Motor for four

FBD => Fret = macon

a intend of (antidenvalue)

Graphs: slope method [NY.TI]E, (NY.TE)D such that

Analytic:

 $V_{x}(t) = V_{ox} + \int_{0}^{t} a_{x}(t) dt$

unique: could point upindon Vox = Vx(o)

x(t) = xo + So vx(t) dt X= X10)

[feell: reded with posite when drawn graphs]

[N4.T3] A Mayor gets it wing! [N4.T4] E Special con: const accelerate

 $V_{\chi}(t) = V_{0\chi} + a_{\chi} \int dt = V_{0} + a_{\chi} t$ $V_{x}(t) = V_{0x} + a_{x} \int dt = V_{0} + a_{x}t$ $x(t) = X_{0} + \int (V_{0} + a_{x}t) dt$ $= X_{0} + V_{0}t + \frac{1}{2}a_{x}t^{2}$ $x(t) = X_{0} + V_{0}t + \frac{1}{2}a_{x}t^{2}$

N4T.1 An object's x-velocity $v_x(t)$ is shown in the boxed graph at the top left. Which of the other graphs in the set most correctly describes its x-position?

N4T.2 An object's x-acceleration $a_x(t)$ is shown in the boxed graph at the top left. Which of the other graphs in the set most correctly describes its x-velocity?

- N4T.3 If a car has an x-acceleration of $a_x(t) = -bt + c$, and its initial x-velocity at time t = 0 is $v_x(0) = v_0$, which function below best describes $v_x(t)$?
 - A. -b
 - B. $-b + v_0$
 - C. $\frac{1}{2}bt^2 + ct + v_0$
 - D. $-\frac{1}{2}bt^2 + ct + v_0$
 - $E. -2bt^2 + v_0$
 - F. $-\frac{1}{2}bt^2 + v_0$
- N4T.4 If a car's x-position at time t = 0 is x(0) = 0 and it has an x-velocity of $v_x(t) = b(t T)^2$, where b and T are constants, which function below best describes x(t)?
 - A. x(t) = 2b(t T)
 - $B. x(t) = 3b(t-T)^3$
 - C. $x(t) = \frac{1}{3}b(t-T)^3$
 - $D. x(t) = \frac{1}{2}b(t-T)$
 - E. $x(t) = \frac{1}{3}b[(t-T)^3 + T^3]$
 - F. Other (specify)

- N4T.5 Imagine that you are preparing an actual-size trajectory diagram of a freely falling object. The time interval between positions is 0.02 s. How long should you draw the acceleration arrows on your diagram?
 - A. 9.8 m
 - B. 0.20 m
 - C. 0.04 m
 - D. 3.9 cm
 - E. 0.39 cm
 - F. Other (specify)
- N4T.6 At time t = 0, a person is sliding due east on a flat, frictionless plane of ice. The net force on this person is due to a battery-powered fan the person holds that exerts a northward thrust force on the person. Assuming that drag is negligible, the eastward component of the person's velocity is unaffected by this force, true (T) or false (F)?
- N4T.7 Consider the person described in problem N4T.6. The person's trajectory will look most like which of the following? (The dot shows the person's position at t = 0, and east is to the right and north to the top.)

