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In these notes, we use the mostly minus metric η00 = 1. (Feynman, Jackson, Dirac, Gross notes)

1 Charged relativistic particles

1.1 Noncovariant Lagrangian approach

The action for a charged relativistic particle in an external electromagnetic field is
[Goldstein (1e) 19, 207; (2e) 23, 322; Jackson (2e), 574; Tong: Classical Dynamics, 36]

S =

∫
(−mdτ − qAµdxµ)

=

∫ (
−m

√
ηµνdxµdxν − qAµdxµ

)
=

∫
dt

−m
√

1−
(
dx

dt

)2

− qA0 + qA · dx
dt


=

∫
dt L (1.1)

Under a gauge transformation Aµ → Aµ+∂µχ, one has L→ L−q(dχ/dt) so S is gauge invariant.
The canonical momentum is

p =
∂L

∂(dx/dt)
= π + qA (1.2)

where π is the (relativistic) mechanical momentum

π =
m(dx/dt)√
1− (dx/dt)2

(1.3)

While π is gauge-invariant, p is not. The Euler-Lagrange equation is

dp

dt
=

d

dt
(π + qA) = −q∇A0 + q∇

(
A · dx

dt

)
(1.4)

that is

dπi

dt
+ q∂0A

i + q∂jA
idx

j

dt
= −q∂iA0 + q∂iA

j dx
j

dt
dπi

dt
= q

(
−∂iA0 − ∂0Ai

)
+ q

(
∂iA

j − ∂jAi
) dxj
dt

(1.5)
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Defining

E = −∇A0 − ∂A

∂t
B = ∇×A (1.6)

we have

εijkBk = εijkεklm∂lA
m = ∂iA

j − ∂jAi (1.7)

so that

dπ

dt
= q (E + v ×B) (1.8)

We define the “relativistic mass” (actually the kinetic plus rest energy) [Messiah, p. 883]

π0 =
m√

1− (dx/dt)2
(1.9)

and the mechanical four-momentum

πµ = (π0,π) =⇒ πµπµ = m2 (1.10)

which is gauge invariant, but not conserved. Since

π

π0
=
dx

dt
(1.11)

we have

π0dπ
0

dt
= π · dπ

dt
dπ0

dt
= v · dπ

dt
= qv · E

= q(−∂iA0 − ∂0Ai)
dxi

dt
(1.12)

We rewrite eqs. (??) and (??) as

dπi

dτ
= q

(
∂iA0 − ∂0Ai

) dx0
dτ

+ q
(
∂iAj − ∂jAi

) dxj
dτ

dπ0

dτ
= q(−∂iA0 + ∂0Ai)

dxi
dτ

(1.13)

or more compactly

dπµ

dτ
= qF µν dxν

dτ
(1.14)

Since πµ = m(dxµ/dτ), this is just

m
d2xµ

dτ 2
= qF µν dxν

dτ
(1.15)
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1.2 Conservation of energy

The energy of the particle is defined as

h = p · dx
dt
− L

= π · dx
dt

+ qA · dx
dt
−

−m
√

1−
(
dx

dt

)2

− qA0 + qA · dx
dt


=

m(dx/dt)2√
1− (dx/dt)2

+m

√
1−

(
dx

dt

)2

+ qA0

=
m√

1− (dx/dt)2
+ qA0

= π0 + qA0 (1.16)

Thus h is the sum of the kinetic plus rest energy π0 and the potential energy qA0 of the particle.
Observe that

dh

dt
=
dπ0

dt
+ q

dA0

dt

= q(−∂iA0 − ∂0Ai)
dxi

dt
+ q

(
∂0A

0 + ∂iA
0dx

i

dt

)
= q∂0

(
A0 − Aidx

i

dt

)
= −∂L

∂t
(1.17)

which is just Euler’s second equation

dh

dt
+
∂L

∂t
= 0 (1.18)

Thus the energy h of the particle is conserved if L does not depend explicitly on time.

We can define h as the fourth component of the canonical four-momentum so that

pµ = (h,p)

= πµ + qAµ (1.19)

which is not gauge invariant.
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1.3 Hamiltonian approach

Inverting the equation for mechanical momentum gives

dx

dt
=

π√
π2 +m2

(1.20)

Thus the Legendre transform is

H =
m√

1− (dx/dt)2
+ qA0

=
√
π2 +m2 + qA0

=
√

(p− qA)2 +m2 + qA0 (1.21)

Hamilton’s equations give

dxi

dt
=
∂H

∂pi
=

pi − qAi√
(p− qA)2 +m2

dpi

dt
= −∂H

∂xi
= q

(
(p− qA) · ∂iA√
(p− qA)2 +m2

− ∂iA0

)
= q∂i(v ·A− A0) (1.22)

which gives

dπi

dt
= −q(∂0Ai + vj∂jA

i) + q∂i(v
jAj − A0) (1.23)

which of course is just eq. (??).
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1.4 First covariant Lagrangian approach

The simplest covariant action is [Goldstein (1e) 209, (2e) 330; Coleman (2022) 50, 69]

S =

∫ (
−1

2
mdτ − qAµdxµ

)
=

∫
dτ

(
−1

2
mηµν

dxµ

dτ

dxν

dτ
− qAµ

dxµ

dτ

)
=

∫
dτ Lcov (1.24)

where dτ =
√
ηµνdxµdxν . This action is not reparametrization invariant. Using

∂Lcov

∂(dxµ/dτ)
= −mdxµ

dτ
− qAµ

∂Lcov

∂xµ
= −q∂Aν

∂xµ
dxν

dτ
(1.25)

we obtain the Euler-Lagrange equation

d

dτ

(
m
dxµ
dτ

+ qAµ

)
= q∂µAν

dxν

dτ

m
d2xµ
dτ 2

= q∂µAν
dxν

dτ
− q∂νAµ

dxν

dτ

= qFµν
dxν

dτ
(1.26)

which is just eq. (??).

Because Lcov only depends on τ implicitly (through xµ and dxµ/dτ), Euler’s second equation
implies a conserved quantity

h =
∂Lcov

∂(dxµ/dτ)

dxµ

dτ
− Lcov

=

(
−mdxµ

dτ
− qAµ

)
dxµ

dτ
+

1

2
mηµν

dxµ

dτ

dxν

dτ
+ qAµ

dxµ

dτ

= −1

2
m
dxµ

dτ

dxµ
dτ

(1.27)

By the equation of motion

dh

dτ
= −mdxµ

dτ

d2xµ
dτ 2

= −qFµν
dxµ

dτ

dxν

dτ
= 0 (1.28)

Of course, by the constraint h = −m/2 and so manifestly conserved.
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1.5 Covariant Hamiltonian approach

The covariant Lagrangian

Lcov = −1

2
mηµν

dxµ

dτ

dxν

dτ
− qAµ

dxµ

dτ
(1.29)

yields the canonical four-momentum

pµ = − ∂Lcov

∂(dxµ/ds)

= m
dxµ
dτ

+ qAµ (1.30)

the minus sign being necessary to produce agreement with the noncovariant approach.

If we define the “Hamiltonian” to be

Hcov = −
[
(−pµ)

dxµ

dτ
− Lcov

]
=

1

2m
(p− qA)2 (1.31)

then Hamilton’s equations yield

dxµ

dτ
=
∂Hcov

∂pµ
=

1

m
(pµ − qAµ)

dpµ

dτ
= −∂Hcov

∂xµ
=

q

m
(pν − qAν) ∂µAν = q

dxν
dτ

∂µAν (1.32)

from which we obtain

m
d2xµ

dτ 2
=

d

dτ
(pµ − qAµ) = q

dxν
dτ

∂µAν − q∂A
µ

∂xν

dxν
dτ

= qF µν dxν
dτ

(1.33)

which is again eq. (??).
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1.6 Alternative covariant Lagrangian approach

An alternative covariant action is [Goldstein (2e) 326; Jackson (2e) 576; Coleman (2022) 50;
Rohrlich (1990) 160].

S =

∫
(−mdτ − qAνdxν)

=

∫
ds

(
−m

√
ηµν

dxµ

ds

dxν

ds
− qAν

dxν

ds

)
=

∫
ds Lcov (1.34)

where now s denotes an arbitrary parametrization of the worldline. We have

∂Lcov

∂(dxµ/ds)
= − m(dxµ/ds)√

ηαβ(dxα/ds)(dxβ/ds)
− qAµ

∂Lcov

∂xµ
= −q∂Aν

∂xµ
dxν

ds
(1.35)

giving the Euler-Lagrange equation

d

ds

(
m(dxµ/ds)√

ηαβ(dxα/ds)(dxβ/ds)
+ qAµ

)
= q∂µAν

dxν

ds

d

ds

m(dxµ/ds)√
ηαβ(dxα/ds)(dxβ/ds)

= q∂µAν
dxν

ds
− q∂νAµ

dxν

ds

d

ds
m
dxµ
dτ

= qFµν
dxν

ds

m
d2xµ
dτ 2

= qFµν
dxν

dτ
(1.36)

Observe that Lcov depends on s only through xµ and (dxµ/ds) so ∂Lcov/∂s = 0 and therefore the
second Euler equation says that dh/ds = 0. Indeed we find that h vanishes identically:

h =
∂Lcov

∂(dxµ/ds)

dxµ

ds
− Lcov

= −

(
m(dxµ/ds)√

ηαβ(dxα/ds)(dxβ/ds)
+ qAµ

)
dxµ

ds
+

(
m

√
ηµν

dxµ

ds

dxν

ds
+ qAν

dxν

ds

)
= 0 (1.37)
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1.7 Alternative covariant Hamiltonian approach

The covariant Lagrangian

Lcov = −m
√
ηµν

dxµ

ds

dxν

ds
− qAν

dxν

ds
(1.38)

yields the canonical four-momentum

pµ = − ∂Lcov

∂(dxµ/ds)

=
m(dxµ/ds)√

ηαβ(dxα/ds)(dxβ/ds)
+ qAµ

= m
dxµ
dτ

+ qAµ (1.39)

the minus sign again being necessary to produce agreement with the noncovariant approach.

Jackson (2e) 577 then suggests defining the “Hamiltonian” as

Hcov = −1
2

[
(−pµ)

dxµ

ds
− Lcov

]
= 1

2

[
pµ
dxµ

ds
−m

√
ηµν

dxµ

ds

dxν

ds
− qAµ

dxµ

ds

]

= 1
2

(pµ − qAµ)
dxµ

ds
− 1

2
m

√
ηµν

dxµ

ds

dxν

ds
(1.40)

We cannot obtain dxµ/ds in terms of pµ but if we let s = τ , then eq. (??) allows us to write

Hcov = 1
2

(pµ − qAµ)
dxµ

dτ
− 1

2
m

=
1

2m
(p− qA)2 − 1

2
m (1.41)

(Of course, the constraint above would seem to imply (p− qA)2 = m2 so that Hcov = 0.)

Hamilton’s equations applied to eq. (??) give

dxµ

dτ
=
∂Hcov

∂pµ
=

1

m
(pµ − qAµ)

dpµ

dτ
= −∂Hcov

∂xµ
=

q

m
(pν − qAν) ∂µAν = q

dxν
dτ

∂µAν (1.42)

from which we obtain eq. (??) once again

m
d2xµ

dτ 2
=

d

dτ
(pµ − qAµ) = q

dxν
dτ

∂µAν − q∂A
µ

∂xν

dxν
dτ

= qF µν dxν
dτ

(1.43)
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1.8 Lagrangian with Lagrange multipliers

A Lagrange multiplier approach [Barut (1964) 65] starts with

L = L+
λ

2

(
dxµ

dτ

dxµ
dτ
− 1

)
(1.44)

The Euler-Lagrange equation for λ yields

dxµ

dτ

dxµ
dτ

= 1 (1.45)

The Euler-Lagrange equation for xµ yields

0 =
d

dτ

(
λ
dxµ
dτ

+
∂L

∂(dxµ/dτ)

)
− ∂L

∂xµ
(1.46)

Multiplying by (dxµ/dτ) we have

0 =
dλ

dτ

(
dxµ

dτ

dxµ
dτ

)
+ λ

dxµ

dτ

d2xµ
dτ 2

+
dxµ

dτ

d

dτ

(
∂L

∂(dxµ/dτ)

)
− dxµ

dτ

∂L

∂xµ
(1.47)

or

dλ

dτ
=
dxµ

dτ

∂L

∂xµ
− dxµ

dτ

d

dτ

(
∂L

∂(dxµ/dτ)

)
(1.48)

which we can integrate (cf Barut, or just verify by differentiating) to obtain

λ = L− dxν

dτ

(
∂L

∂(dxν/dτ)

)
+ const (1.49)

Substitute into eq. (??) to obtain the equation of motion

0 =
d

dτ

([
L− dxν

dτ

(
∂L

∂(dxν/dτ)

)
+ const

]
dxµ
dτ

+
∂L

∂(dxµ/dτ)

)
− ∂L

∂xµ
(1.50)

If the Lagrangian is

L = −m− qAµ
dxµ

dτ
(1.51)

then (setting the constant to zero) we have λ = −m and so

d

dτ

(
m
dxµ
dτ

+ qAµ

)
= q∂µAν

dxν

dτ
(1.52)

as found before.
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2 Particle-field interaction

We follow Coleman’s Lectures on Relativity, ch. 3. [See also Jackson, ch 14; Rohrlich, ch 4.7-4.8
(1990) 77 ] The action for the electromagnetic field

SEM =

∫
d4x

(
−1

4
FµνF

µν − JµAµ
)

(2.1)

yields the equation of motion (in Lorenz gauge)

∂2Aµ = Jµ (2.2)

whose solution is

Aµ(x) = Aµfree(x) +

∫
d4y D(x− y)Jµ(y) (2.3)

where Aµfree(x) is a complementary solution and D(x) is the Green function

∂2D(x) = δ(4)(x), D(x) =

∫
d4k

(2π)4
eik·x

(−1)

k2
(2.4)

Choosing retarded boundary conditions, we have

Aµ(x) = Aµin(x) +

∫
d4y DR(x− y)Jµ(y) (2.5)

Evaluating the contour integral by passing below the poles we obtain

DR(x) =
1

4πr
δ(r − t) =

1

2π
δ(x2)θ(x0) (2.6)

See also Jackson (2e), sec. 12.11.

The covariant action for a charged particle

Spcl =

∫
dτ

(
−1

2
mηµν

dyµ

dτ

dyν

dτ
− qAµ

dyµ

dτ

)
(2.7)

yields the equation of motion

m
d2yµ

dτ 2
= qF µν dyν

dτ
(2.8)

Comparing eqs. (??) and (??), the charged particle produces the current

Jµ(x) = q

∫
dτ δ(4)(x− y(τ))

dyµ

dτ
(2.9)
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which generates the field

Aµ(x) = Aµin(x) +
q

2π

∫
dτ δ(z2)θ(z0)

dyµ

dτ
, zµ = xµ − yµ(τ) (2.10)

Let τ = τ0 be the point of the trajectory yµ(τ) satisfying z2 = 0, i.e. the unique event where the
past light-cone centered at xµ intersects the particle’s worldline

z0 = |z|
x0 − y0(τ0) = |x− y(τ0)| (2.11)

Observing that z2 decreases as τ increases, one has

δ(z2) =

∣∣∣∣∂z2∂τ

∣∣∣∣−1 δ(τ − τ0), ∣∣∣∣∂z2∂τ

∣∣∣∣ = −∂z
2

∂τ
= 2zν

dyν

dτ
(2.12)

Thus one obtains the Liénard-Wiechert potential (see also Jackson (3e), eq. 14.6)

Aµ(x) =
( q

4π

) vµ

z · v

∣∣∣∣
τ=τ0

, vµ ≡ dyµ

dτ
= (γ, γv) (2.13)

so v2 = 1. Define R ≡ z0 and n = z/R with all quantities evaluated at τ = τ0. Then

z · v = Rγ(1− n · v) (2.14)

Thus (Jackson (2e), eq. 14.8)

A0 =
( q

4π

) 1

R(1− n · v)
, A =

( q

4π

) v

R(1− n · v)
(2.15)

Consider a particle moving at constant speed in the +x direction and passing through the origin:

yµ(τ) = (γτ, γvτ, 0, 0), vµ = (γ, γv, 0, 0) (2.16)

Let’s evaluate the potential at xµ = (t, x, 0, 0). Then z2 = 0 implies t− γτ0 = x− γvτ0 so that

τ0 =
t− x

γ(1− v)
, zµ =

x− vt
1− v

(1, 1, 0, 0) z · v = γ(x− vt) (2.17)

yielding

Aµ(t, x, 0, 0) =
q

4π(x− vt)
(1, v, 0, 0) (2.18)

We’ll see from results below that this gives

Ex(t, x, 0, 0) = F01(t, x, 0, 0) =
q

4π

1

γ2(x− vt)2
(2.19)
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Coleman shows that the field strength tensor is given by

Fµν(x) =
q

4π

[
1

(z · v)2
zµaν +

(1− z · a)

(z · v)3
zµvν

] ∣∣∣∣
τ=τ0

− (µ↔ ν), aµ ≡ d2yµ

dτ 2
(2.20)

Alternatively, Jackson (3e), eq. 14.11 gives the equivalent expression (easily verified)

Fµν(x) =
q

4π

1

(z · v)

d

dτ

[zµvν
z · v

] ∣∣∣∣
τ=τ0

− (µ↔ ν) (2.21)

Jackson then derives (eqs. 14.13, 14.14) explicit results

E =
q

4π

[
n− v

γ2R2(1− n · v)3
+

n× {(n− v)× v̇}
R(1− n · v)3

]
B = n× E (2.22)

which reduce for non-relativistic motion to

E =
q

4π

[
n

R2
+

n× {n× v̇}
R

]
B = n× E (2.23)

Feynman, vol. 1, eq. 28.3 gives

E =
q

4πε0

[
n

R2
+R

d

dt

( n

R2

)
+
d2n

dt2

]
B = n× E (2.24)

It is remarkable that the fields are completely determined only by the behavior of the charge at
the retarded time.
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After changing changing his metric to ours, Rohrlich defines ρ = Rµvµ where Rµ is what we are
calling zµ so ρ is what we are calling z · v. Then Rohrlich defines uµ via

Rµ = ρ(uµ + vµ), u2 = −1, uµvµ = 0 (2.25)

Using v2 = 1, one easily verifies R2 = 0 and Rµvµ = ρ and Rµuµ = −ρ. Thus

uµ =
Rµ

ρ
− vµ (2.26)

Also using aµvµ = 0, one has

au ≡ −aµuµ = −a
µRµ

ρ
(2.27)

Then Rohrlich writes (after correcting for −4π due to his conventions)

F µν = − q

4π

[
vµuν

ρ2
+

1

ρ
(aµvν − auuµuν − uµaν)

]
− (µ↔ ν) (2.28)

which can easily be shown to agree with Coleman’s expression. Rohrlich also writes

F µν = − q

4πρ

d

dτ

(
vµRν

ρ

)
(2.29)

which agrees with Jackson’s expression.
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2.1 Radiation

Spacetime symmetry leads to a conserved energy-momentum tensor

T µνc =
∂L

∂(∂µAα)
∂νAα − ηµνL = −F µα∂νAα + 1

4
ηµνFαβF

αβ (2.30)

which is neither symmetric nor gauge invariant. By adding a (conserved) total derivative, we
obtain the symmetric (Belinfante) energy-momentum tensor

T µνb = T µνc + ∂α (F µαAν) = F µαF ν
α + 1

4
ηµνFαβF

αβ (2.31)

One observes that

∂µT
µν
b = F νλjλ (2.32)

Plugging in the field strength above, one obtains

T µνb =
q2

4πρ4
(
uµuν − vµvν − 1

2
ηµν
)

+
q2

4πρ3

(
2au

RµRν

ρ2
− au

vµRν + vνRµ

ρ
+
aµRν + aνRµ

ρ

)
+

q2

4πρ2
(a2u − aλaλ)

RµRν

ρ2
(2.33)

The energy flux is given by

S = E×B =
( q

4π

)2 ∣∣∣∣n× {n× dv/dt}R

∣∣∣∣2 n (2.34)

and integrating over a sphere gives the Larmor formula for power radiated

P =
2

3

(
q2

4π

)(
dv

dt

)2

(2.35)

agreeing with Coleman (eq. 3.172). Purcell and Morin write (eq. H.7)

P =
2

3

(
q2

4πε0c3

)(
dv

dt

)2

(2.36)

The relativistic generalization given by Liénard is (Jackson (2e), eq. 14.26)

P =
2

3

(
q2

4π

)
γ6

[(
dv

dt

)2

−
(

v × dv

dt

)2
]

(2.37)
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2.2 Regularization

Let’s alter the action to take the form

S =

∫
d4x

(
−1

4
F µνF

µν)
+

∫
dτ

(
−1

2
m0ηµν

dyµ

dτ

dyν

dτ
− q

∫
d4x Aµ(x)f(x− y(τ))

dyµ

dτ

)
(2.38)

where f(x) = λ4F (λx) for any F (x) obeying
∫
d4x F (x) = 1. We can write the electromagetic

action as

SEM =

∫
d4x

(
−1

4
F µνF

µν − JµAµ
)

(2.39)

where

J
µ
(x) = q

∫
dτ f(x− y(τ))

dyµ

dτ

= q

∫
dτ

∫
d4x′ f(x− x′)δ(4)(x′ − y(τ))

dyµ

dτ

=

∫
d4x′ f(x− x′)Jµ(x′) (2.40)

Because Maxwell’s equation is linear

∂µF
µν

= J
ν

(2.41)

the solution is

F
µν

(x) =

∫
d4x′ f(x− x′)F µν(x′) (2.42)

where F µν is the solution of

∂µF
µν = Jν (2.43)

Now using Fµν from above, and expanding in λ−1, Coleman obtains

F
µν

= λ
q

8π

(
dyµ

dτ

d2yν

dτ 2
− d2yµ

dτ 2
dyν

dτ

)
+

q

6π

(
d3yµ

dτ 3
dyν

dτ
− dyµ

dτ

d3yν

dτ 3

)
+O(1/λ2) (2.44)

Now plug this into

m0
d2yµ

dτ 2
= qF

µν dyν
dτ

+ F µ
ext (2.45)

(I am not sure about this! shouldn’t there be dependence on f(x) due to the altered action
eq. (??)?) to obtain

m0
d2yµ

dτ 2
=
λq2

8π

(
−d

2yµ

dτ 2

)
+
q2

6π

(
d3yµ

dτ 3
+
dyµ

dτ

d2yν

dτ 2
d2yν
dτ 2

)
(2.46)
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where we use

(dyν/dτ)(dyν/dτ) = 1

(d2yν/dτ 2)(dyν/dτ) = 0

(d3yν/dτ 3)(dyν/dτ) = −(d2yν/dτ 2)(d2yν/dτ
2) (2.47)

Defining the renormalized mass as

m = m0 +
λq2

8π
(2.48)

we can write

m
d2yµ

dτ 2
= F µ

rad + F µ
ext

F µ
rad =

2

3

q2

4π

(
d3yµ

dτ 3
+
dyµ

dτ

d2yν

dτ 2
d2yν
dτ 2

)
(2.49)

In the nonrelativistic limit (and restoring units) we have

m
d2y

dt2
=

2

3

q2

4πε0c3
d3y

dt3
+ Fext (2.50)

For a free particle this has a runaway solution

y = a + bt+ cet/λ, (2.51)

where1

λ =
2

3

q2

4πε0

1

mc3
=

2

3
α

~c
mc3

= 6× 10−24 s (2.52)

For a linear restoring force, the equation of motion is

d2y

dt2
= λ

d3y

dt3
− ω2

0y (2.53)

The ansatz y = y0e
iωt yields the third order equation

ω2 = iλω3 + ω2
0 (2.54)

two of the solutions of which are approximately (for small λω0)

ω = ±ω0 + 1
2
iλω2

0 (2.55)

1Coleman, eq. 3.158 says 5 × 10−25 s, but e is written in Gaussian units, so answer is off by 4π. Footnote 8
on p. 66 clarifies that Coleman is using Heaviside-Lorentz units, ε0 = 1 = c.

16



and thus

y = y0e
−1
2
λω2

0te±iω0t (2.56)

A real solution is of the form

y = y0e
−1
2
λω2

0t cos(ω0t+ φ) (2.57)

The time-averaged mechanical energy of the oscillator is

Emech = K + U = 1
2
mω2

0y
2
0e
−λω2

0t (2.58)

and the rate of energy loss

dEmech

dt
= −1

2
λmω4

0y
2
0e
−λω2

0t

= −1

3

(
q2

4πc3

)
ω4
0y

2
0e
−λω2

0t (2.59)

The time average of the square of the acceleration is∣∣∣∣dvdt
∣∣∣∣2 = 1

2
ω4
0y

2
0e
−λω2

0t (2.60)

and thus the energy loss is precisely consistent with the Larmor formula

dEmech

dt
= −P = −2

3

(
q2

4πc3

)(
dv

dt

)2

(2.61)
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3 Gravitational scattering

A relativistic particle in a gravitational field has action

S = −m
∫
dτ = −m

∫
dσ

(
dτ

dσ

)
= −m

∫
dσ

√
gµν

dxµ

dσ

dxν

dσ
. (3.1)

Euler’s equations then yield

d

dσ

(
gµν(dx

ν/dσ)

(dτ/dσ)

)
= 1

2
∂µgκλ

(dxκ/dσ)(dxλ/dσ)

(dτ/dσ)
. (3.2)

Setting σ = τ , we have
d

dτ

(
gµν

dxν

dτ

)
= 1

2
∂µgκλ

dxκ

dτ

dxλ

dτ
. (3.3)

We can rewrite this as

gµν
d2xν

dτ 2
= 1

2
∂µgκλ

dxκ

dτ

dxλ

dτ
− ∂λgµν

dxν

dτ

dxλ

dτ

= 1
2

[
∂µgκλ

dxκ

dτ

dxλ

dτ
− ∂λgµκ

dxκ

dτ

dxλ

dτ
− ∂κgµλ

dxκ

dτ

dxλ

dτ

]
(3.4)

which gives the usual geodesic equation:

d2xν

dτ 2
= −1

2
gνµ [∂λgµκ + ∂κgµλ − ∂µgκλ]

dxκ

dτ

dxλ

dτ
= − Γνκλ

dxκ

dτ

dxλ

dτ
. (3.5)

Returning to eq. (??), we can rewrite it as

dpµ
dτ

= 1
2
∂µgκλ

dxκ

dτ
pλ where pµ ≡ m

dxµ

dτ
. (3.6)

Since the Schwarzchild metric in isotropic coordinates

ds2 = A(r)(dx0)2 −B(r)(dx)2, r = x2 (3.7)

is independent of x0, i.e., ∂0gµν = 0, we can obtain a conserved quantity from eq. (??)

p0 = mA
dx0

dτ
= const = E (3.8)

where we have evaluated the constant at r →∞ where A→ 1. Then

dτ 2 = A(dx0)2 −B(dx)2 (3.9)
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together with

dx0 =
E

mA
dτ (3.10)

implies

B(dx)2 =

[
E2

m2A
− 1

]
(dτ)2

|dx| = 1

m

√
E2 −m2A

AB
dτ (3.11)

from which we have

dx0

dτ
=

E

mA
,

|dx|
dx0

=
A

E

√
E2 −m2A

AB

|dx|
dτ

=
1

m

√
E2 −m2A

AB
. (3.12)

In isotropic coordinates, the µ = i Euler equation (??) is

d

dτ

(
−Bdx

dτ

)
=

1

2

[(
dx0

dτ

)2

∇A−
(
dx

dτ

)2

∇B

]

=
1

2

[(
E

mA

)2

∇A−
(
E2 −m2A

m2AB

)
∇B

]
. (3.13)

Can we also start from ?

S =

∫
dt

√
A−B

(
dx

dt

)2

(3.14)

To first order in the gravitational field we have

A ≈ 1 + 2φ, B ≈ 1− 2φ (3.15)

so that eq. (??) becomes

d2x

dτ 2
= − γ2(1 + β2)∇φ

d

dτ

(
m
dx

dτ

)
= − mγ2(1 + β2)∇φ

dp

dt
= − mγ(1 + β2)∇φ . (3.16)

Equivalently, eq. (??) becomes

dpi = 1
2

[
∂iA p0dx0 − ∂iB p · dx

]
= ∂iφ

[
p0dx0 + p · dx

]
(3.17)

where the last equality holds to first order in the gravitational field. If we let then p0 = mγ,
pi = mγβi, and dxi = βidx0, then

dpi = −mγ(1 + β2)∂iφ dx
0 = mγ(1 + β2)gi dx0 (3.18)

the same as in eq. (??).
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