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Abstract. In 2011, M. R. Murty and V. K. Murty [10] proved that if L(s, χD) is the Dirichlet L-series

attached a quadratic character χD, and L′(1, χD) = 0, then eγ is transcendental. This paper investigates
such phenomena in wider collections of L-functions, with a special emphasis on Artin L-functions. Instead

of s = 1, we consider s = 1/2. More precisely, we prove that

exp

(
L′(1/2, χ)

L(1/2, χ)
− αγ

)
is transcendental with some rational number α. In particular, if we have L(1/2, χ) 6= 0 and L′(1/2, χ) = 0

for some Artin L-series, we deduce the transcendence of eγ .

1. Introduction

It is unknown if Euler’s constant γ is rational or irrational. Equally unknown is the nature of the number
eγ . Thus, it is rather striking that in 2011, M. R. Murty and V. K. Murty [10] proved the following curious
theorem. Let K be an imaginary quadratic field and χD its associated quadratic character. If L(s, χD) is
the Dirichlet series associated to χD, then

exp

(
L′(1, χD)

L(1, χD)
− γ
)

and π are algebraically independent. Thus, if L′(1, χD) = 0, then eγ and π are algebraically independent
and in particular eγ is transcendental. It is unknown if there are any quadratic characters χD for which
L′(1, χD) = 0. Presumably not. In [10], the authors show that such L-series are very rare, if they exist.

In this paper, we will prove a related result. Instead of considering Dirichlet L-series attached to quadratic
characters, we look at Artin L-series attached to real characters. While the authors in [10] considered s = 1,
we focus on Artin L-series at s = 1/2. More precisely, we prove the following:

Theorem 1.1. Let L(s, χ,E/F ) be an Artin L-series associated to a real character χ. Suppose that
L(1/2, χ, E/F ) 6= 0. Then,

exp

(
L′(1/2, χ, E/F )

L(1/2, χ, E/F )
− (d+ 2r2)

2
χ(1)γ

)
is transcendental. Here d = r1 + 2r2 is the degree of F over Q.

In particular, if there is a real Artin character χ for which L′(1/2, χ, E/F ) = 0 and L(1/2, χ, E/F ) 6= 0,
then eγ is transcendental.
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We will prove this theorem as a consequence of a more general investigation regarding Dirichlet series
that satisfy functional equations. See Section 2 for the general setting and Section 3 for results on Artin
L-functions.

While our main focus in this paper is the values of derivatives of Dirichlet L-functions at the central point
of symmetry, the same method applies to evaluate the values at other rational points. This will be discussed
in Section 4.

2. Dirichlet L-series

One of the main results in this paper is to state a non-vanishing property of derivatives of L-series at the
central point of symmetry. More precisely we have the following:

Theorem 2.1. Let Φ1(s) =

∞∑
n=1

an
µsn

and Φ2 =

∞∑
n=1

bn
λsn

be two Dirichlet series such that they converge in

some half plane, can be meromorphically continued to the entire complex plane, and satisfy the functional
equation:

(2.2) ∆(s)Φ1(s) = ∆(δ − s)Φ2(δ − s)

where ∆(s) =

l∏
j=1

Γ (αjs+ βj) with αj
δ

2
+βj ∈ Q\Z≤0 and αj 6= 0 for all j. Write αj

δ

2
+βj = nj +

mj

qj
with

(mj , qj) = 1 and 0 ≤ mj ≤ qj − 1. If Φ1(δ/2) and Φ2(δ/2) are both nonzero, then we have the following:

1

2

(
Φ′1
Φ1

+
Φ′2
Φ2

)(
δ

2

)
=

l∑
j=1

αjγ −
∑

j:mj=0

αj

nj−1∑
t=1

1

t

−
∑

j:mj 6=0

αj

nj−1∑
t=0

1

t+mj/qj
− log(2qj) −

π

2
cot

(
πmj

qj

)
+

[qj/2]∑
rj=1

cos

(
2πmjrj
qj

)
log sin

(
πrj
qj

)
where γ is the Euler constant.

It is understood that the summations in the above theorem are defined to be zero where t > nj − 1 for
each j. The result gives interesting corollaries, stated below, regarding the transcendental nature of some
values.

Corollary 2.3. Let Φ1(s) and Φ2(s) be as given in Theorem 2.1. Then

exp

1

2

(
Φ′1
Φ1

+
Φ′2
Φ2

)(
δ

2

)
−

l∑
j=1

αjγ

 = CeAeπ
B
2

∏
j:mj 6=0

[qj/2]∏
rj=1

(
sin

πrj
qj

)−αj cos( 2πmjrj
qj

)
,

where

A := −
∑

j:mj=0

αj

nj−1∑
t=1

1

t
−
∑

j:mj 6=0

αj

nj−1∑
t=0

1

t+mj/qj
, B :=

∑
j:mj 6=0

αj cot

(
πmj

qj

)
, and C :=

∏
j:qj 6=1

(2qj)
αj .

Furthermore, this value is transcendental.

Corollary 2.4. Let ν be an algebraic number and Sν the set of all the pairs of Dirichlet series φ1(s) =∑∞
n=1

an
ns and φ2(s) =

∑∞
n=1

bn
ns such that they can be meromorphically continued to a whole complex planes

and satisfy the functional equation

W sπνs∆(s)φ1(s) = W δ−sπν(δ−s)∆(δ − s)φ2(δ − s),
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where ∆(s) is as given in Theorem 2.1, and W is an algebraic number. Further, assume that φ1 and φ2 do
not vanish at the center of symmetry. Then, there is at most one algebraic element in the setexp

1

2

(
φ′1
φ1

+
φ′2
φ2

)(
δ

2

)
−

l∑
j=1

αjγ

 : (φ1, φ2) ∈ Sν

 .

We conjecture that there is no pair (φ1, φ2) satisfying all the hypothesis in the theorem and that has
a property φ′1(δ/2) = φ′2(δ/2) = 0. Indeed, the first author, with Gun and Rath, proved that no L-series
attached to a cuspform of even weight can hold such a property. The second author showed a similar result
for the L-function attached to an even weight Hilbert cuspform. See [3] and [13] for details. If there is
any such pair in general, then there is an immediate consequence that we obtain a specific expression of eγ

involving known transcendental numbers. This suggests that, even if there are some pairs (φ1, φ2) whose
derivatives vanish at s = δ/2, the number of such pairs must be limited as otherwise we obtain various
expressions for eγ and some of which would easily contradict with each other. We give some examples of
this phenomenon in Section 4.

2.1. Proof of Theorem 2.1. By taking the logarithmic derivative of (2.2) with respect to s and substituting
s = δ/2, we see that

(2.5)

(
Φ′1
Φ1

+
Φ′2
Φ2

)(
δ

2

)
= −2

l∑
j=1

αjψ

(
αj
δ

2
+ βj

)
where ψ(s) is the logarithmic derivative of the gamma function. To proceed further, let us recall some
properties of the digamma function from [11]:

Proposition 2.6. Let ψ(s) be the digamma function, that is the logarithmic derivative of the gamma func-
tion. Then ψ has the following properties, with γ being the Euler constant.

(1) ψ(s+ 1) = ψ(s) +
1

s
(2) ψ(1) = −γ
(3) Let (m, q) = 1 and 1 ≤ m < q. Then,

ψ

(
m

q

)
= −γ − log(2q)− π

2
cot

(
πm

q

)
+

[q/2]∑
r=1

cos

(
2πmr

q

)
log sin

(
πr

q

)
It can be deduced from the above proposition that, at any rational point n + m/q with (m, q) = 1 and

0 ≤ m < q, we have

ψ

(
n+

m

q

)
=

{
ψ
(
m
q

)
+
∑n−1
t=0

1
t+m/q if m 6= 0,

−γ +
∑n−1
t=1

1
t if m = 0.

We note that the summations
∑n−1
t=1 1/t and

∑n−1
t=0 1/(t+ (m/q)) in the above equation are taken to be zero

in case n = 0 and n = 1, respectively.
The desired result is obtained by applying this to each term in (2.5). �

2.2. Proof of Corollary 2.3. The first part is an immediate consequence of Theorem 2.1. To see that the
expression gives a transcendental number, we need Baker’s theorem. (See, for example, [1, Theorem 2.3].)

Lemma 2.7 (Baker). If α1, . . . , αm, β0, β1, . . . , βm are algebraic, and αi (for all i) and β0 are nonzero,
then

eβ0αβ1

1 · · ·αβmm
is transcendental.
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Note that A, B, C, sin(πrj/qj), and cos(2πmjrj/qj) are all algebraic for all j and rj . In particular, A,

C, and sin(πrj/qj) are nonzero. Rewriting eπB/2 as

eπ
B
2 =

(
e−πi

)B
2 i ,

we can apply Baker’s theorem to the right hand side of the expression given in Corollary 2.3 to complete the
proof. �

2.3. Proof of Corollary 2.4. Setting µn = λn = n(Wπν)−1 in Theorem 2.1 and Corollary 2.3, we obtain
that

exp

1

2

(
φ′1
φ1

+
φ′2
φ2

)(
δ

2

)
+ logW 2 + 2ν log π −

l∑
j=1

αjγ

 = CeAeπ
B
2

∏
j,rj

(
sin

πrj
qj

)−αj cos( 2πmjrj
qj

)
,

or equivalently

(2.8) exp

1

2

(
φ′1
φ1

+
φ′2
φ2

)(
δ

2

)
−

l∑
j=1

αjγ

 = CW−2π−2νeAeπ
B
2

∏
j,rj

(
sin

πrj
qj

)−αj cos( 2πmjrj
qj

)
.

If there are two algebraic numbers of this form, their quotient must be also algebraic. This gives a contra-
diction. Indeed, for two such algebraic numbers, if the values corresponding to A in the above equation are

different, their quotient is of the form eβ0αβ1

1 · · ·αβrr , up to algebraic constants, which is transcendental by
Baker’s theorem (Lemma 2.7). In case the values corresponding to A are the same for both pairs of Dirichlet

series, i.e., the quotient of those values is of the form αβ1

1 · · ·αβrr up to algebraic constants, we may apply a
different version of Baker’s theorem shown below. (See [1, Theorem 2.4] for details).

Lemma 2.9 (Baker). Suppose that α1, . . . , αr are algebraic numbers not equal to 0 or 1 and that β1, . . . , βr
are algebraic such that 1, β1, . . . , βr are linearly independent over Q. Then, the product

αβ1

1 · · ·αβrr
is transcendental.

We note that, if the βj ’s are not all linearly independent over Q in our setting, the lemma above still
applies by writing such βj as a linear combination of the others and rearranging the form. This completes
the proof of Corollary 2.4. �

Remark 2.10. Unlike Corollary 2.3, an existence of a pair (φ1, φ2), in Corollary 2.4, with vanishing de-
rivative at the central point does not imply the transcendence of eγ immediately. Instead, applying the same
idea as in the proof of Corollary 2.3 to the equation (2.8), we deduce that eγπ−2ν/α is transcendental, where
α =

∑
j αj.

3. Artin L-functions

We now direct our attention to Artin L-functions. First let us briefly recall the construction of an Artin
L-function L(s, ρ, E/F ) attached to ρ. The details can be found in, for example, Cogdell-Kim-Murty [2] or
Murty [9].

Let E/F be a Galois extension of number fields, and G := Gal(E/F ) its Galois group. Let (ρ, V ) be a
finite dimensional representation of G, and say dimV = n.

Let p be any prime ideal of F and P for a prime ideal of E lying above p.
We write σP for the Frobenius automorphism for P so that

σP(x) ≡ xN(p) mod P
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for all x in OE . Then, the Artin L-function L(s, ρ, E/F ) attached to ρ is defined as

L(s, ρ, E/F ) =
∏
p<∞

det(I −N(p)−sρ(σP)|V IP )−1

where IP is the inertia group for P, i.e.,

IP = {τ ∈ G : τ(x) ≡ x mod P ∀x ∈ OE},
and p runs through all the prime ideals of F . Note that the right hand side of the equation defining
L(s, ρ, E/F ) does not depend on the choice of P because all σP’s are conjugate in G as long as P lies above
p. Therefore, we may replace ρ with any class function of G, or in particular, with a character χ = χρ
associated to ρ. We also denote this L-function as L(s, χ,E/F ).

We now define the local factors at archimedean places, and complete the L-function L(s, χ,E/F ). The
decomposition group DP at an archimedean place P is given as

DP =

{
{1} if EP = Fp

{1, ωP} if EP = C and Fp = R.

For P such that Fp = R, put n+p = dimV ρ(ωP) and n−p = n− n+p . (Recall that n = dimV .) Then, the local
L-factor at each archimedean place p is defined to be

(3.1) Lp(s, χp) =

{
π−n(s+1/2)

(
Γ
(
s
2

)
Γ
(
s+1
2

))n
ifFp = C,(

π−s/2Γ
(
s
2

))n+
p
(
π−(s+1)/2Γ

(
s+1
2

))n−
p ifFp = R,

and the completed Artin L-function is

(3.2) Λ(s, χ) := A(χ)s/2L(s, χ,E/F )
∏
p|∞

Lp(s, χp)

with the constant A(χ) given by

A(χ) = |DF |nN(f(χ)).

Here, DF is the discriminant of F and f(χ) is the Artin conductor. The completed L-function satisfies the
following functional equation:

(3.3) Λ(s, χ) = W (χ)Λ(1− s, χ)

where W (χ) is the Artin root number, which is a complex number with absolute value 1.
Let us put degF/Q = d = r1 + 2r2, where r1 and 2r2 are the numbers of real and complex embeddings

of F , respectively. Then the equation (3.2) can be written as

(3.4) Λ(s, χ) = A(χ)s/2L(s, χ,E/F )π−
s
2 (a+b)−

b
2 Γ
(s

2

)a
Γ

(
s+ 1

2

)b
,

where a = 2nr2 +
∑

p: real n
+
p and b = 2nr2 +

∑
p: real n

−
p . An Artin L-function of this form is said to be of

Hodge type (a, b). Now we restate Theorem 1.1:

Theorem 3.5. Let E/F be a Galois extension of number fields, and (ρ, V ) a finite dimensional representation
of the Galois group G := Gal(E/F ). If the Artin L-function L(s, χ,E/F ) associated to the character χ = χρ
is of the Hodge type (a, b) and if both L(1/2, χ, E/F ) and L(1/2, χ, E/F ) are nonzero, then we have the
following property:

exp

(
L′
(
1
2 , χ, E/F

)
L
(
1
2 , χ, E/F

) +
L′
(
1
2 , χ, E/F

)
L
(
1
2 , χ, E/F

) − (a+ b)γ

)
= A(χ)−1(8π)a+be

π
2 (a−b),

where γ is the Euler constant. In particular, this value is transcendental.
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Furthermore, if L′(1/2, χ, E/F ) and L′(1/2, χ, E/F ) both vanish for some character χ, then eγ is tran-
scendental.

We note that a + b = n(d + 2r2), and thus the statement of Theorem 3.5 is consistent with that of
Theorem 1.1. This theorem has interesting corollaries:

Corollary 3.6. Let (ρ, V ) be a finite dimensional representation of G := Gal(E/F ), and L(s, χρ, E/F ) its
associated Artin L-function. For any L(s, χ,E/F ) satisfying the properties

(3.7) L(1/2, χρ,i, E/F ) 6= 0 and L′(1/2, χρ,i, E/F ) = 0,

with χρ,1 = χρ and χρ,2 = χρ, the value A(χ)1/(a+b) coincide where (a, b) is the Hodge type of the L-function.

In particular, we find some remarkable relations between the non-vanishing of the derivative and the root
discriminants if we restrict the representation ρ to be trivial, and take a totally real number field F as the
base field:

Corollary 3.8. Suppose F is a totally real number field such that its associated Dedekind zeta function
ζF (s) has the properties that ζF (1/2) 6= 0 and ζ ′F (1/2) = 0. The root discriminants rdF for any such field
F coincide.

This follows immediately from Corollary 3.6, as a + b simply represents the extension degree of F and
A(χ) = |DF |. A further observation can be made as follows:

Corollary 3.9. There are at most finitely many Dedekind zeta functions ζF satisfying ζF (1/2) 6= 0 and
ζ ′F (1/2) = 0 if the base field F is totally real and an abelian extension over Q.

Corollary 3.10. There are at most finitely many zeta functions ζF such that ζF (1/2) 6= 0 and ζ ′F (1/2) = 0
if F/Q is totally real and solvable with a fixed length.

The rest of this section is devoted to proving all the statements claimed above.

3.1. Proof of Theorem 3.5. Equations (3.3) and (3.4) give a functional equation;

L(s, χ,E/F )Γ
(s

2

)a
Γ

(
s+ 1

2

)b
= W (χ)A(χ)1/2−sπs(a+b)−

a+b
2 L(1− s, χ,E/F )Γ

(
1− s

2

)a
Γ

(
2− s

2

)b
.

Taking the logarithmic derivatives of this equation with respect to s and evaluating it at s = 1/2, we see
that

(3.11)
L′(1/2, χ, E/F )

L(1/2, χ, E/F )
+
L′(1/2, χ, E/F )

L(1/2, χ, E/F )
= − logA(χ) + (a+ b) log π − aψ

(
1

4

)
− bψ

(
3

4

)
.

It follows from the third statement in Proposition 2.6 that

ψ

(
1

4

)
= −γ − 3 log 2− π

2
, and ψ

(
3

4

)
= −γ − 3 log 2 +

π

2
,

and thus the equation (3.11) can be written as

(3.12)
L′(1/2, χ, E/F )

L(1/2, χ, E/F )
+
L′(1/2, χ, E/F )

L(1/2, χ, E/F )
= − logA(χ) + (a+ b) log(8π) + (a+ b)γ +

π

2
(a− b).

The desired result is obtained by exponentiating the equation (3.12). Furthermore, the value

A(χ)−1(8π)a+be
π
2 (a−b)

is transcendental because π and eπ are algebraically independent over Q. That is due to a result of
Nesterenko [12]. �
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3.2. Proof of Corollary 3.6. Suppose L(s, χ1, E1/F1) and L(s, χ2, E2/F2) both satisfy the properties (3.7)
and we write their Hodge types as (ai, bi) for i = 1, 2, respectively. Then Theorem 3.5 says that, for each
χi,

e(ai+bi)γ = A(χi)(8π)−(ai+bi)e−
π
2 (ai−bi),

and so the value

A(χi)
1/(ai+bi)(8π)−1 exp

(
−π

2

ai − bi
ai + bi

)
coincides, and the value equals eγ . Equivalently, we have that

A(χ1)1/(a1+b1)A(χ2)−1/(a2+b2) = exp

(
π

2

(
a1 − b1
a1 + b1

− a2 − b2
a2 + b2

))
.

The left hand side being an algebraic value, it forces the exponent on the right hand side to be zero, which
gives that

A(χ1)1/(a1+b1) = A(χ2)1/(a2+b2)

as claimed. �

3.3. Proof of Corollaries 3.9 and 3.10. For an abelian extension F/Q, the lower bound of the root
discriminant rdF tends to infinity as the extension degree increases. More precisely, we quote the following
lemma from Murty [8]:

Lemma 3.13. [8, Corollary 2] For any abelian extension F/Q of degree d and discriminant DF ,

1

d
log |DF | ≥

1

2
log d.

Hence there is an upper bound for the extension degree where fields share the same root discriminant.
Together with the Hermite Theorem stated below, the proof of Corollary 3.9 is completed.

Lemma 3.14 (Hermite). Let S be a finite set of primes. The set of algebraic number fields of degree n that
are unramified outside S (that is, any prime dividing the discriminant dF is in S) is finite.

We note that reader can refe to [5, pp 273 - 278] for a complete proof of the Hermite Theorem.
Corollary 3.10 follows immediately from the following lemma by taking K = Q:

Lemma 3.15. [6, Theorem 1] Fix a number field K. For any positive integer k and positive real number N ,
the following set Yk,N,K is finite:

Yk,N,K := {L : L/Q is finite, L/K is solvable with length k, rdL ≤ N} .

�
We note that it is known that there are infinitely many number fields with bounded root discriminants

if the extension F/Q is either unramified or tamely ramified. See Martinet [7] for the case of unramified
extensions and Hajir and Maire [4] for tamely ramified extensions.

�

4. Concluding Remarks

It was suggested in Section 2 that not too many pairs (φ1, φ2) have their derivatives vanishing at the
central point of symmetry, under the condition that φ1 and φ2 themselves do not vanish at the point. For
example, we compare Artin L-series studied in Section 3 with L-functions attached to a Hilbert cusp form.
The second author proved a non-vanishing result for the derivatives of L-functions attached a primitive
Hilbert cusp form. More precisely, she proved:
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Theorem 4.1. ([13, Theorem 1.1]). Let 2k = (2k1, . . . , 2kn) be an n-tuple of even integers with kj ≥ 2, and
put k0 = maxj{kj} . For a primitive Hilbert cusp form f of weight 2k with trivial character, if L(k0, f) 6= 0,
then L′(k0, f) 6= 0.

We are doubtful that the above theorem fails when kj = 1 is allowed, but it is not yet proven. If
L′(k0, f) = 0 for some f under this condition, then it can be seen from [13, Equation (3.1)] that

(4.2) eγ = W1 · π−1eA

with an algebraic numberW1 andA =

n∑
j=1

kj−1∑
m=1

1/m. On the other hand, if L′(1/2, χ, E/F ) = L′(1/2, χ, E/F ) =

0 for some χ, then Theorem 3.5 suggests that

(4.3) eγ = W2 · π−1eB

where W2 is algebraic and B =
π

2
· a− b
a+ b

. They cannot hold simultaneously unless W1 = W2 and A = B = 0.

In particular, it claims that, if they both vanish simultaneously, then eγπ is algebraic. The nature of the
number eγπ is still mostly unknown, but its algebraicity is unlikely.

Also, it is worthwhile to mention that, if there exists an even weight primitive Hilbert cusp form f such
that L(k0, f) 6= 0 and L′(k0, f) = 0, then eγ is transcendental under the assumption that the Schanuel’s
conjecture is true. (The conjecture need not be assumed in case kj = 1 for all j.) We now recall the
conjecture.

Conjecture 4.4 (Schanuel). For any set of complex numbers, z1, . . . , zn, that are linearly independent over
Q, the transcendental degree of the field Q(z1, . . . , zn, e

z1 , . . . , ezn) over Q is at least n.

Indeed, if Schanuel’s conjecture is true, then e and π are algebraically independent because

tr.degQ(e, π) = tr.degQ(1, πi, e, eπi) ≥ 2.

Thus, the transcendence of eγ follows from (4.2) (modulo Schanuel’s conjecture).

At the end, we remark that the same method is applicable to evaluate the logarithmic derivative of L-
functions not only at a central point of symmetry but also at any rational points a/q except where αja/q+βj
and αj(δ − a/q) + βj are non-positive integers. Let us see this in the case of Artin L-functions. Using the
functional equation of the Artin L-function given in equations (3.3) and (3.4), its logarithmic derivative can
be written as follows:

L′(s, χ,E/F )

L(s, χ,E/F )
+
L′(1− s, χ,E/F )

L(1− s, χ,E/F )

= − logA(χ) + (a+ b) log π − a

2

(
ψ
(s

2

)
+ ψ

(
1− s

2

))
− b

2

(
ψ

(
s+ 1

2

)
+ ψ

(
2− s

2

))
.(4.5)

For any rational point in the interval (0, 1), the right hand side of the above equation is easily evaluated by
applying the properties of digamma functions described in Proposition 2.6. If a point is taken outside of the
interval (0, 1) which ought to be non-integer, then we apply a functional equation of the digamma function:

ψ(1− x)− ψ(x) = π cot(πx)

accordingly. For instance, let us put s = m/q and suppose m/q > 0. Then, Proposition 2.6 applies to ψ(s/2)
and ψ((s+ 1)/2) directly. The other terms are written as:

ψ

(
1− m

2q

)
= ψ

(
m

2q

)
+ π cot

(
πm

2q

)
,
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and

ψ

(
1

2
− m

2q

)
= ψ

(
1−

(
1

2
+
m

2q

))
= ψ

(
1

2
+
m

2q

)
+ π cot

(
π

2
+
πm

2q

)
.

Therefore, inserting these in to equation (4.5), we obtain that

L′(m/q, χ,E/F )

L(m/q, χ,E/F )
+
L′(1−m/q, χ,E/F )

L(1−m/q, χ,E/F )

= − logA(χ) + (a+ b) log π − a+ b

2

(
ψ

(
m

2q

)
+ ψ

(
1

2
+
m

2q

))
+ π

(
cot

(
πm

2q

)
− tan

(
πm

2q

))
.

Applying Proposition 2.6 to the terms of ψ in the above, it will be of interest to investigate the possible
transcendence of special values of these L-functions.
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