.

2. Notations and Preliminaries

Throughout the paper, we fix a totally real number field F of degree n over Q, and we
impose the condition that the Dedekind zeta function ζF has no Landau-Siegel zero. This
assumption is used in the proof of Lemma 4.8. It is worth mentioning here that, by the
work of Stark [21], we know that every Galois field with odd degree over Q satisfies this
condition.

Once and for all, we fix an order of the real embeddings, σj , of F , say σ := (σ1, . . . , σn).
As such, we can identify an element x in F with the n-tuple (x1, . . . , xn) in Rn where
xj = σj(x). This tuple may be, again, denoted by x when no confusion arises. We say x
is totally positive and write x � 0 if xj > 0 for all j, and for any subset X ⊂ F , we put
X+ = {x ∈ X : x� 0}.

We denote the narrow class group of F by Cl+(F ) and its cardinality by h. We let
{t1, t2, . . . , th} be a fixed choice of representatives of the narrow ideal classes in Cl+(F ). We
write a ∼ b when fractional ideals a and b belong to the same narrow ideal class, in which
case we have a = ξb for some ξ in F+. The symbol [ab−1] is used to refer to this element ξ
which is unique up to multiplication by totally positive units in OF .

To simplify the exposition of this paper, we frequently use multi-index notation as
follows: For given n-tuples x and z and a scalar a, we set

xz =

n∏
j=1

x
zj
j , xa =

n∏
j=1

xaj , and az = a
∑n
j=1 zj .

Such multi-index notation will also be employed to denote certain products of the gamma
function and the J-Bessel function.

Let k = (k1, . . . , kn) ∈ 2Nn, and let n be an integral ideal in F . We denote by Sk(n) the
space of adèlic Hilbert cusp forms of weight k, level n, and with the trivial character. The
Fourier coefficient of an adèlic Hilbert cusp form f at an integral ideal m ⊂ OF is denoted
by Cf (m), after suitable normalization. We say f is normalized if Cf (OF ) = 1.

As it is well-known, an adèlic Hilbert cusp form f in Sk(n) can be viewed as an h-tuple
(f1, . . . , fh) of classical Hilbert cusp forms fν of weight k with respect to the congruence
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subgroup

Γν(n) =

{[
a b
c d

]
∈ GL+

2 (F ) : a, d ∈ OF , b ∈ tνd
−1
F , c ∈ nt−1

ν dF , ad− bc ∈ O×+
F

}
,

where dF is the different ideal of F .
The space of adèlic cusp forms can be decomposed as Sk(n) = Sold

k (n)⊕ Snew
k (n) where

Sold
k (n) is the subspace of cusp forms that come from lower levels, and the new space Snew

k (n)

is the orthogonal complement of Sold
k (n) in Sk(n) with respect to the Petersson inner product

defined as

(2.1) 〈f ,g〉n =
h∑
ν=1

〈fν , gν〉n =
h∑
ν=1

1

µ(Γν(n)\hn)

∫
Γν(n)\hn

fν(z)gν(z)ykdµ(z),

where dµ(z) =
∏n
j=1 y

−2
j dxjdyj .

A Hilbert cusp form f in Sk(n) is said to be primitive if it is a normalized common Hecke
eigenfunction in the new space. We denote by Πk(n) the (finite) set of all primitive forms
of weight k and level n. If f is in Πk(n), it follows from the work of Shimura [19] that Cf (m)
is equal to the Hecke eigenvalue for the Hecke operator Tm for all m ⊂ OF . Moreover, since
f is with the trivial character, the coefficients Cf (m) are known to be real for all m.

A brief account on Hilbert modular forms can be found in a recent work of the authors
[11, Section 1.2] or Trotabas [22, Section 3]. However, for a more detailed exposition on the
topic, the reader is referred to Garrett [9, Chapter 1, 2], Raghuram-Tanabe [18, Section 4],
and Shimura [19, Section 2].

Given two primitive forms f ∈ Sk(OF ) and g ∈ Sk(n), one defines the L-series for the
Rankin-Selberg convolution of f and g as

L(s, f ⊗ g) = ζnF (2s)
∑

m⊂OF

Cf (m)Cg(m)

N(m)s
,

where

ζnF (2s) =
∏
p|n

(1−N(p)−2s)ζF (2s) =
∞∑
d=1

ad(n)

d2s
.

Here, ad(n) represents the number of ideals with norm d that are relatively prime to n.
It follows from the Ramanujan-Petersson bound on the Fourier coefficients of f and g

(proven by Blasius in [2]) that this series converges absolutely for <(s) > 1. We define the
Archimedean part of this L-function as

L∞(s, f ⊗ g) =
n∏
j=1

Γ (s) Γ (s− 1 + kj) ,

and put
Λ(s, f ⊗ g) = (2π)−2sn−kN(d2

Fn)sL∞(s, f ⊗ g)L(s, f ⊗ g).
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Then Λ(s, f ⊗ g) has a meromorphic continuation to C (see Proposition 2.3 below) and
satisfies the functional equation

(2.2) Λ(s, f ⊗ g) = Λ(1− s, f ⊗ g).

Proposition 2.3. (Shimura [19, Proposition 4.13]). The product

L(s, f ⊗ g)L∞(s, f ⊗ g)

has a meromorphic continuation to the whole plane, with possible simple poles at s = 1 and
s = 0. The residue of L(s, f ⊗ g) at s = 1 is

2n−1(4π)kζF (2)Γ(k)−1RF [O×+
F : O×2

F ]−1 〈f ,g〉n

where O×2
F is the group of squares of units in OF .

3. Proof of the main theorem

In this section, we prove Theorem 1.1. To this end, we need good lower and upper
bounds on the first and second moments, respectively, of the central values |L(1

2 , f ⊗g)| for
a fixed g in Πk(n) as f varies in Πk(OF ).

Proposition 3.1. Let g ∈ Πk(n) be a primitive form. As k →∞, we have∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣� k

and

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2 � k logc k,

for some positive integer c.

Proof. The lower bound on the first moment is proven in Section 4. For the upper bound
on the second moment, see Section 6. �

Remark 3.2. Since the Hilbert modular forms under consideration in this paper are not
necessarily of parallel weight, note that we write k → ∞ to mean that max{kj} → ∞ and
min{kj} > M for a fixed constant M .

Assuming Proposition 3.1, we complete the proof of the main theorem. By applying
Cauchy-Schwarz inequality we obtain

k �
∑

f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣�
 ∑

f∈Πk(OF )
L(1/2,f⊗g)6=0

1


1/2 ∑

f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2
1/2

.
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Hence, we get ∑
f∈Πk(OF )

L(1/2,f⊗g)6=0

1� k

logc k
.

4. First Moment

The aim of this section is to prove the first part of Proposition 3.1. More precisely, we
obtain the following lower bound for the first moment,∑

f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣� k.

For f ∈ Πk(OF ), we define the harmonic weight

ωf =
Γ(k − 1)

(4π)k−1|dF |1/2 〈f , f〉OF
,

where dF is the discriminant of F and 〈f , f〉OF is the Petersson inner product on the space

Sk(OF ).
The point of departure in this section is a twisted first moment of the central values

L(1/2, f ⊗ g) where g is fixed in Πk(n). More precisely, we consider the weighted harmonic
sum

(4.1)
∑

f∈Πk(OF )

L

(
1

2
, f ⊗ g

)
ωf .

A standard application of an approximate functional equation and a Petersson trace formula
(see [22, Proposition 6.3]) allows us to express (4.1) as∑

f∈Πk(OF )

L

(
1

2
, f ⊗ g

)
ωf = Mg(k) + Eg(k)

where

(4.2) Mg(k) = 2
∞∑
d=1

ad(n)

d
V1/2

(
4nπ2nd2

N(d2
Fn)

)
and

Eg(k) = 2C
∑
{tν}ν

∑
α∈(t−1

ν )+/O×+
F

Cg(αtν)√
N(αtν)

∞∑
d=1

ad(n)

d
V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)
(4.3)

×
∑
t2µ=tν

c∈t−1
µ \{0}

ε∈O×+
F /O×2

F

K l(εα, tν ; 1,OF ; c, tµ)

N(ctµ)
Jk−1

4π
√
εα
[
tνt
−2
µ

]
|c|

 .
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Here K l(∗) and Jk−1(∗) are respectively the Kloosterman sum and a product of the classical
J-Bessel functions Jkj−1(∗), both of which come from the Petersson trace formula. The
function V1/2(y) originates from the approximate functional equation, and it admits the
following integral representation

(4.4) V1/2(y) =
1

2πi

∫
(3/2)

y−ueu
2L∞(1/2 + u, f ⊗ g)

L∞(1/2, f ⊗ g)

du

u
.

Moreover, it satisfies

(4.5) V1/2(y)�
(

1 +
y

k

)−A
and V1/2(y) = 1 +O

((y
k

)α)
,

where 0 < α ≤ 1 and the implied constants depend on A and α. These estimates follow
from Iwaniec-Kowalski [13, Proposition 5.4]. We mention here that much of this can be
found in a recent work of the authors [11, Section 2.1]. To proceed further, we need the
following estimates.

Lemma 4.6. As k approaches infinity, we have

(1) Mg(k) = γn−1(F ) log(k) + O(1), where γn−1(F ) is twice the residue of ζnF (2u + 1) at
u = 0, and log(k) =

∑n
j=1 log(kj).

(2) Eg(k) = o(1).

The proof of this lemma is found in Section 5. Assuming the lemma for now, we have
that ∑

f∈Πk(OF )

L

(
1

2
, f ⊗ g

)
ωf = γn−1 log k +O(1).

It follows that

(4.7) log k �
∑

f∈Πk(OF )

L

(
1

2
, f ⊗ g

)
ωf �

log k

k

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣ .
Notice that the second inequality in (4.7) requires the following lemma.

Lemma 4.8. For f ∈ Πk(OF ), we have ωf �
log k

k
.

Proof. Applying Proposition 2.3 gives

ωf =
2n+1πζF (2)RF

(k − 1)|dF |1/2|[O×+
F : O×2

F ]Ress=1 L(s, f ⊗ f)
.

By assumption, the Dedekind zeta function of F has no Landau-Siegel zero. We may
then apply [1, Theorem 1] to deduce that L(s, f ⊗ f) = ζF (s)L(s, sym2f) does not admit a
Landau-Siegel zero either. Hence, we get the following lower bound

Res
s=1

L(s, f ⊗ f)� (log k)−1,
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thanks to the ground-breaking work of Hoffstein-Lockhart [12] (namely, Proposition 1.1
therein) and its appendix [10]. Using this bound results in the desired upper bound on
ωf . �

Thus, we conclude that

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣� k,

as claimed in Proposition 3.1.

5. Proof of Lemma 4.6

This section is devoted to proving Lemma 4.6. For the first statement, we only sketch a
proof since the desired asymptotic formula for Mg(k) is established with an argument very
similar to [11, Section 3]. Writing V1/2(y) as in (4.4), we get

Mg(k) =
1

2πi

∫
( 3
2

)

(
4nπ2n

N(d2
Fn)

)−u
eu

2L∞(1/2 + u, f ⊗ g)

L∞(1/2, f ⊗ g)
ζnF (2u+ 1)

du

u
.

Since shifting the contour of integration to <(u) = −1
2 + ε gives

∞∑
d=1

ad(n)

d
V1/2

(
4nπ2nd2

N(d2
Fn)

)
= Res

u=0

((
4nπ2n

N(d2
Fn)

)−u
eu

2L∞(1/2 + u, f ⊗ g)

L∞(1/2, f ⊗ g)

ζnF (2u+ 1)

u

)

+
1

2πi

∫
(− 1

2
+ε)

(
4nπ2n

N(d2
Fn)

)−u
eu

2L∞(1/2 + u, f ⊗ g)

L∞(1/2, f ⊗ g)
ζnF (2u+ 1)

du

u
,

we need only compute the residue at u = 0 and bound the integral. Using Stirling’s
formula, one can estimate that the integral above is O(k−1/2+ε), whereas the residue is
equal to γn−1(F ) log(k) plus an explicit constant that depends only on F and n.

Let us now prove the second statement. First, notice that it suffices to consider the
partial sum Eg,ν(k) given by

Eg,ν(k) = 2C
∑

α∈(t−1
ν )+/O×+

F

Cg(αtν)√
N(αtν)

∞∑
d=1

ad(n)

d
V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)
(5.1)

×
∑

c∈t−1
µ \{0}

K l(α, tν ; 1,OF ; c, tµ)

N(ctµ)
Jk−1

4π
√
α
[
tνt
−2
µ

]
|c|

 ,

for any ideal class representative tν , while fixing an ideal class representative tµ such that
t2µ ∼ tν and ignoring the (finite) sum over ε.
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In the following computations, we use the estimates

(5.2) Jv(x)�
(

ex

2(v + 1)

)M−δ
0 ≤ δ < 1 and δ < M ≤ v,

and

(5.3) Jv(x)� x−
1
2

+ω 0 ≤ ω < 1/2.

Moreover, we need the Weil bound for the Kloosterman sum in the number field setting.
This is given by

(5.4) |Kl(α, n;β,m; c, c)| �F N (((α)n, (β)m, (c)c))
1
2 τ((c)c)N(cc)

1
2 ,

where (a, b, c) is the gcd of the ideals a, b, c, and τ((c)c) = |{I ⊂ OF : (c)cI−1 ⊂ OF }|.
We rewrite Eg,ν(k) as

Eg,ν(k) = 2C
∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)

×
∑

c∈t−1
µ \{0}/O×+

F

∑
η∈O×+

F

K l(α, tν ; 1,OF ; cη−1, tµ)

N(ctµ)
Jk−1

4πη
√
α
[
tνt
−2
µ

]
|c|

 .

Let ε > 0 be given. We may truncate the inner sum

 ∑
α∈(t−1

ν )+/O×+
F

 at N(αtν)� d−2k1+ε

with a very small error. To verify this fact, we consider

E∗g,ν(k) = 2C
∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)

×
∑

c∈t−1
µ \{0}/O×+

F

∑
η∈O×+

F

K l(α, tν ; 1,OF ; cη−1, tµ)

N(ctµ)
Jk−1

4πη
√
α
[
tνt
−2
µ

]
|c|

 .

Applying the first estimate in (4.5) and the Weil bound (5.4), together with the well-known
estimate τ(m)�ε N(m)ε, yields
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E∗g,ν(k)�
∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

|Cg(αtν)|√
N(αtν)

(
k

N(αtν)d2

)A
(5.5)

×


∑

c∈t−1
µ \{0}/O×+

F

|N(ctµ)|�
√

N(αtν)

∑
η∈O×+

F

|N(ctµ)|ε−
1
2

n∏
j=1

∣∣∣∣∣∣Jkj−1

4πηj
√
αj
[
tνt
−2
µ

]
j

|cj |

∣∣∣∣∣∣

+
∑

c∈t−1
µ \{0}/O×+

F

|N(ctµ)|�
√

N(αtν)

∑
η∈O×+

F

|N(ctµ)|ε−
1
2

n∏
j=1

∣∣∣∣∣∣Jkj−1

4πηj
√
αj
[
tνt
−2
µ

]
j

|cj |

∣∣∣∣∣∣
 .

When |N(ctµ)| �
√

N(αtν), we use the estimate (5.3) with ωj = 0 when |ηj | ≥ 1 and ωj = ω
for some fixed ω ∈ (0, 1/2) otherwise. We also observe that, for any a ∈ F , there exists a

totally positive unit u such that N(a)1/n � (au)j � N(a)1/n for all j (see [22, Lemma 2.1]).
It follows that

n∏
j=1

Jkj−1

4πηj
√
αj
[
tνt
−2
µ

]
j

|cj |

� n∏
j=1

ηj
√
αj
[
tνt
−2
µ

]
j

|cj |

−
1
2

+ωj

� |N(ctµ)|
1
2

√
N(αtν)

− 1
2

+ω ∏
|ηj |<1

|ηj |ω.

When |N(ctµ)| �
√

N(αtν), we use the estimate (5.2) with δj being chosen as δj = 0
whenever |ηj | ≤ 1 and δj = δ for some fixed δ ∈ (0, 1) otherwise, and M ≤ minj{kj − 1}.
Once again, we get

n∏
j=1

Jkj−1

4πηj
√
αj
[
tνt
−2
µ

]
j

|cj |

� n∏
j=1

2eπηj
√
αj
[
tνt
−2
µ

]
j

kj |cj |

M
n∏
j=1

2eπηj
√
αj
[
tνt
−2
µ

]
j

kj |cj |

−δj

� kδ−M
√

N(αtν)
M
|N(ctµ)|δ−M

∏
|ηj |>1

|ηj |−δ.

Applying these estimates for the J-Bessel functions in (5.5) allows us to factor out the sums
over totally positive units as∑

η∈O×+
F

∏
|ηj |<1

|ηj |ω and
∑

η∈O×+
F

∏
|ηj |>1

|ηj |−δ.
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These sums are both convergent by virtue of the crucial observation made by Luo in [16,
page 36]. Hence,

E∗g,ν(k)�
∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

|Cg(αtν)|√
N(αtν)

(
k

N(αtν)d2

)A

×


∑

c∈t−1
µ \{0}/O×+

F

|N(ctµ)|�
√

N(αtν)

|N(ctµ)|ε
√

N(αtν)
− 1

2
+ω

+ kδ−M
∑

c∈t−1
µ \{0}/O×+

F

|N(ctµ)|�
√

N(αtν)

|N(ctµ)|δ−M−
1
2

+ε
√

N(αtν)
M

 ,

and therefore,

E∗g,ν(k)� kA
∞∑
d=1

ad(n)

d1+2A

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

√
N(αtν)

ω−2A− 3
2

+ε ∑
c∈t−1

µ \{0}/O×+
F

|N(ctµ)|�
√

N(αtν)

|N(ctµ)|ε

+ kA+δ−M
∞∑
d=1

ad(n)

d1+2A

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

√
N(αtν)

M−2A−1+ε ∑
c∈t−1

µ \{0}/O×+
F

|N(ctµ)|�
√

N(αtν)

|N(ctµ)|δ−M−
1
2

+ε

� k−2018.

Let us now estimate

Emg,ν(k) = 2C

∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)

×
∑

c∈t−1
µ \{0}/O×+

F

∑
η∈O×+

F

K l(α, tν ; 1,OF ; cη−1, tµ)

N(ctµ)
Jk−1

4πη
√
α
[
tνt
−2
µ

]
|c|

 .

To study this sum, we replace the expression Jk−1(∗) by the product of classical J-Bessel
functions given by their Mellin-Barnes integral representation. More precisely, we write

Jk−1

4πη
√
α
[
tνt
−2
µ

]
|c|

 =
n∏
j=1

Jkj−1

4πηj
√
αj
[
tνt
−2
µ

]
j

|cj |

 ,

10



where for each j we have

(5.6) Jkj−1(xj) =

∫
(σj)

Γ
(
kj−1−sj

2

)
Γ
(
kj−1+sj

2 + 1
) (xj

2

)sj
dsj with 0 < σj < kj − 1.

We also express the Kloosterman sum explicitly as follows. For α ∈ t−1
ν and c ∈ t−1

µ ,

the Kloosterman sum Kl(α, tν ; 1,OF ; cη−1, tµ) is given by

K l(α, tν ; 1,OF ; cη−1, tµ) =
∑

x∈(tνd−1
F t−1

µ /tνd
−1
F c)

×

exp

(
2πiTr

(
αx+

[
tνt
−2
µ

]
x

cη−1

))
.

Here x is the unique element in
(
t−1
ν dF tµ/t

−1
ν dF ct

2
µ

)×
such that xx ≡ 1 mod ctµ. The

reader is referred to [22, Section 2.2] for more details on this construction.
Opening up the J-Bessel functions and the Kloosterman sum in Emg,ν(k) yields

Emg,ν(k) = 2C

∞∑
d=1

ad(n)

d

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

) ∑
c∈t−1

µ \{0}/O×+
F

1

N(ctµ)

×
∑

η∈O×+
F

∑
x∈(tνd−1

F t−1
µ /tνd

−1
F c)

×

exp

(
2πiTr

(
αx+

[
tνt
−2
µ

]
x

cη−1

))

×
∫

(σ)

Γ
(
k−1−s

2

)
Γ
(
k−1+s

2 + 1
)
2πη

√
α
[
tνt
−2
µ

]
|c|

s

ds.

We note here that multi-index notation is applied again in the integral representation of the

J-Bessel function. Indeed,

∫
(σ)

ds denotes the multiple integration

∫
(σ1)
· · ·
∫

(σn)
dsn · · · ds1

with σj = σ + δj and δj =

{
0 if ηj ≥ 1

δ0 otherwise
for some fixed σ > 1 and sufficiently small

δ0 > 0. Upon interchanging summations and integration in the expression above, we get

Emg,ν(k) = 2C
∑

η∈O×+
F

∫
(σ)

Γ
(
k−1−s

2

)
Γ
(
k−1+s

2 + 1
) (2πη

√[
tνt
−2
µ

])s ∑
c∈t−1

µ \{0}/O×+
F

1

N(ctµ)|c|s
∞∑
d=1

ad(n)

d

×
∑

x∈(tνd−1
F t−1

µ /tνd
−1
F c)

×

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

αs/2Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)

× exp

(
2πiTr

([
tνt
−2
µ

]
x

cη−1

))
exp

(
2πiTr

(
αx

cη−1

))
ds.

11



Let us now analyze the internal sum

Rg,ν(k; η, s) =
∑

c∈t−1
µ \{0}/O×+

F

1

N(ctµ)|c|s
∞∑
d=1

ad(n)

d

∑
x

∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

αs/2Cg(αtν)√
N(αtν)

×V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)
exp

(
2πiTr

([
tνt
−2
µ

]
x

cη−1

))
exp

(
2πiTr

(
αx

cη−1

))
where the sum

∑
x runs over all x ∈

(
tνd
−1
F t−1

µ /tνd
−1
F c
)×

. Applying Cauchy-Schwarz in-
equality yields

Rg,ν(k; η, s) �
∑

c∈t−1
µ \{0}/O×+

F

1

|N(ctµ)| |c|<s
∞∑
d=1

ad(n)

d

∑
x

∣∣∣∣∣exp

(
2πiTr

([
tνt
−2
µ

]
x

cη−1

))∣∣∣∣∣
2
1/2

×

∑
x

∣∣∣∣∣∣∣∣∣
∑

α∈(t−1
ν )+/O×+

F

N(αtν)�d−2k1+ε

αs/2Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)
exp

(
2πiTr

(
αx

cη−1

))∣∣∣∣∣∣∣∣∣
2

1
2

.

Next, we employ the additive large sieve inequality (see [13, page 178])

∑
d∈Zn/cZn

∣∣∣∣∣∣∣∣
∑
v∈Zn
vj≤X

yv exp

(
2πi

d.v

c

)∣∣∣∣∣∣∣∣
2

� (N(c) +Xn)
∑
v∈Zn
vj≤X

|yv|2.

As a result, we get

Rg,ν(k; η, s) �
∑

c∈t−1
µ \{0}/O×+

F

(|N(ctµ)|+ k1+ε)
1
2

|N(ctµ)|1/2 |c|<s

∞∑
d=1

ad(n)

d

×

 ∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

∣∣∣∣∣αs/2Cg(αtν)√
N(αtν)

V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)∣∣∣∣∣
2


1
2

�
∑

c∈t−1
µ \{0}/O×+

F

(|N(ctµ)|+ k1+ε)
1
2

|N(ctµ)|1/2 |c|<s

∞∑
d=1

ad(n)

d

×

 ∑
α∈(t−1

ν )+/O×+
F

N(αtν)�d−2k1+ε

α<s |Cg(αtν)|2

N(αtν)

∣∣∣∣V1/2

(
4nπ2nN(αtν)d2

N(d2
Fn)

)∣∣∣∣2


1
2

.

12



This can be further majorized by

∑
c∈t−1

µ \{0}/O×+
F

(|N(ctµ)|+ k1+ε)
1
2

|N(ctµ)|1/2 |c|<s

 ∑
α∈(t−1

ν )+/O×+
F

N(αtν)�k1+ε

N(αtν)ε−1+σ+δ0


1
2

� k(1+ε)
σ+δ0+1+ε

2 ,

which allows us to summarize

Emg,ν(k)� k(1+ε)
σ+δ0+1+ε

2

∣∣∣∣∣∣∣
∑

η∈O×+
F

∫
(σ)

Γ
(
k−1−s

2

)
Γ
(
k−1+s

2 + 1
) (2πη

√[
tνt
−2
µ

])s
ds

∣∣∣∣∣∣∣ .
We now write sj = σ + δj + itj . For ease of notation, we put dt = dt1 · · · dtn and δ =
(δ1, . . . , δn). Hence,

Emg,ν(k)� k(1+ε)
σ+δ0+1+ε

2

∑
η∈O×+

F

ησ+δ

∫ ∞
−∞

∣∣∣∣∣ Γ
(
k−1−σ−δ−it

2

)
Γ
(
k−1+σ+δ+it

2 + 1
)∣∣∣∣∣ dt

� k(1+ε)
σ+δ0+1+ε

2

∑
η∈O×+

F

n∏
j=1
ηj<1

ηδ0j

∫ ∞
−∞

∣∣∣∣∣∣
Γ
(
kj−1−σ−δ0−itj

2

)
Γ
(
kj−1+σ+δ0+itj

2 + 1
)
∣∣∣∣∣∣ dtj

×
n∏
j=1
ηj≥1

∫ ∞
−∞

∣∣∣∣∣∣
Γ
(
kj−1−σ−itj

2

)
Γ
(
kj−1+σ+itj

2 + 1
)
∣∣∣∣∣∣ dtj .

Using the estimate
Γ(A+ c+ it)

Γ(A+ it)
� |A+ it|c

for A > 0 and a real constant c with |c| < A/2 (see [8, Lemma 1]), we get

Emg,ν(k)� k(1+ε)
σ+δ0+1+ε

2

∑
η∈O×+

F

n∏
j=1
ηj<1

ηδ0j

∫ ∞
−∞
|kj + 1 + σ + δ0 + itj |−1−σ−δ0 dtj

×
n∏
j=1
ηj≥1

∫ ∞
−∞
|kj + 1 + σ + itj |−1−σ dtj

� k(1+ε)
σ+δ0+1+ε

2
−σ.

By choosing ε and δ0 sufficiently small, we obtain Emg,ν(k) = o(1) as k →∞.
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6. Second Moment

The aim of this section is to prove the second statement in Proposition 3.1; namely,

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2 � k(log k)c.

We apply the Rankin-Selberg unfolding method employed by Blomer [3, pp. 612]. To this
end, we define the Eisenstein series

Eν(z, s) =
∑

(c,d)O×
F

(c,d)∈tνndF×OF

ys

|cz + d|2s
,

for ν = 1, . . . , h and z ∈ hn. Here, the sum is taken over the O×F -equivalence classes of

(c, d) 6= (0, 0) where (c, d) ∼O×
F

(c′, d′) if c′ = ξc and d′ = ξd for some ξ ∈ O×F . This series

is convergent for <(s) > 1. Set

(6.1) E∗ν(z, s) = dsFπ
−nsΓn(s)Eν(z, s).

As a function of s, the completed Eisenstein series E∗ν(z, s) can be continued to a mero-
morphic function on the whole plane with two simple poles at s = 0 and s = 1. Standard
computations (see for example Freitag [7, pp. 170]) yield the following Fourier expansion

E∗ν(z, s) = ysζ∗F,OF (2s) + y1−sN(tνndF )1−2sζ∗F,tνndF (2s− 1)

(6.2)

+ 2ny
1
2

∑
µ∈tνn/O×

F
µ6=0

N((µ)dF )s−
1
2σ1−2s((µ)dF )

n∏
j=1

Ks− 1
2

(2π|µj |yj) exp(2πiTr(µx)),

where ζ∗F,OF and ζ∗F,tνndF are the completed partial Dedekind zeta functions given by

ζ∗F,a(s) = d
s
2
Fπ
−ns

2 Γn
(s

2

)
N(a)s

∑
a∈a/OF
a6=0

N(a)−s.

Since Res
s=1

ζF,OF (s) =
2nRF

wF
√
dF

and lim
s→0

s1−nζF,tνndF (s) = −RF
wF

, we see that the poles at

s = 1/2 from the first and second terms in (6.2) cancel out, and therefore we have

E∗ν

(
z,

1

2

)
= Cy1/2 + 2ny1/2

∑
µ∈tνn/O×

F
µ 6=0

τ((µ)dF )
n∏
j=1

K0(2π|µj |yj) exp(2πiTr(µx)).
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As a result, we obtain the estimate

(6.3) E∗ν

(
z,

1

2

)
� y

1
2

for any z in some fundamental domain for Γν(n)\hn.
For a fixed form g = (g1, . . . , gh), we put vν = vν(z, s) = N(tν)sgν(z)Eν(z, s) and

v = (v1, . . . , vh). Our next goal is to obtain upper and lower bounds for ‖v(z, 1/2)‖2. Using
the definition of inner products given in (2.1), we have

‖v(z, s)‖2 =

h∑
ν=1

‖vν(z, s)‖2 =

h∑
ν=1

1

µ(Γν(n)\hn)

∫
Γν(n)\hn

|vν(z, s)|2yk dµ(z).

We note that the measure µ(Γν(n)\hn) of a fundamental domain for Γν(n)\hn (with respect
to dµ(z)) can be written as

(6.4) µ(Γν(n)\hn) = 2π−nd
3/2
F ζF (2)[O×+

F : O×2
F ]−1N(n)

∏
p|n

(1 + N(p)−1).

It is obvious from (6.4) that µ(Γν(n)\hn) is independent of ν which is why we denote it by
Mn hereafter.

Taking s = 1
2 in the expression above and using (6.3) yield∥∥∥∥v(z, 1

2

)∥∥∥∥2

= M−1
n

h∑
ν=1

|N(tν)|
∫

Γν(n)\hn
|gν(z)|2Eν

(
z,

1

2

)2

ykdµ(z)

�M−1
n

h∑
ν=1

|N(tν)|
∫

Γν(n)\hn
|gν(z)|2y1+ 1

log k ykdµ(z)

�M−1
n

h∑
ν=1

|N(tν)|
∫

Γν(n)\hn
|gν(z)|2Eν

(
z, 1 +

1

log k

)
ykdµ(z).(6.5)

Upon applying the integral representation of the Rankin-Selberg convolution, we see that
(6.5) can be written as

(4π)
− 1

log k
−k

d
−1/2
F M−1

n Γ

(
k +

1

log k

)
L

(
1 +

1

log k
,g ⊗ g

)
.

Note that this follows directly from [19, Eq (4.32) page 670] with very minor adjustments
to account for the fact that the L-function normalization in [19] differs from the one used
in this paper. Next we invoke [4, Theorem 2], which provides upper bounds for a general
class of L-functions at the edge of the critical strip, to get∥∥∥∥v(z, 1

2

)∥∥∥∥2

� (4π)−kΓ

(
k +

1

log k

)
(log k)c1 ,(6.6)
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for some explicit constant c1 that depends only on F .
On the other hand, we apply Bessel’s inequality and the integral representation of the

Rankin-Selberg convolution to obtain

‖v(z, s)‖2 ≥
∑

f∈Πk(OF )

1

‖f‖2
|〈v(z, s), f〉|2

=
∑

f∈Πk(OF )

1

‖f‖2
∣∣∣(4π)n(1−s)−kd

−1/2
F M−1

n Γ(s+ k − 1)L(s, f ⊗ g)
∣∣∣2

= (4π)2n(1−s)−2kd−1
F M−1

n |Γ(s+ k − 1)|2
∑

f∈Πk(OF )

1

‖f‖2
|L(s, f ⊗ g)|2.(6.7)

It follows from (6.7), Proposition 2.3, and [4, Theorem 2] that∥∥∥∥v(z, 1

2

)∥∥∥∥2

� Γ(k − 1/2)2

(4π)kΓ(k)

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2Ress=1
L(s, f ⊗ f)−1

� Γ(k − 1/2)2

(4π)kΓ(k)

∑
f

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2 (log k)−c1 .(6.8)

Applying (6.6), (6.8), and Stirling’s formula yields

∑
f∈Πk(OF )

∣∣∣∣L(1

2
, f ⊗ g

)∣∣∣∣2 � (log k)2c1Γ(k)Γ(k + 1/ log k)

Γ(k − 1/2)2

� k(log k)2c1

as desired.
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