Charged particles (Dec 2025)
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In these notes, we use the mostly minus metric n9p = 1. (Feynman, Jackson, Dirac, Gross notes)

1 Charged relativistic particles

1.1 Noncovariant Lagrangian approach

The action for a charged relativistic particle in an external electromagnetic field is
[Goldstein (1e) 19, 207; (2e) 23, 322; Jackson (2e), 574; Tong: Classical Dynamics, 36]

S = / (—mdr — qA, dz")

= / (—m\/nw,dx“dxl’ —undx“>
—/dt —my[1— d—XQ—A0+Ad—X
- at) T g

~[ar

(1.1)

Under a gauge transformation A, — A, +0,x, one has L — L—q(dx/dt) so S is gauge invariant.
The canonical momentum is

oL

P= Glaxyany " A

where 7 is the (relativistic) mechanical momentum

m(dx/dt)
1 — (dx/dt)?

T =

While 7 is gauge-invariant, p is not. The Euler-Lagrange equation is

dp d dx
= == A) = —gVA° A=
AR i A +qv( dt)
that is
dm’ ; Jdx? 0 jda’
dr’ dx?
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dt dt
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Defining

0A

E:—VAO—E B=VxA (1.6)
we have
¢k Bk = eikektmg, Am = 9,47 — 9, A’ (1.7)
so that
d
T y(BE+vxB) (1.8)
dt
We define the “relativistic mass” (actually the kinetic plus rest energy) [Messiah, p. 883]
70 = m (1.9)
1 — (dx/dt)*
and the mechanical four-momentum
7 = (7%, ) — T, = m? (1.10)

which is gauge invariant, but not conserved. Since

T dx
we have
a7 dt
ar _ | dn
at — dt
=qv-E
0 NG
= q(—0;A” — 0y A") o (1.12)
We rewrite eqgs. (?7) and (?7?) as
= q (07A° — 9°AY) =2 ¢ (' AT — AT =2
dr q( ) dr * q( ) dr
dn® , - dx;
% = g(~T A" + aOAl)é (1.13)
or more compactly
dmt dz,,
Since m = m(dz* /dT), this is just
Azt dzx,
m d’/‘2 = QFMV? (115)



1.2 Conservation of energy
The energy of the particle is defined as

dx

= m + qAO
\/1— (dx/dt)*

=70 4 gA° (1.16)

Thus h is the sum of the kinetic plus rest energy 7¥ and the potential energy A of the particle.
Observe that

dh _dr° 44
a at T

= g(—0,A° — 80A’)d

dt

dx’
0 40
+q <80A + 0;A p >

=g ( - )
= 1.17
which is just Euler’s second equation
dh  OL
—+—=—=0 1.18
i o (1.18)
Thus the energy h of the particle is conserved if L does not depend explicitly on time.
We can define h as the fourth component of the canonical four-momentum so that
p* = (h,p)
=at + qA* (1.19)

which is not gauge invariant.



1.3 Hamiltonian approach
Inverting the equation for mechanical momentum gives

dx T

At rZtm2

Thus the Legendre transform is

H = o + qA°
1 — (dx/dt)?

= V72 +m2+ gA°
= V(P — qA)? +m? + A’

Hamilton’s equations give

dl’i B a_H B pi _ in

. o' \/(p—qA)2+m?

dp’ 0H (p—qA) - 0A 0

dt oz’ V(P —qA)? +m?
=qdi(v-A — AY)

which gives

dn’

pr —q(Op A" + 07 0;AY) + qO; (v AT — A°)

which of course is just eq. (?77).
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1.4 First covariant Lagrangian approach

The simplest covariant action is [Goldstein (1e) 209, (2e) 330; Coleman (2022) 50, 69]

S = / (—%de — undx“)

1 dz* dx¥ dx*
/ T( anu dr dr 1 “dT)
= /dT Leoy (1.24)

where d7 = /1, dxtdzv. This action is not reparametrization invariant. Using

8(3;:;;7) - _m% - un
we obtain the Euler-Lagrange equation
% ( Cilx“ +gA ) aMAV%
mazfu = q0,A C;V q@,,AM%
= unu% (1.26)

which is just eq. (?7).
Because Lo, only depends on 7 implicitly (through z* and dz*/dr), Euler’s second equation
implies a conserved quantity

OLoow  daxt
O(dxzr/dT) dr

d dret 1 dx* dx” dxt
:(_m%_QAPJ . + oMM = = +qAu—— -

h = - Lcov

d dr dr dr " ar
1 dx*dzx,
— Ik 1.2
2" dr dr (1.27)
By the equation of motion
dh da d*z,
dr dr dr?
B dz* dz”
- dr dr
=0 (1.28)
Of course, by the constraint h = —m/2 and so manifestly conserved.



1.5 Covariant Hamiltonian approach
The covariant Lagrangian

I 1 dz* dx” dx*
cov— —=MNypw———— — —
oM dr drt @ dr
yields the canonical four-momentum

_ aLCOV
P = "9 (da ds)

=m— +qA
de—i—qH

the minus sign being necessary to produce agreement with the noncovariant approach.

If we define the “Hamiltonian” to be

dxt
Hcov - — - S Lcov
1 2
=—(p—¢qA
5 (P —aA)
then Hamilton’s equations yield
dr*  OH. 1
= = —(p — qA")

dr Op,, m

dp“ . 0H, cov q dz,

— =L (p, —qA,)) O A" = B AV
dr oz, m (p 94,)0 4 dr g
from which we obtain
>zt d dx, 0A* dx,, dx,
= — (p* — gA*) = o*AY — = qF"—=
mn dr? dr (" —qA") =g dt Oz, dr 4 dt

which is again eq. (77).
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1.6 Alternative covariant Lagrangian approach

An alternative covariant action is [Goldstein (2e) 326; Jackson (2e) 576; Coleman (2022) 50;
Rohrlich (1990) 160).

S = /(—de — qA,dz")

dxt dxv dx?
— [ ds | —m /o — g4, S
/3<m T as Tas 4 ds)

_ / ds Lo, (1.34)
where now s denotes an arbitrary parametrization of the worldline. We have
_OLeov m(dzx,/ds) A
Ader[ds) —  \Jnus(dz®jds)(daPjds) "
aLcov 3Al, dz”
= — 1.35
oxH Town ds (1.35)

giving the Euler-Lagrange equation

d dz,/d dx”
a m( mﬂ/ 3) +un _ qauAVi
ds \ \/Nap(dz>/ds)(dz? [ds) ds
L m(dz,/ds) _ qauAydi _ qg)VAudi
35 /s (2 ) (4 85 s s
4 e
s dr g
d*z,, dx
_or, 1.36
mn dr? TEn dr ( )

Observe that L., depends on s only through z# and (dz*/ds) so 0Ly /Os = 0 and therefore the
second Euler equation says that dh/ds = 0. Indeed we find that h vanishes identically:

OLcow  da*
h = - Lcov
d(dzt/ds) ds

= — m(dx”/ds) + gA d£+ m di“%_'_ Aﬁ
V/Nap(dz/ds)(dzP [ds) 45 ) s Veras ds T s

=0

(1.37)



1.7 Alternative covariant Hamiltonian approach

[ dztdxv dz¥
Lcov - - v - Ay_ 1.38
T\ e ds ds 1 ds ( )

yields the canonical four-momentum

The covariant Lagrangian

_ a'l;COV
P = "5 (dar /ds)
m(dzx,/ds)

o (dz® /ds) (da? ] ds)

+qA,

the minus sign again being necessary to produce agreement with the noncovariant approach.

Jackson (2e) 577 then suggests defining the “Hamiltonian” as

dx
Hcov - _% l(—p;)% - Lcov:|

|, At [ detde o dat
_2p“ds n’wds ds q”ds
dxt dxt dxv
=5 (pu —qA,) T %m\/ Mo s (1.40)

We cannot obtain dz*/ds in terms of p# but if we let s = 7, then eq. (?7) allows us to write

dx*
Hcov = % (pu - qAM) dr - %m
1
= 5 -(p—qA) —jm (1.41)

(Of course, the constraint above would seem to imply (p — gA)? = m? so that He,, = 0.)

Hamilton’s equations applied to eq. (?77?) give

dz"  OHcoy 1

ar — (g A*
dr Op,, m (p aA”)
dp" OHeww  q dz,
at_ 9y —gA) P A = P rAv 1.42
dr oz, m (P = aA) 0 4 dr 0 ( )
from which we obtain eq. (?77) once again
Azt d dx, 0A* dx,, dx,
= — Ho_ A'u = a“AV — = F/Ll/ 143
mn dr? dr (P" —qA") =4 dr 4 Ox, dr 4 dr ( )



1.8 Lagrangian with Lagrange multipliers
A Lagrange multiplier approach [Barut (1964) 65] starts with

— A [dxt dx
L=L+=|—=t_1
+2(037 dr )

The Euler-Lagrange equation for A yields

datdv, _
dr dr

The Euler-Lagrange equation for z* yields

oo 4 (ydz 0L\ oL
~dr \ dr  O(dxr/dr) OxH

Multiplying by (dx*/d7) we have

0

_dX (dxtdx, )\dx“ d*z, N dz* d oL _ dat 0L
Cdr \ dr dr dr dr? = dr dr \ O(dz+/dT) dr Ox+

or

d\ _da" OL  dxt d oL
dr — dr Ox#  dr dr \ O(dw*/dT)

which we can integrate (cf Barut, or just verify by differentiating) to obtain

dx? oL
N= T — t
dr (6(dm”/dr)) +cons

Substitute into eq. (??7) to obtain the equation of motion

oo ([, A ( 9L N Jde, 0L\ 9L
~dr dr \o(dzv/ar)) T Tar T a(darjdr) ) T 9ar

If the Lagrangian is

dzt
L=-m-—qA,—
m = qAu—
then (setting the constant to zero) we have A = —m and so
d dx,, dz”
— | m—-+4+q¢A, ) =q0, A, —
dT(de T “) 1Ou Y dr

as found before.
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2 Particle-field interaction

We follow Coleman’s Lectures on Relativity, ch. 3. [See also Jackson, ch 14; Rohrlich, ch 4.7-4.8

(1990) 77 | The action for the electromagnetic field
Spm = / d*z (=1 F, F* — J'A,)
yields the equation of motion (in Lorenz gauge)
O*AH = J~

whose solution is

Ar(z) = Al (z) + / 'y D(x — y)J*(y)

where Af_ () is a complementary solution and D(z) is the Green function
d*k . (—1)
2 _ s(4 _ ik-x
9*D(z) = 6W(x), D(z) = / (27r)46 12

Choosing retarded boundary conditions, we have

Ar(z) = AL (x) + / d'y Dz — y)J"(y)

Evaluating the contour integral by passing below the poles we obtain

Dg(z) = 4—;5(7“ —t) = %5(1‘2)9(1‘0)

See also Jackson (2e), sec. 12.11.

The covariant action for a charged particle

1 dy* dy” dy*
pum— —_—— —_— A [E—
Spel / dT( 2m77lw dr dr T dT)

yields the equation of motion

L

e T4 dr
Comparing eqs. (??) and (?7?), the charged particle produces the current
duH
J(x) = g / dr %z — y(r) L
-
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which generates the field
dy*

(o) = (o) + 5 [ ar a0

- M=ot —yH(T) (2.10)

Let 7 = 79 be the point of the trajectory y*(7) satisfying 2% = 0, i.e. the unique event where the
past light-cone centered at x* intersects the particle’s worldline

2 = |z
2’ —y'(r0) =[x — y(70)| (2.11)
Observing that z? decreases as T increases, one has

-1

2
(T — 70), 02

or

o
or

2 v
_ 07, W (2.12)

o) = ~or dr

Thus one obtains the Liénard-Wiechert potential (see also Jackson (3e), eq. 14.6)

o= ()

A/ z-v

dy*
, vt = e (7,7v) (2.13)

T=T0

so v = 1. Define R = 2" and n = z/R with all quantities evaluated at 7 = 79. Then

z-v=Ry(l—mn-v) (2.14)
Thus (Jackson (2e), eq. 14.8)
1 q A
JUSYES R I A 215
47/ R(1—mn-v)’ 47/ R(1—mn-v) (2.15)
Consider a particle moving at constant speed in the +x direction and passing through the origin:
y'(1) = (y7,707,0,0), v = (7,70,0,0) (2.16)

Let’s evaluate the potential at 2 = (¢,x,0,0). Then 2? = 0 implies t — y79 = x — yvT so that

t—2x x — vt

702’7(1——"0)7 2 = - (1,1,0,0) z-v="(x—vt) (2.17)
yielding
AM(t,2,0,0) = m(m,o,m (2.18)
We’ll see from results below that this gives
Byt 2,0,0) = Fu(t,2,0,0) = L1 (2.19)

4 2 (x — vt)?
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Coleman shows that the field strength tensor is given by

q 1 (1—2-a) d*y"
Folr)=L | — .4, ., — (o), b= 2.20
() i |z U)Zzua + Goof 2,0 . (u > v) a 3 (2.20)
Alternatively, Jackson (3e), eq. 14.11 gives the equivalent expression (easily verified)
qg 1 d [zuvl,}
F, == — — (< 2.21
M (ZL’) 47T(Z'U)d7' 2 o (,LL V) ( )
Jackson then derives (eqs. 14.13, 14.14) explicit results
q n—v N nx{(n—-v)xv}
47 | 2R2(1—m-v)3 R(1—mn-v)3
B=nxE (2.22)
which reduce for non-relativistic motion to
_4([n _ nmnx {nx v}
 4rm | R? R
B=nxE (2.23)
Feynman, vol. 1, eq. 28.3 gives
q n d /n d*n
oot [ () 42
Areg {RQ * dt \ R? * dtQ}
B=nxE (2.24)

It is remarkable that the fields are completely determined only by the behavior of the charge at
the retarded time.
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After changing changing his metric to ours, Rohrlich defines p = R*v, where R* is what we are

calling z* so p is what we are calling z - v. Then Rohrlich defines u* via
R = p(u" 4 "), u? =1, utv, =0

Using v? = 1, one easily verifies R* = 0 and RFv, = p and RFu, = —p. Thus

R~
ut = — ot
p
Also using a*v, = 0, one has
"
. a R,
a, = —a'u, = —

p

Then Rohrlich writes (after correcting for —4n due to his conventions)

V2|
—% vpz; + p (a"v” — ayutu” — u"a”)} —(p+v)

P =

which can easily be shown to agree with Coleman’s expression. Rohrlich also writes

g — 44 (VIR
 dwpdr p

which agrees with Jackson’s expression.
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2.1 Radiation
Spacetime symmetry leads to a conserved energy-momentum tensor

oL
TH = — = 9"A, — "L = —F"O" A, + v F s FOP 2.30

which is neither symmetric nor gauge invariant. By adding a (conserved) total derivative, we
obtain the symmetric (Belinfante) energy-momentum tensor

T =T + 0o (FIAY) = FFOF,” + ji" Fog F’ (2.31)

One observes that

0T} = F"*jy (2.32)

Plugging in the field strength above, one obtains

2

14 q 14 14 v
T = p (w'u” — v'o” — L)
q* R*RY v*RY + vV R* a*RY + o’ R
+ 3 2a, 5 — Qg +
dmp p p p
2 [ 2%
q 2 r (BMR
+ T (a; —a’ay) 2 (2.33)

The energy flux is given by

SzEXBz(%)Q

n x {n x dv/dt}
R

r n (2.34)

and integrating over a sphere gives the Larmor formula for power radiated

po (L) (Y .

agreeing with Coleman (eq. 3.172). Purcell and Morin write (eq. H.7)

2 q? dv\?
P=-|——||— 2.36
3 (47‘(’6003) (dt) (2:36)

The relativistic generalization given by Liénard is (Jackson (2e), eq. 14.26)
2 (N 4| [dv\’ dv\?
p=2(L b I - 2.37
3(47r)7 [<dt) v (237)
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2.2 Regularization

Let’s alter the action to take the form

S = / d'z (= FuF") + / dr <—1m077uu(ily# 62" / d'z A, (z) f( - ym)%) (2.38)

where f(xz) = MF(A\z) for any F(z) obeying [ d*z F(x) = 1. We can write the electromagetic
action as

Sent = / d'e (“1F, F" — T'A,) (2.39)
where
@) =a [ dr sz -l >>dy“
x) =q T @ —y(m) -
dy*
= d d*a’ — —
—q [ar [t pa - 25O -y
= /d4x' flx —a")J*(2") (2.40)
Because Maxwell’s equation is linear
0,F" =T (2.41)
the solution is
F"(z) = /d4x’ flx — 2" F* (') (2.42)
where F* is the solution of
O, " = J¥ (2.43)

Now using F),, from above, and expanding in A~!, Coleman obtains

o dyt Py’ dPytdy"\ g (dPytdy” dyt &y
=\ L _ 4 & O(1/\2 9.44
8T <d7’ dr? dr? drt 6 \ dr3 dr dr dr3 +O/X) ( )

Now plug this into

Pyt —wdy,

F ~ + Fh
d7—2 =q d + ext
(I am not sure about this! shouldn’t there be dependence on f(x) due to the altered action

eq. (7?7)7) to obtain

(2.45)

mo

2, 1 )\2 d2u 2 d3u dud2yd2y
dy_i(_y> g_(y y' dy y) (2.46)
™

o dr? 8w dr? dr3 dr dr? dr2
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where we use

(dy” /d7)(dy, /dr) = 1
(& Jdr)(dy, /dr) = 0
(d®y” /dr®)(dy, /dT) = —(dzy”/dTQ)(dgyy/dTQ) (2.47)

Defining the renormalized mass as

A2
= . 2.48
m mo + S ( )
we can write
d>yH
dTQ :Frl;d+F£(t
2¢% (dPy*  dy* d*yY d?y,
o= (2Y WY 0 (2.49)
34m \ dr3 dr dr? dr?
In the nonrelativistic limit (and restoring units) we have
d2y 2 q2 d3y
S F.. 2.50
A T 3dmee ds (2:50)
For a free particle this has a runaway solution
y = a+ bt + ce'/?, (2.51)
where!
2 ¢ 1 2 he oy
34mey me3 3amc3 i ( )
For a linear restoring force, the equation of motion is
d*y d*y 2
The ansatz y = yoe™? yields the third order equation
w? = idw® + wd (2.54)
two of the solutions of which are approximately (for small Awy)
w = Fwy + 2idw] (2.55)

LColeman, eq. 3.158 says 5 x 10725 s, but e is written in Gaussian units, so answer is off by 4w. Footnote 8
on p. 66 clarifies that Coleman is using Heaviside-Lorentz units, ¢g = 1 = c.
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and thus

1
—3Awit Fiwot

Yy =Yoe €
A real solution is of the form

A

1
Yy =Yoe 2 wft cos(wot + @)

The time-averaged mechanical energy of the oscillator is

Epech = K+ U = %mw%yée‘“gt
and the rate of energy loss

dEmech
T — I muwgyge

1 q2 —)\UJZ

The time average of the square of the acceleration is

—>\w(2)t

2

dv
dt

1,42 —Awdt
= 3WoYpe

and thus the energy loss is precisely consistent with the Larmor formula

dEmech__P__2 q2 dv 2
dt - 3 \4ncd) \ dt
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3 Gravitational scattering

A relativistic particle in a gravitational field has action

dr dz# dxv
S——m/dT——m/da (%> ——m/daﬂgw,%%.

Euler’s equations then yield

d ( gw(daf”/da)) B

d 1 (da®/do)(dx? /do)
do (dr/do) 2 '

DruGex (dr/do)

Setting 0 = 7, we have

d dz? _1p dz" dx?
dr ngT _2“‘%/\617' dr
We can rewrite this as

d?x” 1 dx* da? dx” da?
guyﬁ — 2% dr dr v dr dr
1 dz* dz? dz* dz* dz* dx?
— 2| dr dr s dr dr rdu dr dr

which gives the usual geodesic equation:

d*x” 1 dz" da? dz" dx
=—59""[0 K ali -0 kN 5 = — Y — .
dr? 29" |0 + Oxx = O] dr dr A dr dr
Returning to eq. (??7), we can rewrite it as
dp, dx™ _da*
E = 53,19,{,\?]9 Where pH = md—T .

Since the Schwarzchild metric in isotropic coordinates
ds® = A(r)(dz°)* — B(r)(dx)?, r = x>

is independent of 2°, i.e., 9yg,,, = 0, we can obtain a conserved quantity from eq. (?7?)

0

po = mMA—— = const = F
dr

where we have evaluated the constant at r — oo where A — 1. Then

dr* = A(dz")? — B(dx)?
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together with

E
dr’ = —d 1
"= ——dr (3.10)
implies
E2
2 2
B(dx)* = {mQA — 1| (dr)
1 [E?—m?A

|dx| = . 1B dr (3.11)

from which we have

dz° E |dx\ A |E? —m?2A \dx] E? — m2A (3.12)
dr — mA’  AB '

In isotropic coordinates, the u = i Euler equation (77)

d dx 1| /dax® dx\ >
5(—35) =3 (7) VA= <d_) VB

E \? E? —m2A
(m) VA_(—m2AB )VB

_ /¢ 6 (3.14)

To first order in the gravitational field we have

N | —

(3.13)

Can we also start from 7

A1+ 20, Br~1-26 (3.15)
so that eq. (??7) becomes
d*x 9 9
g2 7 (1+8°)Ve
d dx\ 9 9
d
d—lt) = — my(1+B2)Vé. (3.16)

Equivalently, eq. (??) becomes
dp; = 3 [0;A pdz® — 0,B p - dx| = 9;¢ [p°da’ + p - dx] (3.17)

where the last equality holds to first order in the gravitational field. If we let then p° = my,
p' = myB, and da’ = 8'd2®, then

dp' = —m~y(1 + 5%)0;¢ dz® = my(1 + B*)g" da° (3.18)

the same as in eq. (77).
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