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PROBLEM}{: Consider & sequence of throws of a six-sided die.

(a) If the die is fair, what is the root-mean-squared deviation (to four significant figures) of the number
thrown? {Hint: use the expression An = 1/{n2) — {n} derived in class.]

(b) If a 1, 2, or 3 is twice as likely to be thrown as a 4, 5, ar 6, what is the root-mean-squared deviation of
the number thrown?

(c} If a 2 is twice as likely to be thrown as a 1, a 3 is three-times as likely to be thrown as s 1, etc. what is
the root-mean-squared deviation of the number thrown?

© Let F, be the probability of throwing an n. The sum of probabilities must be one: Zi=1 F, = 1. The mean
" value of the number thrown is

6
(ny=>"nP,.
n=1

_ Ina previous exercise you computed the mean value for each of the cases above. The root-mean-squared
~ - deviation of the number thrown is

6
An = /{n?} — (n)?, where  (n?) = an P,.
n=1

" {a) If the die is fair, the probabilities are equal, so P, = % Hence

1 7 1 91
' (n)=.E(1+2+3+4—!—5+6)=§=3.5000, {n?) =6(12+22+32+42+52—£—62}mFz15.167

so An =4 % a2 1.7078.

~(b) In this case, P, = % fori=1,2,3 and P, = § for i = 4,5,6. Hence

L -2 i .o n 0 L9 1 R | ] 35
=—{1+2+3)+=-(4+5+6) =3, e DO s T r2 ey 00 g ean
{n) :__9(+ +3)+ 5(4+5+6) W= gl +37) 5 1166

s0 An = 1/8 ~1.6330.
(c) In this case, B, = . (Check that 3°5_, P, = 1.) Hence

: 1 13 1
(n) = -2-5(12+2? +3% 4+ 42 + 52 6%) = 3 =483, (n)= 2—1(13+23+33+43+53+63) =21

80 An = ¥2 — 1 4907.
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2 PROBLEM C‘alculate A:r for un(m) the nth energy eigenfunction of a particle of mass m in a one-
dlmenszonal of w1dth L

i _"s_As we found in class, a pa,rtlcle ina hox of w;dth L has probability density

Pn(i!")___=_ E'Sin2 (WLﬂ) , . for O<az<lL

: ;"__':':and zero outmde the box, Where 7 IS the quenf;um number of the energy eigenfunction. The expectation
B value Of the pos:tion is

00 . 2 T
(a:) [m da: :cP f dz z sin’ n:ﬂ) % (;r%) -/0 dy y sin y = g

& :as we found in class The expecte,tlon va,lue of the square of the position is

B - 3 n
f dz :n P(w / d:c 2? sin? ('”_Ef) = % (-75'—71) f dy y* sin?y.
0

-W an".do tlus Integral by repeated mtegratmns by palts First we set

U= y?, dv = sin? ydy

- which implies

S d :2 Y oEx —qf — — 5}
i 'u, ydy? v =5y 4sm2y

: ....:'::.-.-so that the mtegrai becomes _
o Loy . 3 2 ¥

..dy y sm g,.':.— %— - yz (2y) ] -dy [y2 - %sin(2y)} = %— - yz sin(2y) -+ %fo dyy sin(2y) .
-'We can do the last mtegra.l by another 1ntegrat1on by parts, setting

'33: i =y, o dv = sin(2y) dy

s du=dy, v=-3 cos(2y) dy

g 'eo that.the mtegra.l becomes

f dyy sm(?y) ==5 cos(Zy) + / dy cos{2y) —% cos(2y) + —sm(2y)
_':_.: Puttmg these results together we obtam e '

E f dy y sm y —-%— yz sm(2y) -= cos(2y) + —sm(2y)
o

B :'Evaluatmg thlS at y = 7m and plugglng mto the expressxon f01 (z%) above, we get

.. 2 L \ 3 3 3 _E’E L2 1 1
L 7Tn '-_6 4__ _ 3. o2m2n? /-

. Consequently the uncertamty m pos1txon is rrlven by

m - V 27r2n2 '
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PROBLEM /1’{? i Let the normalized wavefunetion describing a particle of mass m in a box of width [, be
‘given by ¥(xz,0} = Az(L — z) for 0 < z < L and #(2,0) = 0 outside the box. (Obviously, this is not an
w4l energy eigenfunction.) '

{''(a) Compute the value of A. Assume it to be real and positive.
7l (b) Carefully sketch t(z,0), noting the position of the maximum.

“|["(c) Compute (z). Does your answer make sense?
(d) Compute Az. .

S "_5_'_'1_‘1_1_';:.pyb.babil_i.ty_c_iens_ity of this wavefunction is
: R Pz,0) = |9(z,0)° = AP L —2)*2  for O<z<L
o and ?gfo__'dﬁtsi_de the box.

S (a) The density must be normalized to unity. Hence

=P [t af = P a0 = APE [y 022 ) = laPL

: Smce weassumeA to_ bé_ real, it is given by 4 = /30/L°%.
(b} Thesketch of P(z,0) s.h_diws it to vanish at © = 0 and z = L, with a maximum at z = L/2.

o § (c) The é}@?éeﬁéﬁon value of position is

LT peo 30 fF L L
| (“’.)?fﬁ dz 2 P(z) :'ﬁ/n c7l:¢I3(L~~93)2=30Lf0 dyy*(l-9)* =3

oo
o Whlchmakespelfect sense given the result from (b}.

s (d) '_’I_‘h_e é}_{peéta.ﬁion value of the square of the position is

I 1 2

o From thése tWo_resu_lts, we 'I.nay compute the uncertainty in position:

" o Az = /@)~ (@) = L. _ 01s00L.

2v/7
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PROBLEM X9 Let u;(z) and uz(x) be the lowest two energy eigenfimetions for a particle of mass m
in a box of légth L. Let the state of the particle be described by the following normalized wavefunction:
Wlat) = Afur()e BV uy(z)emiBat/h].

(a) What is the value of the constant A7 {Assume it to be a positive real number, )

(b) Calculate {z) for this state. Since this state is not a stationary state, the expectation value can (and
does) depend on time. In this case, it executes simple harmonic motion. What is the angular frequency of
oscillation? What is the amplitude? Your answers should be written in terms of m and L.

- (a) The probability density for this wavefunction is

PG t) = 4 () = AP [lus @)  fual@)l® 4 (s () BN (z)em B Ea/h]

. Since the eigenfunctions u,(z) = 1/2/L sin(nwnz/L) are real, one can rewrite the probability density as
o Ei — Exlt
Pz, t) = |A)? [uf(m) + u3(2) + 2u1 (x)ug(z) cos (L—}—ﬁi)}
- 'Sizl:lce the eigenfuctions u;(z) and up(z) are orthornormal

S _ . . ;
] dz uy (z)* =f dz us(z)? =1, / dz uy(zhug(z) =0
0 i 0

'.the integral of the probability density is given by

n ke
dr P(z,t) = AP +1+0l =242 =1 — A=
/ﬂ 5 P(z,1) = |AP | | =204 -

since we assume A to be real and positive.

(b) The expectation value of position for a particle with this wavefunction is

(:c) = ]dm. P{x,t) = % [/OL dr zu(z) + /OL dz zus{z) + 2 cos ((-EH—;gz—ﬁ) fGL dz zul(m)ug(m}J

The expectation value for the eigenfunctions for a particle in a box were computed in class to be L/2. The
last integral is

L L 2 T

: 2 L 2nx 2 (L

S dr rug(adus(x :——/ dz zsin [ — sin(*—)zw—(——) f dy ysinysin(?
fo doue(®) = 7 | (L) L L\7) Jy ¥ (29)

. ,-H/‘!t
; i &
) .The i_ntegral can b_e_dpne int a variety of ways, giving —8/9, hence we have | i J o
Lo ' L Vet
— v
() L 16L o 3hw’t o
T) = — ~— —cos
2 9x? 2mIL2
where we have used the eigenenergies £, = h%n2n2 /2mL? for a particle in a box. Hence the expectation value
oscillates about the center of the box with angular frequency w = 3fin? /2mL? and amplitude 16L/9m? m
0180, L a et ol
. oA i
/}}»"\2} v v‘i H 5‘“"&'6
( o V? ) ;,.;‘é .
- 3 /\.w}“)‘“ L .
19 g T e e
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PROBLEM ‘f’ Let the wavefunction describing a particle of mass m in a box of width I, be given at time
t =0by ¢(z,0) = Az(L — x) for 0 < z < L and 9(z,0) = 0 outside the box. {This is the same wavefunction
considered in an eatlier problem.)

P (a) Compute (), the expectation value of energy for this state. Note that it is not one of the energy
eigenvalues of the particle in the box (though it is close).

(b) If one were to measure the energy of a particle described by this wavefunction, one would obtain one of
the energy eigenvalues E,, with a probability given by |en|?, where (2, 0) is written as the linear combination
of eigenfunctions ¥(z,0) = }_, coun(z). Assume that (z,0) can be approximately written as cjuy(z) +
caug(z), with other terms in the infinite series negligible. (Given the form of #(z,0), this is a very good
approximation. Why is there no contribution from us(x)?) Use your result from (a} to estimate the values
of {1} and |c3}?, the probabilities that the particle will be found to have energies £, and E, respectively.
(Three significant figures please.) :

~In an earlier problem, you computed the normalization constant 4 for this wavefunction to be 4 — 30/ L5,

{(a) The ekpectatio_n value of energy for this state is given by

L e " . - 30 - ~h* d? 30n° [t 5h°

"This is not equal to any of the eigenenergies K, = hzwgnz/QLz, though it is very close to the ground state
‘energy By ~ 4.9348K% /12, et /{ ,
S Al

(b) We can think of (z, 0) = Az(L—zx) as a linear combination of energy eigenfunctions, consisting primarily ﬂa ’

of uy(z) but with an admixture of even excited states tzm+1(2) as well. (There are no contributions from nd r s
u2m (%) because they are odd functions, whereas Az(L — z) is even.) Let us approximate ¥(z,0) as a linear
combi_n_é,tion of the two lowest even eigenfunctions eiur{z) + caus(x). Normalization of the wavefunction
implieg - :

: §CI|2 + EC3i2 =1
' The_e_xpeé_tati_on value of the energy is

lea? h?n? +lesl? 927 bR’
W r TN T T e g

One may solve these two equations to find

2 9 5 2 5 1
= - — — (.99 = e — Z s (),
je1] ) 835, les| T3 00165

~
JI5y .
L q?l":}a) i ’ A é Vs
Cn ﬂ A

e

€y

23

i

O'D*B"]O\

€y

20



8 I
L
’Iii j‘i
nv 5
L
, - 4
L ﬂl’i(:}J iyt
LA S R N W1 22
e A EAID
3 Y I




