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C3T.1 “The car rounded the corner at a constant velocity.”
Would this statement make sense to a physicist?
A. No, the word velocity is being used incorrectly.
B. No, a car has to slow down to turn a corner.
C. It could make sense or not, depending on the corner.
D. Yes, this statement is acceptable.

Imagine that a 1.0-kg cart traveling rightward at

1.0m/s hits a 3.0-kg cart at rest. Afterward, the

smaller cart is observed to move leftward with a

speed. of 0.75 m/s. What impulse did the collision

give the smaller cart at the expense of the larger?

A. None; the larger cart was at rest and so had no mo-

. mentum to give. |

B. None; the lighter cart gave an impulse to the more

‘massive cart, not the other way round. '

© C. 0.75 kg m/s leftward. -

D. 1.00 kg-m/s leftward.

E. 1.75 kg-m/s leftward.

F. Other (specify).

T. Both A'and B are correct.

/O ‘ '
( G3TNmagine that a moving cart (cart A) hits an identical
\. / art (cart B) at rest. Cart B remains at rest, and cart A

. rebounds with a speed equal to its original speed.
Cart B must have participated in some other in-
teraction during the collision process, true (T) or

false (F)?




C3T4

Imagine that two identical carts traveling toward
each other at the same speed collide-a Getorat
According to the momentum-transfer principle, if
one of the carts is observed to be at rest after the col-

lision, the other

A. Must be at rest also.
B. Must rebound backward with its original speed.

C. Must rebound backward with twice its original
speed. - |

D. Must continue forward with twice its original

speed. x
E. Does none of the above. This process violates the

‘momentum-transfer principle!
F. Other (specify). S
An 8.0-kg bowling ball hits a 1.2-kg bowling p.in. |
The force that the contact interaction exerts on the
pin has the same magnitude that it exerts on the ball,

T or F?




C3T.6

It is possible for a human being to have a Weight of
150 kg, T or F?

“C3T.7 M cup sitting on a table constantly receives upward
_momentum from the table, T or F? -

C3T.8

C3T.9

COAMT

A particle is launched horizontally with an initial
speed of 5 m/s and subsequently interacts only grav-
itationally with the earth. According to the three-
reservoir model, the horizontal component of the

. particle’s velocity after a few seconds has passed is

A. Somewhat greater than 5 m/s.
B. Essentially equal to 5 m/s.

C. Somewhat less than 5 m/s.
D.0.

E. Other (specify).

Which of the following statements involving vectors
are correct? Answer T if it is correct and F if it is not
(be prepared to identify the error if you answer F).

a. Pt = P + P2 implies that prot = p1 + p2.

b: p=mvimplies thatm = /0.

c. If5=1[0,—-5.0m/s, 0], thenv, = —=5.0m/s.

d. Ifo = [0, —5.0 m/s, 0], thenv = +-5.0 m/s.

e. If =50m/sand m = 2.0kg, then p =10 kg-m/s.
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Physics of the tennis racket

H. Brody

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 23 October £978; accepted 8 February 1979)

Several parameters concerning the performance of tennis rackets are examined

both theoretically and experimentally. Information is obtained about the location
of the center of percussion, the time a ball spends in contact with the strings, the
period of oscillation of a tennis racket, and the coefficient of restitution of a
tennis ball, From these data it may be possible to design a racket with improved

playing characteristics.

The physics of the tennis racket is a subject that very
few people paid attention to until Head produced his over-
sized Prince racket. In fact, in reading various tennis
magazines, looking at advertisements for tennis rackets, and
talking to tennis players, tennis professionals, or sports
equipment sales people one gets such conflicting statements
that one realizes that no one seems to understand the physics
of the tennis racket,

When a tennis racket is examined, one notes that the
basic shape and size have not changed in over half a century,
It is probable that these parameters were not determined
solely by playing characteristics but also by structural
considerations imposed by the strength of wood. When
metal rackets became popular a few years ago (and com-
posite fiberglass, boron, or carbon filament recently) the
manufacturers initially copied the general shape and size
of the wooden rackets, since they probably assumed that
they were optimum-—or that any radical change might not
sell, The same might be said for the strings—where gut has
successfully withstood the challenge of all the modern
synthetic materials for tournament play.

There seems to be no information in the published physics
or tennis literature about the optimization of size, shape,
weight, etc., of a tennis racket. Since everyone learned to
play with essentially the same type of racket, any radical
change would feel wrong and require the player to relearn
to some degree. Under these conditions the design of rackets
might evolve and improve slowly—but there is no way to
know if 4 racket that was radically different might not prove
better if a player originally learned with it.

One obvious change was the introduction of the Prince
racket with an oversized head. Head, its inventor, was very
carelul to produce a racket of the same overall length,
weight, and balance as a conventional racket so that it would
“feel” the same as a normal racket. To prove this, any av-
erage player can pick one up and play with it immediately.
However to play with it in an optimum manner does take
some retraining since it was designed to give its best per-
formance with the ball striking it 5 or 6 ¢cm closer to the
handle than on a normal racket, To understand the ad-
vantages of the Prince racket (without playing with it) some
simple kinematics must be investigated.

Consider a tennis racket of mass M suspended freely in
space. If a ball strikes it and imparts a momentum + Ap to
the racket, the center of mass of the racket will move with
a velocity V' =+ Ap /M.,

If the ball hits the racket at the racket center of mass, the
racket will translate but not rotate. If the ball hits the racket

482 Am. . Phys. 47(6), June 1979
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at a distance b from the center of mass, the racket will rotate
around the center of mass as well as translate. From con-
servation of angular momentum, the angular velocity of the
racket about the c.m. will be w = Apb/I. ., where I . is
the moment of inertia of the racket about its center of mass.
Assume the racket has been struck by a ball, the racket
(c.m.) is translating to the right with velocity ¥ and the
racket is rotating clockwise about the c.m. with angular
velocity w [Fig. 1(a)]. There then will be one point in the
racket which is instantaneously at rest, if the racket handle
is long enough, If this point is a distance a from the center
of mass then the condition for that point to have no velocity
is ¥ = w a. In other words, the otion due to the rotation
exactly cancels the overall translation (of the racket) at that
one point. Then

a=Y o BoM _len
w Apbfl.. bM’

The value of a is independent of how hard the ball hits the
racket (Ap) as it should be. Then ab = I, /M = k2 (radius
of gyration squared).

If a ball hits a racket at a distance b from the c.m. (at
point B) and the racket is held a distance a from the ¢.m.
(at point A), no force or impulse from the hand need be
imparted to the racket, since, in a frame of reference ini-
tially moving with the racket, the point A remains at rest.
In the frame of reference with the racket handle being
swung with velocity V7, the point 4 continues to move with
velocity ¥/ with no external force applied 1o it.

If the racket is held at point A then point B is called the
center of percussion and it is of some interest to determine
the distance a + b. This distance a + b can be obtained with
a simple experiment that uses the racket as a physical
pendulum. If the racket is allowed to swing freely about the
point B, the frequency of the ascillation (for small ampli-
tude) can be calculated and also measured.

In Fig. 1(b), the restoring torque is —Mg bsin  ~ —Mg
b 8 (for small ). Then 7 = I (d26/dt?), where I is the
moment of inertia about B. Using the parallel axis theorem,
Ig = Iy + Mb? and substituting this into the 7 = Ja
equation

—Mgbb=( +Mb2)5dia
8 om 7 R
The solution to this equation is a simple harmonic motion
with angular frequency @ = [Mg b/(Icm + Mb)]!/2 but

lem. = MK2, sow = [gh/(k? + b2)]!/2, However, since k?
= gb, w = [gb/(ab + b?)]!/2 = {g/(a + b)]'/2. Conse-

© 1979 American Association of Physics Teachers 482



(a)

(b)

le-z

Fig. 2. String deflection when ball hits (a) at center of strings and (b)
closer to one side of racket.

a doubling of the moment of inertia. it is also possible to
increase the diameter of the racket handle so that the torque
tending to prevent twisting is increased without increasing
the forces applied by hand,

Even if the ball is hit off center and the racket twists a
little, there is anothier effect that will tend to compensate
for it. If the ball hits off center, the deflection of the strings
is asymmetric. Neglecting spin of the ball, gravity, etc., in
the rest frame of the racket, it is expected that relative to
the plane of the strings the angle of the ball’s rebound will
be equal to the angle of its incidence. This will be true only
if the strings deflect symmetrically {Fig. 2(a)] which occurs
for hits in the center, For off center hits, the asymmetrical
string deflection tends to deflect the ball toward the center
[Fig. 2(b)]. Head was able to demonstrate this using a
high-speed motion picture camera with the racket held in
a vise. The data he obtained allowed him to determine the
angular error of the reboundirig ball as a function of position
and map out contours of angular error regions with error
less |than 10°, between 10° and 20° and greater than
20°,

This angular error depends upon several factors. If a
string of length L deflects (perpendicular to the plane of the
strings) by a distance y when hit by the ball and the ball
misses the center by a distance z, the angular error will be
proportional to (z/L) (y/L). There is not much a physicist
can say about reducing z, hence reducing the error, but y
and L are subject to analysis. The maximum value of the
string deflection can be obtained if the effective spring
constant of the strings is known (the slope in Fig. 5), the ball
momentum specified and the assumption that the motion

0.66|- g
064} .
o2} R
0%0r T todropdistance as a function of
°~53[: 7 drop distance, Ball was dropped
0.56 7  ontoa hard surface.

054+ B
0.52 b
osak 1

¢ -
400

Fig. 3. Ratio of rebound height

FRACTIONAL BOUNCE HEIGHT

[} I(‘)O
DISTANCE OF BALL DROP (em)

i i
200 300
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1.2
E 1O 4
L J
3 os 1
5 4 Fig. 4. Deformation of a tennis
2 08 j ball'as a function of the applied
@ | force. The ball was placed in a
& 04 | rigid hemispherical cup so that
- ' only one side deformed.,
a 0.2 1

0d—L b Lt 1 1 |
0 20 40 60 80 100 120 140 |60 180
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is simple harmonic is made. Then [ F dt over Y% cycle
equals Amw. Since F = —ky and y = A sin w ¢, the ampli-
tude A of the deflection can be obtained: 4 = (Av/2)
(mfk)'/2, where m is the mass of the ball, (The mass of the
strings is neglected.) The value of & is a linear function of
T/L, the string tension divided by the string length and also
depends upon the effective number of strings that deflect.
When all of this is put together, the angular error Af =
(CzAv/L) (m/LT)!/2, where C is a constant.

It is then quite clear that increasing the size of the racket
head (increasing L) reduces this error, hence increases the
effective area of the racket within which this error is tol-
erable. It is also clear that an increase in string tension will
reduce this error somewhat,

Ariother interesting result is that this error is proportional
to Av, the ¢change in the ball velocity, Consequently, when
ihe baill is hit hard, upless it is hit dead center on the racket,
it may not go exactly where it is aimed, This compounds the
difficulty of hard hits, which, due to their kinematics, al-
ready have very little margin for error,

The string tension also influences how long a ball spends
in contact with the strings (dwell time) and the velocity at
which the ball teaves the racket.2 To optimize these pa-
rameters various measurements have to be made, including
a determination of some of the properties of tennis balls.

The most surprising thing is that it appears that stringing
the racket looser rather than tighter will actually lead to
slightly higher ball rebound velocities (more “power™). This
is due to the fact that tennis balls have a rather low coeffi-
cient of restitution and a dwell time on the strings which is
short when compared to half of the natural period of vi-

Fig. 5. String deformation asa
function of applied force. The
racket head was braced and the

STRING DEFORMATION (cm) -
=

S TN TN 2500 T SN N O S I O I}

I'T 1Ty U rrrrrruorrrir
o,

08
force was applied over a circu-
08 lar area of 12 cm2,
04
0.2
1 I 1 1 i 1
0 B0 160 240 320 400 480

FORCE (Newtons)
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of a particular point on the racket is a function of its dis-
tance from that point. Moving the impact point several
inches toward the body should reduce the velocity of the
racket at the impact point by less than 10%, so this effect
can probably be ignored, (It may be somewhat more sig-
nificant in the serve when the wrist is snapped—which
makes the pivot to impact distance considerably shorter.)

The length of time that a ball spends in contact with the
strings of the racket can be determined by direct mea-
surement or it can be approximately calculated from static
measurements made on the ball and strings. If the string-
ball system is treated as a sitmple harmonic oscillator, then
the dwell time of the ball on the strings will be half the
natural oscillation period of the system. The effect “k”
(spring constant) of the strings is a function of the stringing
tension, gauge and type of string, size of the racket head,
etc. This k was determined for the strings of several different
rackets by measuring the delection of the strings as a
function of applied force. Typical measured values ranged
from 2 to 3.5 X 10* N/m (the slope of Fig. 5). A lennis ball
has a mass of 0.060 kg, leading to a natural frequency of
oscillation of 1004 [f = w/2m = (1 /27) (k/M)!/2] and a
dwell time of 4,5 X 1073 sec,

The direct measurement of dwell time can be accom-
plished in a number of ways, i.e., by using high-speed motion
picture photography (greater than 1000 frames/sec), by
taking a series of single flash pictures of a repetitive
event—each picture at a slightly different electronic delay
or by a method using a laser, photodetector, and an oscil-
loscope that I have developed.

The apparatus for the laser method is shown in Fig. 6.
The ball is placed on the racket strings and the laser is ad-
justed in position so that its beam is parallel to the re-
bounding surface and is exactly one ball diameter above it
(part of the beam is intercepted by the ball at rest). A
photodetector (silicon solar cell) is positioned in the beam
beyond the ball and the output of the detector fed to an
oscilloscope on internal trigger. The ball is then re-
moved.

The ball is then dropped onto or propelled at the re-
bounding surface. The ball passing through the laser beam
blocks the light from the detector and triggers the scope
sweep. The light will again hit the detector when the ball
has passed completely through the beam. However, due to
the position of the laser and rebounding surface, this will
only occur while the ball is in contact with the surface
(strings). As the ball leaves the surface, it again intercepts
the laser beam and cuts off the light to the detector. The
resulting scope trace shows a period of time with no light
(ball moving toward surface), a period of time with light
(ball in contact) and a second period of no light (ball re-
bounding). This method not only gives the dwell time, but,
since the ball diameter is known, it gives the velocity of in-
cidence and velocity after rebounding—hence the coeffi-
cient of restitution. If the ball does not cut through the laser
beam at a diameter (the center of the ball misses the beam
by a distance Ax) then there will be an error in the timing
due to the fact that the beam wili be cut by a chord rather
than a diameter. The chord, being shorter than the diameter
by a distance 4(Ax)2/D will cutoff the light for less time

"and will also increase the apparent dwell time corre-
spondingly. This timing error will be 4(Ax)2/vD where v
is the velocity of the ball and D its diameter. The fractional
error in the time the light is cut off is then 4(Ax)2/D and
the fractional error in the dwell time (¢) will be 4(Ax)2/Dut.

486 Am. J, Phys., Yol. 47, No. 6, June 1979

Table 11, Coefficients of restitution.*

Ratio of
rcbound COR from
height to drop velocity
Surface height COR  measurcments

Lead brick 0.520 0.721 0.767
Prince racket (70-Ib tension) 0.716 0.846 0.887
Prince racket (50-1b tension) 0.730 0.854 0.901
Spalding Smasher (unknown 0.726 0.852 0.895

tension)

2These data were taken with the ball dropped from a heightof 3.7 m above
the rebounding surface. It is the average of data taken with several types
of tennis balls (pressureless Tretorn, Penn ball, and Spalding Australian
ball). The COR values obtained by direct velocity measurements (laser
method) are consistently higher than the rebound measurements by about
0.05. This is due to the air resistance which reduces the kinetic energy of
the ball during both its fall and rise, and therefore give lower values for
the COR. For these data the racket head was clamped.

For Ax of order 1 cm, D = 13.2cm, v = 800 cm/sec and ¢
= 5 X 1073 sec the time errors are 2% and 7.6%, respec-
tively. To reduce this error, a pair of plane mirrors was set
up and the laser beam multiply reflected before hitting the
detector. The spacing between adjacent beams was of order
1 cm which leads to a maximum spatial error Ax = 0.5cm
and a maximum error in dwell time of less than 2%,

A second error in dwell time is present if the laser beam
is not exactly one ball diameter above the rebounding sur-
face. If the placement error is Ay, then the dwell time will
be in error by 2 Ay/v. An error Ay of 2 mm then leads to
an error in timing of 0.5 X 1073 sec, so an effort was made
to have the beam within 1 mm of the ball top. The results
of these measurements with several different rebounding
surfaces are shown in Table I11. ’

The predicted dwell time of 5 X 1073 sec seems to be
confirmed by these measurements. The tennis rackets used
were those that were readily available, It is clear that these
measurements should be repeated using a number of iden-

“tical rackets, each strung with different material and a

variety of tensions,

The tennis racket frame also has a natural period of vi-
bration which is determined by the mass and mass distri-
bution of the frame, the clasticity or stiffness and the
damping of the oscitlations. The parameter of interest is

Table 111, Typical dwell times (msec).2

Type of ball
Rebounding Spalding Tretorn
surface Penn Australian (pressureless)
Lead brick 39 4.5 4.5
Prince (70 Ib) 6.1 6.3 6.3
Prince (50 1b) 6.5 6.7 6.4
Spalding Smasher 6.4 6.8 6.6

SAll balls were dropped from a height of 3.7 m. Their measured velocity
at impact (8.3 m/sec) was slightly lower than the theoretical value (8.5
m/sec) because of air resistance. One Prince racket was strung with a
synthetic at 70-Ib tension, the other Price with gut at 50-1b tension and the
Spalding Smasher with synthetic at an unknown tension. The racket head
was clamped for these data.

H. Brody 486



M 7
[0 e W(S %?M
- 6.l
Nz
/]
/% /-W
;;ﬁé % :,JL&Q’&Z = 2’_7:@
s }ﬁ 7
%ﬁ z aj6
g
e
0 = = 25
e */F [Zwl%ﬁ ZL

(0‘_()07, k})ﬁ va*’/g )2’
- Z"”M/f o
L (0.1w)

-
o

h? > 6.4 sz
= Q@{@) - f{ m}
p CQ’”‘ v*"/o &“:—;/»/J






