

Charged particles (Dec 2025)

This .pdf file generated January 16, 2026.

In these notes, we use the mostly minus metric $\eta_{00} = 1$. (Feynman, Jackson, Dirac, Gross notes)

1 Charged relativistic particles

1.1 Noncovariant Lagrangian approach

The action for a charged relativistic particle in an external electromagnetic field is [Goldstein (1e) 19, 207; (2e) 23, 322; Jackson (2e), 574; Tong: Classical Dynamics, 36]

$$\begin{aligned}
S &= \int (-md\tau - qA_\mu dx^\mu) \\
&= \int \left(-m\sqrt{\eta_{\mu\nu} dx^\mu dx^\nu} - qA_\mu dx^\mu \right) \\
&= \int dt \left(-m\sqrt{1 - \left(\frac{d\mathbf{x}}{dt}\right)^2} - qA^0 + q\mathbf{A} \cdot \frac{d\mathbf{x}}{dt} \right) \\
&= \int dt L
\end{aligned} \tag{1.1}$$

Under a gauge transformation $A_\mu \rightarrow A_\mu + \partial_\mu \chi$, one has $L \rightarrow L - q(d\chi/dt)$ so S is gauge invariant. The canonical momentum is

$$\mathbf{p} = \frac{\partial L}{\partial(d\mathbf{x}/dt)} = \boldsymbol{\pi} + q\mathbf{A} \tag{1.2}$$

where $\boldsymbol{\pi}$ is the (relativistic) mechanical momentum

$$\boldsymbol{\pi} = \frac{m(d\mathbf{x}/dt)}{\sqrt{1 - (d\mathbf{x}/dt)^2}} \tag{1.3}$$

While $\boldsymbol{\pi}$ is gauge-invariant, \mathbf{p} is not. The Euler-Lagrange equation is

$$\frac{d\mathbf{p}}{dt} = \frac{d}{dt}(\boldsymbol{\pi} + q\mathbf{A}) = -q\nabla A^0 + q\nabla \left(\mathbf{A} \cdot \frac{d\mathbf{x}}{dt} \right) \tag{1.4}$$

that is

$$\begin{aligned}
\frac{d\pi^i}{dt} + q\partial_0 A^i + q\partial_j A^i \frac{dx^j}{dt} &= -q\partial_i A^0 + q\partial_i A^j \frac{dx^j}{dt} \\
\frac{d\pi^i}{dt} &= q(-\partial_i A^0 - \partial_0 A^i) + q(\partial_i A^j - \partial_j A^i) \frac{dx^j}{dt}
\end{aligned} \tag{1.5}$$

Defining

$$\mathbf{E} = -\nabla A^0 - \frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B} = \nabla \times \mathbf{A} \quad (1.6)$$

we have

$$\epsilon^{ijk} B^k = \epsilon^{ijk} \epsilon^{klm} \partial_l A^m = \partial_i A^j - \partial_j A^i \quad (1.7)$$

so that

$$\frac{d\boldsymbol{\pi}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \quad (1.8)$$

We define the “relativistic mass” (actually the kinetic plus rest energy) [Messiah, p. 883]

$$\pi^0 = \frac{m}{\sqrt{1 - (d\mathbf{x}/dt)^2}} \quad (1.9)$$

and the mechanical four-momentum

$$\pi^\mu = (\pi^0, \boldsymbol{\pi}) \quad \Rightarrow \quad \pi^\mu \pi_\mu = m^2 \quad (1.10)$$

which is gauge invariant, but not conserved. Since

$$\frac{\boldsymbol{\pi}}{\pi^0} = \frac{d\mathbf{x}}{dt} \quad (1.11)$$

we have

$$\begin{aligned} \pi^0 \frac{d\pi^0}{dt} &= \boldsymbol{\pi} \cdot \frac{d\boldsymbol{\pi}}{dt} \\ \frac{d\pi^0}{dt} &= \mathbf{v} \cdot \frac{d\boldsymbol{\pi}}{dt} \\ &= q\mathbf{v} \cdot \mathbf{E} \\ &= q(-\partial_i A^0 - \partial_0 A^i) \frac{dx^i}{dt} \end{aligned} \quad (1.12)$$

We rewrite eqs. (??) and (??) as

$$\begin{aligned} \frac{d\pi^i}{d\tau} &= q(\partial^i A^0 - \partial^0 A^i) \frac{dx_0}{d\tau} + q(\partial^i A^j - \partial^j A^i) \frac{dx_j}{d\tau} \\ \frac{d\pi^0}{d\tau} &= q(-\partial^i A^0 + \partial^0 A^i) \frac{dx_i}{d\tau} \end{aligned} \quad (1.13)$$

or more compactly

$$\frac{d\pi^\mu}{d\tau} = qF^{\mu\nu} \frac{dx_\nu}{d\tau} \quad (1.14)$$

Since $\pi^\mu = m(dx^\mu/d\tau)$, this is just

$$m \frac{d^2 x^\mu}{d\tau^2} = qF^{\mu\nu} \frac{dx_\nu}{d\tau} \quad (1.15)$$

1.2 Conservation of energy

The energy of the particle is defined as

$$\begin{aligned}
h &= \mathbf{p} \cdot \frac{d\mathbf{x}}{dt} - L \\
&= \boldsymbol{\pi} \cdot \frac{d\mathbf{x}}{dt} + q\mathbf{A} \cdot \frac{d\mathbf{x}}{dt} - \left(-m\sqrt{1 - \left(\frac{d\mathbf{x}}{dt}\right)^2} - qA^0 + q\mathbf{A} \cdot \frac{d\mathbf{x}}{dt} \right) \\
&= \frac{m(d\mathbf{x}/dt)^2}{\sqrt{1 - (d\mathbf{x}/dt)^2}} + m\sqrt{1 - \left(\frac{d\mathbf{x}}{dt}\right)^2} + qA^0 \\
&= \frac{m}{\sqrt{1 - (d\mathbf{x}/dt)^2}} + qA^0 \\
&= \pi^0 + qA^0
\end{aligned} \tag{1.16}$$

Thus h is the sum of the kinetic plus rest energy π^0 and the potential energy qA^0 of the particle. Observe that

$$\begin{aligned}
\frac{dh}{dt} &= \frac{d\pi^0}{dt} + q\frac{dA^0}{dt} \\
&= q(-\partial_i A^0 - \partial_0 A^i) \frac{dx^i}{dt} + q \left(\partial_0 A^0 + \partial_i A^0 \frac{dx^i}{dt} \right) \\
&= q\partial_0 \left(A^0 - A^i \frac{dx^i}{dt} \right) \\
&= -\frac{\partial L}{\partial t}
\end{aligned} \tag{1.17}$$

which is just Euler's second equation

$$\frac{dh}{dt} + \frac{\partial L}{\partial t} = 0 \tag{1.18}$$

Thus the energy h of the particle is conserved if L does not depend explicitly on time.

We can define h as the fourth component of the canonical four-momentum so that

$$\begin{aligned}
p^\mu &= (h, \mathbf{p}) \\
&= \pi^\mu + qA^\mu
\end{aligned} \tag{1.19}$$

which is not gauge invariant.

1.3 Hamiltonian approach

Inverting the equation for mechanical momentum gives

$$\frac{d\mathbf{x}}{dt} = \frac{\boldsymbol{\pi}}{\sqrt{\boldsymbol{\pi}^2 + m^2}} \quad (1.20)$$

Thus the Legendre transform is

$$\begin{aligned} H &= \frac{m}{\sqrt{1 - (d\mathbf{x}/dt)^2}} + qA^0 \\ &= \sqrt{\boldsymbol{\pi}^2 + m^2} + qA^0 \\ &= \sqrt{(\mathbf{p} - q\mathbf{A})^2 + m^2} + qA^0 \end{aligned} \quad (1.21)$$

Hamilton's equations give

$$\begin{aligned} \frac{dx^i}{dt} &= \frac{\partial H}{\partial p^i} = \frac{p^i - qA^i}{\sqrt{(\mathbf{p} - q\mathbf{A})^2 + m^2}} \\ \frac{dp^i}{dt} &= -\frac{\partial H}{\partial x^i} = q \left(\frac{(\mathbf{p} - q\mathbf{A}) \cdot \partial_i \mathbf{A}}{\sqrt{(\mathbf{p} - q\mathbf{A})^2 + m^2}} - \partial_i A^0 \right) \\ &= q\partial_i(\mathbf{v} \cdot \mathbf{A} - A^0) \end{aligned} \quad (1.22)$$

which gives

$$\frac{d\boldsymbol{\pi}^i}{dt} = -q(\partial_0 A^i + v^j \partial_j A^i) + q\partial_i(v^j A^j - A^0) \quad (1.23)$$

which of course is just eq. (??).

1.4 First covariant Lagrangian approach

The simplest covariant action is [Goldstein (1e) 209, (2e) 330; Coleman (2022) 50, 69]

$$\begin{aligned} S &= \int \left(-\frac{1}{2} m d\tau - q A_\mu dx^\mu \right) \\ &= \int d\tau \left(-\frac{1}{2} m \eta_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} - q A_\mu \frac{dx^\mu}{d\tau} \right) \\ &= \int d\tau L_{\text{cov}} \end{aligned} \quad (1.24)$$

where $d\tau = \sqrt{\eta_{\mu\nu} dx^\mu dx^\nu}$. This action is not reparametrization invariant. Using

$$\begin{aligned} \frac{\partial L_{\text{cov}}}{\partial (dx^\mu/d\tau)} &= -m \frac{dx_\mu}{d\tau} - q A_\mu \\ \frac{\partial L_{\text{cov}}}{\partial x^\mu} &= -q \frac{\partial A_\nu}{\partial x^\mu} \frac{dx^\nu}{d\tau} \end{aligned} \quad (1.25)$$

we obtain the Euler-Lagrange equation

$$\begin{aligned} \frac{d}{d\tau} \left(m \frac{dx_\mu}{d\tau} + q A_\mu \right) &= q \partial_\mu A_\nu \frac{dx^\nu}{d\tau} \\ m \frac{d^2 x_\mu}{d\tau^2} &= q \partial_\mu A_\nu \frac{dx^\nu}{d\tau} - q \partial_\nu A_\mu \frac{dx^\nu}{d\tau} \\ &= q F_{\mu\nu} \frac{dx^\nu}{d\tau} \end{aligned} \quad (1.26)$$

which is just eq. (??).

Because L_{cov} only depends on τ implicitly (through x^μ and $dx^\mu/d\tau$), Euler's second equation implies a conserved quantity

$$\begin{aligned} h &= \frac{\partial L_{\text{cov}}}{\partial (dx^\mu/d\tau)} \frac{dx^\mu}{d\tau} - L_{\text{cov}} \\ &= \left(-m \frac{dx_\mu}{d\tau} - q A_\mu \right) \frac{dx^\mu}{d\tau} + \frac{1}{2} m \eta_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} + q A_\mu \frac{dx^\mu}{d\tau} \\ &= -\frac{1}{2} m \frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau} \end{aligned} \quad (1.27)$$

By the equation of motion

$$\begin{aligned} \frac{dh}{d\tau} &= -m \frac{dx^\mu}{d\tau} \frac{d^2 x_\mu}{d\tau^2} \\ &= -q F_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} \\ &= 0 \end{aligned} \quad (1.28)$$

Of course, by the constraint $h = -m/2$ and so manifestly conserved.

1.5 Covariant Hamiltonian approach

The covariant Lagrangian

$$L_{\text{cov}} = -\frac{1}{2}m\eta_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} - qA_\mu\frac{dx^\mu}{d\tau} \quad (1.29)$$

yields the canonical four-momentum

$$\begin{aligned} p_\mu &= -\frac{\partial L_{\text{cov}}}{\partial(dx^\mu/ds)} \\ &= m\frac{dx_\mu}{d\tau} + qA_\mu \end{aligned} \quad (1.30)$$

the minus sign being necessary to produce agreement with the noncovariant approach.

If we define the “Hamiltonian” to be

$$\begin{aligned} H_{\text{cov}} &= -\left[(-p_\mu)\frac{dx^\mu}{d\tau} - L_{\text{cov}}\right] \\ &= \frac{1}{2m}(p - qA)^2 \end{aligned} \quad (1.31)$$

then Hamilton’s equations yield

$$\begin{aligned} \frac{dx^\mu}{d\tau} &= \frac{\partial H_{\text{cov}}}{\partial p_\mu} = \frac{1}{m}(p^\mu - qA^\mu) \\ \frac{dp^\mu}{d\tau} &= -\frac{\partial H_{\text{cov}}}{\partial x_\mu} = \frac{q}{m}(p_\nu - qA_\nu)\partial^\mu A^\nu = q\frac{dx_\nu}{d\tau}\partial^\mu A^\nu \end{aligned} \quad (1.32)$$

from which we obtain

$$m\frac{d^2x^\mu}{d\tau^2} = \frac{d}{d\tau}(p^\mu - qA^\mu) = q\frac{dx_\nu}{d\tau}\partial^\mu A^\nu - q\frac{\partial A^\mu}{\partial x_\nu}\frac{dx_\nu}{d\tau} = qF^{\mu\nu}\frac{dx_\nu}{d\tau} \quad (1.33)$$

which is again eq. (??).

1.6 Alternative covariant Lagrangian approach

An alternative covariant action is [Goldstein (2e) 326; Jackson (2e) 576; Coleman (2022) 50; Rohrlich (1990) 160].

$$\begin{aligned}
S &= \int (-md\tau - qA_\nu dx^\nu) \\
&= \int ds \left(-m\sqrt{\eta_{\mu\nu} \frac{dx^\mu}{ds} \frac{dx^\nu}{ds}} - qA_\nu \frac{dx^\nu}{ds} \right) \\
&= \int ds L_{\text{cov}}
\end{aligned} \tag{1.34}$$

where now s denotes an arbitrary parametrization of the worldline. We have

$$\begin{aligned}
\frac{\partial L_{\text{cov}}}{\partial(dx^\mu/ds)} &= - \frac{m(dx_\mu/ds)}{\sqrt{\eta_{\alpha\beta}(dx^\alpha/ds)(dx^\beta/ds)}} - qA_\mu \\
\frac{\partial L_{\text{cov}}}{\partial x^\mu} &= -q \frac{\partial A_\nu}{\partial x^\mu} \frac{dx^\nu}{ds}
\end{aligned} \tag{1.35}$$

giving the Euler-Lagrange equation

$$\begin{aligned}
\frac{d}{ds} \left(\frac{m(dx_\mu/ds)}{\sqrt{\eta_{\alpha\beta}(dx^\alpha/ds)(dx^\beta/ds)}} + qA_\mu \right) &= q\partial_\mu A_\nu \frac{dx^\nu}{ds} \\
\frac{d}{ds} \frac{m(dx_\mu/ds)}{\sqrt{\eta_{\alpha\beta}(dx^\alpha/ds)(dx^\beta/ds)}} &= q\partial_\mu A_\nu \frac{dx^\nu}{ds} - q\partial_\nu A_\mu \frac{dx^\nu}{ds} \\
\frac{d}{ds} m \frac{dx_\mu}{d\tau} &= qF_{\mu\nu} \frac{dx^\nu}{ds} \\
m \frac{d^2 x_\mu}{d\tau^2} &= qF_{\mu\nu} \frac{dx^\nu}{d\tau}
\end{aligned} \tag{1.36}$$

Observe that L_{cov} depends on s only through x^μ and (dx^μ/ds) so $\partial L_{\text{cov}}/\partial s = 0$ and therefore the second Euler equation says that $dh/ds = 0$. Indeed we find that h vanishes identically:

$$\begin{aligned}
h &= \frac{\partial L_{\text{cov}}}{\partial(dx^\mu/ds)} \frac{dx^\mu}{ds} - L_{\text{cov}} \\
&= - \left(\frac{m(dx_\mu/ds)}{\sqrt{\eta_{\alpha\beta}(dx^\alpha/ds)(dx^\beta/ds)}} + qA_\mu \right) \frac{dx^\mu}{ds} + \left(m\sqrt{\eta_{\mu\nu} \frac{dx^\mu}{ds} \frac{dx^\nu}{ds}} + qA_\nu \frac{dx^\nu}{ds} \right) \\
&= 0
\end{aligned} \tag{1.37}$$

1.7 Alternative covariant Hamiltonian approach

The covariant Lagrangian

$$L_{\text{cov}} = -m\sqrt{\eta_{\mu\nu}\frac{dx^\mu}{ds}\frac{dx^\nu}{ds}} - qA_\nu\frac{dx^\nu}{ds} \quad (1.38)$$

yields the canonical four-momentum

$$\begin{aligned} p_\mu &= -\frac{\partial L_{\text{cov}}}{\partial(dx^\mu/ds)} \\ &= \frac{m(dx_\mu/ds)}{\sqrt{\eta_{\alpha\beta}(dx^\alpha/ds)(dx^\beta/ds)}} + qA_\mu \\ &= m\frac{dx_\mu}{d\tau} + qA_\mu \end{aligned} \quad (1.39)$$

the minus sign again being necessary to produce agreement with the noncovariant approach.

Jackson (2e) 577 then suggests defining the “Hamiltonian” as

$$\begin{aligned} H_{\text{cov}} &= -\frac{1}{2}\left[(-p_\mu)\frac{dx^\mu}{ds} - L_{\text{cov}}\right] \\ &= \frac{1}{2}\left[p_\mu\frac{dx^\mu}{ds} - m\sqrt{\eta_{\mu\nu}\frac{dx^\mu}{ds}\frac{dx^\nu}{ds}} - qA_\mu\frac{dx^\mu}{ds}\right] \\ &= \frac{1}{2}(p_\mu - qA_\mu)\frac{dx^\mu}{ds} - \frac{1}{2}m\sqrt{\eta_{\mu\nu}\frac{dx^\mu}{ds}\frac{dx^\nu}{ds}} \end{aligned} \quad (1.40)$$

We cannot obtain dx^μ/ds in terms of p^μ but if we let $s = \tau$, then eq. (??) allows us to write

$$\begin{aligned} H_{\text{cov}} &= \frac{1}{2}(p_\mu - qA_\mu)\frac{dx^\mu}{d\tau} - \frac{1}{2}m \\ &= \frac{1}{2m}(p - qA)^2 - \frac{1}{2}m \end{aligned} \quad (1.41)$$

(Of course, the constraint above would seem to imply $(p - qA)^2 = m^2$ so that $H_{\text{cov}} = 0$.)

Hamilton’s equations applied to eq. (??) give

$$\begin{aligned} \frac{dx^\mu}{d\tau} &= \frac{\partial H_{\text{cov}}}{\partial p_\mu} = \frac{1}{m}(p^\mu - qA^\mu) \\ \frac{dp^\mu}{d\tau} &= -\frac{\partial H_{\text{cov}}}{\partial x_\mu} = \frac{q}{m}(p_\nu - qA_\nu)\partial^\mu A^\nu = q\frac{dx_\nu}{d\tau}\partial^\mu A^\nu \end{aligned} \quad (1.42)$$

from which we obtain eq. (??) once again

$$m\frac{d^2x^\mu}{d\tau^2} = \frac{d}{d\tau}(p^\mu - qA^\mu) = q\frac{dx_\nu}{d\tau}\partial^\mu A^\nu - q\frac{\partial A^\mu}{\partial x_\nu}\frac{dx_\nu}{d\tau} = qF^{\mu\nu}\frac{dx_\nu}{d\tau} \quad (1.43)$$

1.8 Lagrangian with Lagrange multipliers

A Lagrange multiplier approach [Barut (1964) 65] starts with

$$\bar{L} = L + \frac{\lambda}{2} \left(\frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau} - 1 \right) \quad (1.44)$$

The Euler-Lagrange equation for λ yields

$$\frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau} = 1 \quad (1.45)$$

The Euler-Lagrange equation for x^μ yields

$$0 = \frac{d}{d\tau} \left(\lambda \frac{dx_\mu}{d\tau} + \frac{\partial L}{\partial(dx^\mu/d\tau)} \right) - \frac{\partial L}{\partial x^\mu} \quad (1.46)$$

Multiplying by $(dx^\mu/d\tau)$ we have

$$0 = \frac{d\lambda}{d\tau} \left(\frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau} \right) + \lambda \frac{dx^\mu}{d\tau} \frac{d^2 x_\mu}{d\tau^2} + \frac{dx^\mu}{d\tau} \frac{d}{d\tau} \left(\frac{\partial L}{\partial(dx^\mu/d\tau)} \right) - \frac{dx^\mu}{d\tau} \frac{\partial L}{\partial x^\mu} \quad (1.47)$$

or

$$\frac{d\lambda}{d\tau} = \frac{dx^\mu}{d\tau} \frac{\partial L}{\partial x^\mu} - \frac{dx^\mu}{d\tau} \frac{d}{d\tau} \left(\frac{\partial L}{\partial(dx^\mu/d\tau)} \right) \quad (1.48)$$

which we can integrate (cf Barut, or just verify by differentiating) to obtain

$$\lambda = L - \frac{dx^\nu}{d\tau} \left(\frac{\partial L}{\partial(dx^\nu/d\tau)} \right) + \text{const} \quad (1.49)$$

Substitute into eq. (??) to obtain the equation of motion

$$0 = \frac{d}{d\tau} \left(\left[L - \frac{dx^\nu}{d\tau} \left(\frac{\partial L}{\partial(dx^\nu/d\tau)} \right) + \text{const} \right] \frac{dx_\mu}{d\tau} + \frac{\partial L}{\partial(dx^\mu/d\tau)} \right) - \frac{\partial L}{\partial x^\mu} \quad (1.50)$$

If the Lagrangian is

$$L = -m - qA_\mu \frac{dx^\mu}{d\tau} \quad (1.51)$$

then (setting the constant to zero) we have $\lambda = -m$ and so

$$\frac{d}{d\tau} \left(m \frac{dx_\mu}{d\tau} + qA_\mu \right) = q\partial_\mu A_\nu \frac{dx^\nu}{d\tau} \quad (1.52)$$

as found before.

2 Particle-field interaction

We follow Coleman's Lectures on Relativity, ch. 3. [See also Jackson, ch 14; Rohrlich, ch 4.7-4.8 (1990) 77] The action for the electromagnetic field

$$S_{EM} = \int d^4x \left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J^\mu A_\mu \right) \quad (2.1)$$

yields the equation of motion (in Lorenz gauge)

$$\partial^2 A^\mu = J^\mu \quad (2.2)$$

whose solution is

$$A^\mu(x) = A_{\text{free}}^\mu(x) + \int d^4y D(x-y)J^\mu(y) \quad (2.3)$$

where $A_{\text{free}}^\mu(x)$ is a complementary solution and $D(x)$ is the Green function

$$\partial^2 D(x) = \delta^{(4)}(x), \quad D(x) = \int \frac{d^4k}{(2\pi)^4} e^{ik \cdot x} \frac{(-1)}{k^2} \quad (2.4)$$

Choosing retarded boundary conditions, we have

$$A^\mu(x) = A_{\text{in}}^\mu(x) + \int d^4y D_R(x-y)J^\mu(y) \quad (2.5)$$

Evaluating the contour integral by passing below the poles we obtain

$$D_R(x) = \frac{1}{4\pi r} \delta(r-t) = \frac{1}{2\pi} \delta(x^2) \theta(x^0) \quad (2.6)$$

See also Jackson (2e), sec. 12.11.

The covariant action for a charged particle

$$S_{\text{pcl}} = \int d\tau \left(-\frac{1}{2}m\eta_{\mu\nu} \frac{dy^\mu}{d\tau} \frac{dy^\nu}{d\tau} - qA_\mu \frac{dy^\mu}{d\tau} \right) \quad (2.7)$$

yields the equation of motion

$$m \frac{d^2y^\mu}{d\tau^2} = qF^{\mu\nu} \frac{dy_\nu}{d\tau} \quad (2.8)$$

Comparing eqs. (??) and (??), the charged particle produces the current

$$J^\mu(x) = q \int d\tau \delta^{(4)}(x - y(\tau)) \frac{dy^\mu}{d\tau} \quad (2.9)$$

which generates the field

$$A^\mu(x) = A_{\text{in}}^\mu(x) + \frac{q}{2\pi} \int d\tau \delta(z^2) \theta(z^0) \frac{dy^\mu}{d\tau}, \quad z^\mu = x^\mu - y^\mu(\tau) \quad (2.10)$$

Let $\tau = \tau_0$ be the point of the trajectory $y^\mu(\tau)$ satisfying $z^2 = 0$, i.e. the unique event where the past light-cone centered at x^μ intersects the particle's worldline

$$\begin{aligned} z^0 &= |\mathbf{z}| \\ x^0 - y^0(\tau_0) &= |\mathbf{x} - \mathbf{y}(\tau_0)| \end{aligned} \quad (2.11)$$

Observing that z^2 decreases as τ increases, one has

$$\delta(z^2) = \left| \frac{\partial z^2}{\partial \tau} \right|^{-1} \delta(\tau - \tau_0), \quad \left| \frac{\partial z^2}{\partial \tau} \right| = -\frac{\partial z^2}{\partial \tau} = 2z_\nu \frac{dy^\nu}{d\tau} \quad (2.12)$$

Thus one obtains the Liénard-Wiechert potential (see also Jackson (3e), eq. 14.6)

$$A^\mu(x) = \left(\frac{q}{4\pi} \right) \frac{v^\mu}{z \cdot v} \Big|_{\tau=\tau_0}, \quad v^\mu \equiv \frac{dy^\mu}{d\tau} = (\gamma, \gamma \mathbf{v}) \quad (2.13)$$

so $v^2 = 1$. Define $R \equiv z^0$ and $\mathbf{n} = \mathbf{z}/R$ with all quantities evaluated at $\tau = \tau_0$. Then

$$z \cdot v = R\gamma(1 - \mathbf{n} \cdot \mathbf{v}) \quad (2.14)$$

Thus (Jackson (2e), eq. 14.8)

$$A^0 = \left(\frac{q}{4\pi} \right) \frac{1}{R(1 - \mathbf{n} \cdot \mathbf{v})}, \quad \mathbf{A} = \left(\frac{q}{4\pi} \right) \frac{\mathbf{v}}{R(1 - \mathbf{n} \cdot \mathbf{v})} \quad (2.15)$$

Consider a particle moving at constant speed in the $+x$ direction and passing through the origin:

$$y^\mu(\tau) = (\gamma\tau, \gamma v\tau, 0, 0), \quad v^\mu = (\gamma, \gamma v, 0, 0) \quad (2.16)$$

Let's evaluate the potential at $x^\mu = (t, x, 0, 0)$. Then $z^2 = 0$ implies $t - \gamma\tau_0 = x - \gamma v\tau_0$ so that

$$\tau_0 = \frac{t - x}{\gamma(1 - v)}, \quad z^\mu = \frac{x - vt}{1 - v}(1, 1, 0, 0) \quad z \cdot v = \gamma(x - vt) \quad (2.17)$$

yielding

$$A^\mu(t, x, 0, 0) = \frac{q}{4\pi(x - vt)}(1, v, 0, 0) \quad (2.18)$$

We'll see from results below that this gives

$$E_x(t, x, 0, 0) = F_{01}(t, x, 0, 0) = \frac{q}{4\pi} \frac{1}{\gamma^2(x - vt)^2} \quad (2.19)$$

Coleman shows that the field strength tensor is given by

$$F_{\mu\nu}(x) = \frac{q}{4\pi} \left[\frac{1}{(z \cdot v)^2} z_\mu a_\nu + \frac{(1 - z \cdot a)}{(z \cdot v)^3} z_\mu v_\nu \right] \Big|_{\tau=\tau_0} - (\mu \leftrightarrow \nu), \quad a^\mu \equiv \frac{d^2 y^\mu}{d\tau^2} \quad (2.20)$$

Alternatively, Jackson (3e), eq. 14.11 gives the equivalent expression (easily verified)

$$F_{\mu\nu}(x) = \frac{q}{4\pi} \frac{1}{(z \cdot v)} \frac{d}{d\tau} \left[\frac{z_\mu v_\nu}{z \cdot v} \right] \Big|_{\tau=\tau_0} - (\mu \leftrightarrow \nu) \quad (2.21)$$

Jackson then derives (eqs. 14.13, 14.14) explicit results

$$\begin{aligned} \mathbf{E} &= \frac{q}{4\pi} \left[\frac{\mathbf{n} - \mathbf{v}}{\gamma^2 R^2 (1 - \mathbf{n} \cdot \mathbf{v})^3} + \frac{\mathbf{n} \times \{(\mathbf{n} - \mathbf{v}) \times \dot{\mathbf{v}}\}}{R (1 - \mathbf{n} \cdot \mathbf{v})^3} \right] \\ \mathbf{B} &= \mathbf{n} \times \mathbf{E} \end{aligned} \quad (2.22)$$

which reduce for non-relativistic motion to

$$\begin{aligned} \mathbf{E} &= \frac{q}{4\pi} \left[\frac{\mathbf{n}}{R^2} + \frac{\mathbf{n} \times \{\mathbf{n} \times \dot{\mathbf{v}}\}}{R} \right] \\ \mathbf{B} &= \mathbf{n} \times \mathbf{E} \end{aligned} \quad (2.23)$$

Feynman, vol. 1, eq. 28.3 gives

$$\begin{aligned} \mathbf{E} &= \frac{q}{4\pi\epsilon_0} \left[\frac{\mathbf{n}}{R^2} + R \frac{d}{dt} \left(\frac{\mathbf{n}}{R^2} \right) + \frac{d^2 \mathbf{n}}{dt^2} \right] \\ \mathbf{B} &= \mathbf{n} \times \mathbf{E} \end{aligned} \quad (2.24)$$

It is remarkable that the fields are completely determined only by the behavior of the charge at the retarded time.

After changing changing his metric to ours, Rohrlich defines $\rho = R^\mu v_\mu$ where R^μ is what we are calling z^μ so ρ is what we are calling $z \cdot v$. Then Rohrlich defines u^μ via

$$R^\mu = \rho(u^\mu + v^\mu), \quad u^2 = -1, \quad u^\mu v_\mu = 0 \quad (2.25)$$

Using $v^2 = 1$, one easily verifies $R^2 = 0$ and $R^\mu v_\mu = \rho$ and $R^\mu u_\mu = -\rho$. Thus

$$u^\mu = \frac{R^\mu}{\rho} - v^\mu \quad (2.26)$$

Also using $a^\mu v_\mu = 0$, one has

$$a_u \equiv -a^\mu u_\mu = -\frac{a^\mu R_\mu}{\rho} \quad (2.27)$$

Then Rohrlich writes (after correcting for -4π due to his conventions)

$$F^{\mu\nu} = -\frac{q}{4\pi} \left[\frac{v^\mu u^\nu}{\rho^2} + \frac{1}{\rho} (a^\mu v^\nu - a_u u^\mu u^\nu - u^\mu a^\nu) \right] - (\mu \leftrightarrow \nu) \quad (2.28)$$

which can easily be shown to agree with Coleman's expression. Rohrlich also writes

$$F^{\mu\nu} = -\frac{q}{4\pi\rho} \frac{d}{d\tau} \left(\frac{v^\mu R^\nu}{\rho} \right) \quad (2.29)$$

which agrees with Jackson's expression.

2.1 Radiation

Spacetime symmetry leads to a conserved energy-momentum tensor

$$T_c^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_\mu A_\alpha)} \partial^\nu A_\alpha - \eta^{\mu\nu} \mathcal{L} = -F^{\mu\alpha} \partial^\nu A_\alpha + \frac{1}{4} \eta^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \quad (2.30)$$

which is neither symmetric nor gauge invariant. By adding a (conserved) total derivative, we obtain the symmetric (Belinfante) energy-momentum tensor

$$T_b^{\mu\nu} = T_c^{\mu\nu} + \partial_\alpha (F^{\mu\alpha} A^\nu) = F^{\mu\alpha} F_\alpha^\nu + \frac{1}{4} \eta^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \quad (2.31)$$

One observes that

$$\partial_\mu T_b^{\mu\nu} = F^{\nu\lambda} j_\lambda \quad (2.32)$$

Plugging in the field strength above, one obtains

$$\begin{aligned} T_b^{\mu\nu} &= \frac{q^2}{4\pi\rho^4} (u^\mu u^\nu - v^\mu v^\nu - \frac{1}{2} \eta^{\mu\nu}) \\ &+ \frac{q^2}{4\pi\rho^3} \left(2a_u \frac{R^\mu R^\nu}{\rho^2} - a_u \frac{v^\mu R^\nu + v^\nu R^\mu}{\rho} + \frac{a^\mu R^\nu + a^\nu R^\mu}{\rho} \right) \\ &+ \frac{q^2}{4\pi\rho^2} (a_u^2 - a^\lambda a_\lambda) \frac{R^\mu R^\nu}{\rho^2} \end{aligned} \quad (2.33)$$

The energy flux is given by

$$\mathbf{S} = \mathbf{E} \times \mathbf{B} = \left(\frac{q}{4\pi} \right)^2 \left| \frac{\mathbf{n} \times \{\mathbf{n} \times d\mathbf{v}/dt\}}{R} \right|^2 \mathbf{n} \quad (2.34)$$

and integrating over a sphere gives the Larmor formula for power radiated

$$P = \frac{2}{3} \left(\frac{q^2}{4\pi} \right) \left(\frac{d\mathbf{v}}{dt} \right)^2 \quad (2.35)$$

agreeing with Coleman (eq. 3.172). Purcell and Morin write (eq. H.7)

$$P = \frac{2}{3} \left(\frac{q^2}{4\pi\epsilon_0 c^3} \right) \left(\frac{d\mathbf{v}}{dt} \right)^2 \quad (2.36)$$

The relativistic generalization given by Liénard is (Jackson (2e), eq. 14.26)

$$P = \frac{2}{3} \left(\frac{q^2}{4\pi} \right) \gamma^6 \left[\left(\frac{d\mathbf{v}}{dt} \right)^2 - \left(\mathbf{v} \times \frac{d\mathbf{v}}{dt} \right)^2 \right] \quad (2.37)$$

2.2 Regularization

Let's alter the action to take the form

$$S = \int d^4x \left(-\frac{1}{4} \bar{F}_{\mu\nu} \bar{F}^{\mu\nu} \right) + \int d\tau \left(-\frac{1}{2} m_0 \eta_{\mu\nu} \frac{dy^\mu}{d\tau} \frac{dy^\nu}{d\tau} - q \int d^4x \bar{A}_\mu(x) f(x - y(\tau)) \frac{dy^\mu}{d\tau} \right) \quad (2.38)$$

where $f(x) = \lambda^4 F(\lambda x)$ for any $F(x)$ obeying $\int d^4x F(x) = 1$. We can write the electromagnetic action as

$$S_{\text{EM}} = \int d^4x \left(-\frac{1}{4} \bar{F}_{\mu\nu} \bar{F}^{\mu\nu} - \bar{J}^\mu \bar{A}_\mu \right) \quad (2.39)$$

where

$$\begin{aligned} \bar{J}^\mu(x) &= q \int d\tau f(x - y(\tau)) \frac{dy^\mu}{d\tau} \\ &= q \int d\tau \int d^4x' f(x - x') \delta^{(4)}(x' - y(\tau)) \frac{dy^\mu}{d\tau} \\ &= \int d^4x' f(x - x') J^\mu(x') \end{aligned} \quad (2.40)$$

Because Maxwell's equation is linear

$$\partial_\mu \bar{F}^{\mu\nu} = \bar{J}^\nu \quad (2.41)$$

the solution is

$$\bar{F}^{\mu\nu}(x) = \int d^4x' f(x - x') F^{\mu\nu}(x') \quad (2.42)$$

where $F^{\mu\nu}$ is the solution of

$$\partial_\mu F^{\mu\nu} = J^\nu \quad (2.43)$$

Now using $F_{\mu\nu}$ from above, and expanding in λ^{-1} , Coleman obtains

$$\bar{F}^{\mu\nu} = \lambda \frac{q}{8\pi} \left(\frac{dy^\mu}{d\tau} \frac{d^2y^\nu}{d\tau^2} - \frac{d^2y^\mu}{d\tau^2} \frac{dy^\nu}{d\tau} \right) + \frac{q}{6\pi} \left(\frac{d^3y^\mu}{d\tau^3} \frac{dy^\nu}{d\tau} - \frac{dy^\mu}{d\tau} \frac{d^3y^\nu}{d\tau^3} \right) + \mathcal{O}(1/\lambda^2) \quad (2.44)$$

Now plug this into

$$m_0 \frac{d^2y^\mu}{d\tau^2} = q \bar{F}^{\mu\nu} \frac{dy_\nu}{d\tau} + F_{\text{ext}}^\mu \quad (2.45)$$

(I am not sure about this! shouldn't there be dependence on $f(x)$ due to the altered action eq. (??)?) to obtain

$$m_0 \frac{d^2y^\mu}{d\tau^2} = \frac{\lambda q^2}{8\pi} \left(-\frac{d^2y^\mu}{d\tau^2} \right) + \frac{q^2}{6\pi} \left(\frac{d^3y^\mu}{d\tau^3} + \frac{dy^\mu}{d\tau} \frac{d^2y^\nu}{d\tau^2} \frac{d^2y_\nu}{d\tau^2} \right) \quad (2.46)$$

where we use

$$\begin{aligned}(dy^\nu/d\tau)(dy_\nu/d\tau) &= 1 \\ (d^2y^\nu/d\tau^2)(dy_\nu/d\tau) &= 0 \\ (d^3y^\nu/d\tau^3)(dy_\nu/d\tau) &= -(d^2y^\nu/d\tau^2)(d^2y_\nu/d\tau^2)\end{aligned}\quad (2.47)$$

Defining the renormalized mass as

$$m = m_0 + \frac{\lambda q^2}{8\pi} \quad (2.48)$$

we can write

$$\begin{aligned}m \frac{d^2y^\mu}{d\tau^2} &= F_{\text{rad}}^\mu + F_{\text{ext}}^\mu \\ F_{\text{rad}}^\mu &= \frac{2}{3} \frac{q^2}{4\pi} \left(\frac{d^3y^\mu}{d\tau^3} + \frac{dy^\mu}{d\tau} \frac{d^2y^\nu}{d\tau^2} \frac{d^2y_\nu}{d\tau^2} \right)\end{aligned}\quad (2.49)$$

In the nonrelativistic limit (and restoring units) we have

$$m \frac{d^2\mathbf{y}}{dt^2} = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0 c^3} \frac{d^3\mathbf{y}}{dt^3} + \mathbf{F}_{\text{ext}} \quad (2.50)$$

For a free particle this has a runaway solution

$$\mathbf{y} = \mathbf{a} + \mathbf{b}t + \mathbf{c}e^{t/\lambda}, \quad (2.51)$$

where¹

$$\lambda = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0} \frac{1}{mc^3} = \frac{2}{3} \alpha \frac{\hbar c}{mc^3} = 6 \times 10^{-24} \text{ s} \quad (2.52)$$

For a linear restoring force, the equation of motion is

$$\frac{d^2\mathbf{y}}{dt^2} = \lambda \frac{d^3\mathbf{y}}{dt^3} - \omega_0^2 \mathbf{y} \quad (2.53)$$

The ansatz $\mathbf{y} = \mathbf{y}_0 e^{i\omega t}$ yields the third order equation

$$\omega^2 = i\lambda\omega^3 + \omega_0^2 \quad (2.54)$$

two of the solutions of which are approximately (for small $\lambda\omega_0$)

$$\omega = \pm\omega_0 + \frac{1}{2}i\lambda\omega_0^2 \quad (2.55)$$

¹Coleman, eq. 3.158 says 5×10^{-25} s, but e is written in Gaussian units, so answer is off by 4π . Footnote 8 on p. 66 clarifies that Coleman is using Heaviside-Lorentz units, $\epsilon_0 = 1 = c$.

and thus

$$\mathbf{y} = \mathbf{y}_0 e^{-\frac{1}{2}\lambda\omega_0^2 t} e^{\pm i\omega_0 t} \quad (2.56)$$

A real solution is of the form

$$\mathbf{y} = \mathbf{y}_0 e^{-\frac{1}{2}\lambda\omega_0^2 t} \cos(\omega_0 t + \phi) \quad (2.57)$$

The time-averaged mechanical energy of the oscillator is

$$E_{\text{mech}} = K + U = \frac{1}{2}m\omega_0^2 y_0^2 e^{-\lambda\omega_0^2 t} \quad (2.58)$$

and the rate of energy loss

$$\begin{aligned} \frac{dE_{\text{mech}}}{dt} &= -\frac{1}{2}\lambda m\omega_0^4 y_0^2 e^{-\lambda\omega_0^2 t} \\ &= -\frac{1}{3} \left(\frac{q^2}{4\pi c^3} \right) \omega_0^4 y_0^2 e^{-\lambda\omega_0^2 t} \end{aligned} \quad (2.59)$$

The time average of the square of the acceleration is

$$\left| \frac{d\mathbf{v}}{dt} \right|^2 = \frac{1}{2}\omega_0^4 y_0^2 e^{-\lambda\omega_0^2 t} \quad (2.60)$$

and thus the energy loss is precisely consistent with the Larmor formula

$$\frac{dE_{\text{mech}}}{dt} = -P = -\frac{2}{3} \left(\frac{q^2}{4\pi c^3} \right) \left(\frac{d\mathbf{v}}{dt} \right)^2 \quad (2.61)$$

3 Gravitational scattering

A relativistic particle in a gravitational field has action

$$S = -m \int d\tau = -m \int d\sigma \left(\frac{d\tau}{d\sigma} \right) = -m \int d\sigma \sqrt{g_{\mu\nu} \frac{dx^\mu}{d\sigma} \frac{dx^\nu}{d\sigma}}. \quad (3.1)$$

Euler's equations then yield

$$\frac{d}{d\sigma} \left(\frac{g_{\mu\nu} (dx^\nu/d\sigma)}{(d\tau/d\sigma)} \right) = \frac{1}{2} \partial_\mu g_{\kappa\lambda} \frac{(dx^\kappa/d\sigma)(dx^\lambda/d\sigma)}{(d\tau/d\sigma)}. \quad (3.2)$$

Setting $\sigma = \tau$, we have

$$\frac{d}{d\tau} \left(g_{\mu\nu} \frac{dx^\nu}{d\tau} \right) = \frac{1}{2} \partial_\mu g_{\kappa\lambda} \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau}. \quad (3.3)$$

We can rewrite this as

$$\begin{aligned} g_{\mu\nu} \frac{d^2 x^\nu}{d\tau^2} &= \frac{1}{2} \partial_\mu g_{\kappa\lambda} \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau} - \partial_\lambda g_{\mu\nu} \frac{dx^\nu}{d\tau} \frac{dx^\lambda}{d\tau} \\ &= \frac{1}{2} \left[\partial_\mu g_{\kappa\lambda} \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau} - \partial_\lambda g_{\mu\nu} \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau} - \partial_\kappa g_{\mu\lambda} \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau} \right] \end{aligned} \quad (3.4)$$

which gives the usual geodesic equation:

$$\frac{d^2 x^\nu}{d\tau^2} = -\frac{1}{2} g^{\nu\mu} [\partial_\lambda g_{\mu\kappa} + \partial_\kappa g_{\mu\lambda} - \partial_\mu g_{\kappa\lambda}] \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau} = -\Gamma_{\kappa\lambda}^\nu \frac{dx^\kappa}{d\tau} \frac{dx^\lambda}{d\tau}. \quad (3.5)$$

Returning to eq. (??), we can rewrite it as

$$\frac{dp_\mu}{d\tau} = \frac{1}{2} \partial_\mu g_{\kappa\lambda} \frac{dx^\kappa}{d\tau} p^\lambda \quad \text{where} \quad p^\mu \equiv m \frac{dx^\mu}{d\tau}. \quad (3.6)$$

Since the Schwarzschild metric in isotropic coordinates

$$ds^2 = A(r)(dx^0)^2 - B(r)(d\mathbf{x})^2, \quad r = \mathbf{x}^2 \quad (3.7)$$

is independent of x^0 , i.e., $\partial_0 g_{\mu\nu} = 0$, we can obtain a conserved quantity from eq. (??)

$$p_0 = mA \frac{dx^0}{d\tau} = \text{const} = E \quad (3.8)$$

where we have evaluated the constant at $r \rightarrow \infty$ where $A \rightarrow 1$. Then

$$d\tau^2 = A(dx^0)^2 - B(d\mathbf{x})^2 \quad (3.9)$$

together with

$$dx^0 = \frac{E}{mA} d\tau \quad (3.10)$$

implies

$$\begin{aligned} B(dx)^2 &= \left[\frac{E^2}{m^2 A} - 1 \right] (d\tau)^2 \\ |dx| &= \frac{1}{m} \sqrt{\frac{E^2 - m^2 A}{AB}} d\tau \end{aligned} \quad (3.11)$$

from which we have

$$\frac{dx^0}{d\tau} = \frac{E}{mA}, \quad \frac{|dx|}{dx^0} = \frac{A}{E} \sqrt{\frac{E^2 - m^2 A}{AB}} \quad \frac{|dx|}{d\tau} = \frac{1}{m} \sqrt{\frac{E^2 - m^2 A}{AB}}. \quad (3.12)$$

In isotropic coordinates, the $\mu = i$ Euler equation (??) is

$$\begin{aligned} \frac{d}{d\tau} \left(-B \frac{d\mathbf{x}}{d\tau} \right) &= \frac{1}{2} \left[\left(\frac{dx^0}{d\tau} \right)^2 \nabla A - \left(\frac{d\mathbf{x}}{d\tau} \right)^2 \nabla B \right] \\ &= \frac{1}{2} \left[\left(\frac{E}{mA} \right)^2 \nabla A - \left(\frac{E^2 - m^2 A}{m^2 AB} \right) \nabla B \right]. \end{aligned} \quad (3.13)$$

Can we also start from ?

$$S = \int dt \sqrt{A - B \left(\frac{d\mathbf{x}}{dt} \right)^2} \quad (3.14)$$

To first order in the gravitational field we have

$$A \approx 1 + 2\phi, \quad B \approx 1 - 2\phi \quad (3.15)$$

so that eq. (??) becomes

$$\begin{aligned} \frac{d^2 \mathbf{x}}{d\tau^2} &= -\gamma^2 (1 + \beta^2) \nabla \phi \\ \frac{d}{d\tau} \left(m \frac{d\mathbf{x}}{d\tau} \right) &= -m\gamma^2 (1 + \beta^2) \nabla \phi \\ \frac{d\mathbf{p}}{dt} &= -m\gamma (1 + \beta^2) \nabla \phi. \end{aligned} \quad (3.16)$$

Equivalently, eq. (??) becomes

$$dp_i = \frac{1}{2} [\partial_i A p^0 dx^0 - \partial_i B \mathbf{p} \cdot dx] = \partial_i \phi [p^0 dx^0 + \mathbf{p} \cdot dx] \quad (3.17)$$

where the last equality holds to first order in the gravitational field. If we let then $p^0 = m\gamma$, $p^i = m\gamma\beta^i$, and $dx^i = \beta^i dx^0$, then

$$dp^i = -m\gamma(1 + \beta^2) \partial_i \phi dx^0 = m\gamma(1 + \beta^2) g^i dx^0 \quad (3.18)$$

the same as in eq. (??).