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Abstract. This article is to show a non-vanishing property of the derivative of certain L-functions. For
certain primitive holomorphic Hilbert modular forms, if the central critical value of the standard L-function
does not vanish, then neither does its derivative. This is a generalization of a result by Gun, Murty and
Rath in the case of elliptic modular forms. Some applications in transcendental number theory deduced
from this result are discussed as well.

1. Introduction

Gun, Murty, and Rath proved a non-vanishing property of the derivative of the L-function of an elliptic
modular cusp form at the center of symmetry. (See [1, Theorem 4.1].) The aim of this paper is to generalize
their result to Hilbert modular forms. A precise statement of our theorem is as follows:

Theorem 1.1. Let f be a holomorphic Hilbert modular cusp form of weight k = (k1, · · · , kn), level n, with
trivial character, over a totally real number field F of degree n. Assume that f is primitive, and the weight

satisfies the following conditions: kj ≥ 4 for all j and k1 ≡ · · · ≡ kn ≡ 0 mod 2. Let k0 = max(k1, . . . , kn).
If Lf (k0/2, f) 6= 0, then

L′
f (k0/2, f)

Lf (k0/2, f)
= −

logN(nD2)

2
+ n log(2π)−

n
∑

j=1

ψ

(

kj
2

)

,

where D is the different ideal of F , and ψ is the logarithmic derivative of the gamma function. Furthermore,

L′
f (k0/2, f) 6= 0, i.e., if the central critical value is nonzero then so is the derivative at the center of symmetry.

The theorem is proven in Section 3. Some definitions and basic properties of Hilbert modular forms that
are needed in the proof are introduced in 2.2, and of their L-functions in 2.3. These settings are adopted from
Shimura [3]. The necessity of the hypotheses on the weight k = (k1, · · · , kn) are stated in Remark 3.4 and
3.5. The theorem leads us to some applications in transcendental number theory, as in [1]. See Corollary 3.2
and 3.3.

Acknowledgement: The author is grateful to A. Raghuram for valuable suggestions.

2. Preliminaries

2.1. Notations. Throughout this paper, let F be a totally real number field of degree n, O the ring of inte-
gers in F , and η = (η1, · · · , ηn) the real embeddings of F with a fixed order of {ηj}. Any element α in F can
be viewed as an element of Rn with this embedding, and we write (α1, · · · , αn) to mean (η1(α), · · · , ηn(α)).
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Let Fp be a completion of F at each place p, and AF the adèle ring of F . Note that it is the restricted
direct product of Fp with respect to Op, where Fp is the completion of F at p, and Op is the ring of integers
of Fp. For each non-archimedean place p, define an open-compact subgroup Kp(n) of GL2(Fp) as

(2.1) Kp(n) :=

{(

a b
c d

)

∈ GL2(Fp) :
aOp + np = Op, b ∈ D−1

p ,
c ∈ npDp, d ∈ Op, ad− bc ∈ O×

p

}

,

where Dp = DOp, and similarly np = nOp. We also write

K◦(n) :=
∏

p<∞

Kp(n).

Let h be the narrow class number, and {tν}
h
ν=1 a set of representatives of the narrow class group where

the archimedean part tν,∞ of each tν is 1. Then, GL2(AF ) can be decomposed as

(2.2) GL2(AF ) = ∪h
ν=1GL2(F )x

−ι
ν

(

GL+
2 (F∞)K◦(n)

)

(a disjoint union),

with x−ι
ν :=

(

t−1
ν

1

)

.

For a fixed integral ideal n of F and for each ν, we also define a congruence subgroup Γν(n) of GL2(F ) as

Γν(n) =

{(

a t−1
ν b

tνc d

)

:
a ∈ O, b ∈ D−1,
c ∈ nD d ∈ O ad− bc ∈ O×

}

.

2.2. Hilbert modular forms. Let k = (k1, · · · , kn) ∈ Zn. For a holomorphic function f on hn and an
element γ = (γ1, · · · , γn) in GL2(R)

n, define

f ||kγ(z) =
∏

i

det γ
ki/2
i j(γi, zi)

−kif(γz),

with j

((

a b
c d

)

, z

)

= cz + d

By a holomorphic Hilbert modular form f = (f1, · · · , fh) of weight k = (k1, · · · , kn), level n, and with
trivial character, we mean that f is a function on GL2(AF ) defined as

f(g) = f(γx−ι
ν g∞k◦) = (fν ||kg∞)(i),

where g = γx−ι
ν g∞k◦ in the decomposition given in (2.2), and each fν is a holomorphic function on hn and

at all cusps, and satisfies the automorphy condition, fν ||kγ = f , for γ ∈ Γν(n). Such a function fν has a
Fourier expansion given as

fν(z) =
∑

0≪ξ∈tνO, or ξ=0

aν(ξ)e
2πiξz ,

where e2πiξz = exp
(

2πi
∑n

j=1 ξjzj

)

. If the constant term of fν||kγ in its Fourier expansion is 0, for any γ

in GL+
2 (F ), then fν is called a cusp form. A holomorphic Hilbert modular form f is called a cusp form if fν

is a cusp form for all ν.
Let m be an integral ideal in F . Then it can be uniquely written as m = t−1

ν ξO where ξ is a totally positive
element in tνO. Let C(m, f) = aν(ξ)ξ

−k/2N(m)k0/2, with k0 = max(k1, . . . , kn). We say f is normalized if
C(O, f) = 1. If f is a common eigenfunction of Hecke operators Tm, its eigenvalue is C(m, f)/C(O, f). In
particular, the eigenvalue is C(m, f) if f is normalized.

Proposition 2.3 (Shimura, [3]). Let f be a holomorphic Hilbert modular form of weight k, level n, with

trivial character. If f is an eigenfunction of Tm, for an ideal m prime to n, with its eigenvalue λ(m), then

λ(m) = λ(m), i.e., λ(m) is real.
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We also define f |Jn as follows: For each ν, pick a totally positive element qν . There exists a unique index

λ so that tνtλOnD2 = qνO. Put βν =

(

1
−qν

)

, and f ′
λ = (−1)kfν ||kβν . Then f |Jn is defined to be

f |Jn = (f ′
1, · · · , f

′
h). Then f |Jn has the same weight and level as f . Furthermore, we have the following:

Proposition 2.4 (Shimura, [3]). Let f be a primitive form with conductor n. Then f |Jn is a nonzero constant

times the complex conjugation of f .

2.3. L-functions of Hilbert modular forms. Let f be a holomorphic Hilbert modular form of weight
k = (k1, · · · , kn) and level n. The finite L-function attached to f is defined to be

Lf(s, f) =
∑

m; integral

C(m, f)

N(m)s
.

Define the completed L-function as

L(s, f) = N(nD2)s/2(2π)−ns
n
∏

j=1

Γ

(

s−
k0 − kj

2

)

Lf(s, f).

It converges for ℜ(s) ≫ 0, and has an analytic continuation to C. The completed L-function satisfies the
functional equation:

(2.5) L(s, f) = i
∑

kjL(k0 − s, f |Jn).

3. Proof of Theorem 1.1

Gun, Murty, and Rath proved the case n = 1 in [1, Theorem 4.1]. So we assume that n ≥ 2.
Let f be a normalized common eigenform for Tm. Then, as given in 2.2, the eigenvalue for Tm is C(m, f).

Moreover, it is real by Proposition 2.3. It follows by Proposition 2.4, that f |Jn = c · f with some constant c.
Therefore, the finite L-function attached to f |Jn, i.e., attached to c · f is:

Lf (s, f |Jn) = Lf (s, cf) =
∑ c · C(m, f)

N(m)s
= cLf(s, f).

The functional equation given in (2.5) can be written as

N(nD2)s/2(2π)−ns
n
∏

j=1

Γ

(

s−
k0 − kj

2

)

Lf (s, f) = c·i
∑

kjN(nD2)(k0−s)/2(2π)−n(k0−s)
n
∏

j=1

Γ

(

k0 + kj

2
− s

)

Lf (k0−s, f).

Taking the logarithmic derivative on both sides with respect to s, one has

log N(nD2)

2
−n log(2π)+

n
∑

j=1

ψ

(

s−
k0 − kj

2

)

+
L′

f (s, f)

Lf (s, f)
= −

log N(nD2)

2
+n log(2π)−

n
∑

j=1

ψ

(

k0 + kj

2
− s

)

−

L′

f (k0 − s, f)

Lf (k0 − s, f)
.

The first part of the theorem is obtained by letting s = k0/2.

To show the second part, let us first note that ψ(k) = Hk−1−γ where Hk−1 :=
∑k−1

m=1 1/m is the (k−1)-th
harmonic number, and γ is the Euler’s constant. So if L′

f (k0/2, f) = 0, one has

(3.1) n (γ + log(2π)) =
1

2
logN(n) + log(dF ) +

n
∑

j=1

Hkj/2−1,

where dF is the discriminant of F . By our assumption on kj ’s, min{
∑

jHkj/2−1} = n that is attained when
all the kj ’s are 4. Using this and the Minkowski bound:

|dF | ≥
n2n

(n!)2
,
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we see that 2n log(n)− 2 log(n!) + n is a lower bound of the right hand side of the equation (3.1). But, for
n ≥ 7, this value is larger than n (γ + log(2π)) which is bounded above by 2.4151n. Hence (3.1) cannot be
attained.

Now, we only need to check when n ≤ 6. The table below shows the minimal discriminant of each degree
extension; see Voight [4, Table 3].

n 2 3 4 5 6
minimal dF 5 49 725 14641 300125

Applying each minimal dF in (3.1) for n ≥ 4, one can check that the right hand side exceeds the left hand
side for any weight and level, as long as all the kj ’s are at least 4.

If n = 2 or 3, one needs to examine several cases. Without loss of generality, let us assume that ki ≤ ki+1.
If n = 3 and the weight is at least k = (4, 4, 6), the right hand side of (3.1) exceeds the left hand side for
any level and any discriminant. So the only remaining case is k = (4, 4, 4). But it can be easily verified that
the equality in (3.1) never be satisfied. Checking the case n = 2 similarly completes the proof for the second
part of the theorem.

Corollary 3.2. Suppose that f satisfies all the conditions given in Theorem 1.1. Then

exp





L′
f(k0/2, f)

Lf(k0/2, f)
+

n
∑

j=1

ψ

(

kj
2

)





is transcendental.

Proof. This follows from the first part of Theorem 1.1:

exp





L′
f (k0/2, f)

Lf (k0/2, f)
+

n
∑

j=1

ψ

(

kj
2

)



 = exp

(

n log(2π)−
logN(nD2)

2

)

=
(2π)n

N(nD2)1/2
,

which is transcendental. �

Corollary 3.3. Fix k = (k1, · · · , kn) with kj ≡ 0 mod 2 for all j, and let Sk be the set of all primitive

Hilbert cusp forms f of weight k that satisfy Lf(k0/2, f) 6= 0. Then there is at most one algebraic element in

the set
{

L′
f (k0/2, f)

Lf (k0/2, f)
: f ∈ Sk

}

.

Proof. The first part of Theorem 1.1 shows that the logarithmic derivatives of the finite L-functions at k0/2
give the same value if two cusp forms have the same level. Suppose that there are two cusp forms f and g,
with different levels n and m respectively, and that L′

f(k0/2, f)/Lf(k0/2, f) and L
′
f (k0/2,g)/Lf(k0/2,g) are

both algebraic. But then
L′
f (k0/2, f)

Lf (k0/2, f)
−
L′
f (k0/2,g)

Lf (k0/2,g)
=

1

2
log

(

N(mD2)

N(nD2)

)

must be also algebraic, which is a contradiction. �

Remark 3.4. The parity condition of the weight, k1 ≡ · · · ≡ kn mod 2, makes f a Hilbert modular form
of algebraic type. Under this condition, any integer m with (k0 − k0)/2 < m < (k0 + k0)/2 is a critical point
of the (finite) L-function attached to f , where k0 = min(k1, . . . , kn). In particular, if k1 ≡ · · · ≡ kn ≡ 0
mod 2, then k0/2 is a critical point for Lf(s, f). (See [2, Theorem 1.4].)

Remark 3.5. When the condition kj ≥ 4 for all j is not satisfied, the first part of the theorem still holds.
However, a difficulty arises to prove the second part, as the right hand side of (3.1) does not give a good
bound. For example, if k1 = · · · = kn = 2, one needs to show that n(γ + log(2π)) = 1/2 logN(n) + log(dF )
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cannot hold. One way to show this is to prove that eγπ is transcendental, which to the best of our knowledge
seems to be unknown.

It should be also noted that in case the degree n of F is large enough, and kj ≥ 4 for enough j’s (but not
necessarily all of them), the non-vanishing of L′

f (k0/2, f) can be shown in the same way.
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