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Study of markets

» General equilibrium (GE) theory

> Seeks to explain the behavior of supply, demand and
prices in an economy

» Partial equilibrium vs GE

Competitive equilibrium (CE)

» AKA Walrasian equilibrium

» Formal mathematical modeling of markets by Leon
Walras (1874)

» CE consists of prices and allocations
» Equilibrium pricing: demand = supply
» GE = CE, but CE # GE
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Background

» Good news

» CE exists in Walrasian economy

» Proved by Arrow and Debreu (1954)
» Bad news

» Existence proof is not algorithmic

Debreu

Background

» 15t Welfare Theorem |
» Any CE (Walrasian equilibrium) leads to a “pareto

optimal” allocation of resourﬁes

» Social justification

> Let the competitive market do the work
(everybody pursuing self-interest)

> It will lead to pareto optimality (socially maximal
benefit)
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Timeline

» 1954 - 2001

> We are happy. Equilibrium exists.
Why bother about computation?

» Sporadic computational results

» Eisenberg-Gail convex program, 1959
» Scarf’s computation of approximate fixed point, 1973

» Nenakov-Primak convex program, 1983

Today’s markets
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Electronic marketplaces

amazon
N/
Alixxpress |
Walmart > <

9
Need for algorithms
> New types of markets
> The internet market
> Massive computational power available
> Need to “compute” equilibrium prices
> Effects of
» Technological advances
> New goods
> Changes in the tax structure
» Deng, Papadimitriou and Safra (2002)-
Complexity of finding an equilibrium; polynomial
time algorithm for linear utility case
» Devanur, Papadimitriou, Saberi, Vazirani (2002) -
polynomial time algorithm for Fisher’s linear c
10
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Fisher economy

» Irving Fisher (1891)
» Mathematical model of a market

Fisher's apparatus to compute
equilibrium prices

11

Fisher economy




utility

Utility function

amount of milk

13

utility

Utility function

amount of bread

14
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Utility function

utility

amount of cheese

15

Total utility

» Total utility of a “bundle” of goods
= Sum of the utilities of individual goods

16
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Easy problem

» Prices given
» What would be the optimal bundle of goods
for a buyer?

Bang-per-buck (BPB)
Example: u,/p, > ui/py > u3/p;3

Fisher market - setup

» Multiple buyers, with individual
budgets and utilities

» Multiple goods, fixed amount of each
good

» Equilibrium/market-clearing prices
» Each buyer maximizes utility at these prices
» Buyers will exhaust their budgets
> No excess demand or supply

18
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Fisher’s linear case

» Model parameters (what's given)
» n divisible goods (1 unit each wlog) and n" buyers
> ej= buyer i's budget (integral wlog)
» uj;= buyer i's utility per unit of good j (integral wlog)

b Linear utility functions

» Want (not given): equilibrium allocations

> x;; = amount of good j that i buys to maximize

his/her utility u,(X) = En Uu.x,
i =1 (7hdd7]

» No excess demand or supply

19

Dual (proof later)

» Want (not given): equilibrium/market-
clearing prices

» Prices: ps, P2, -, Pn

> After each buyer is assigned an optimal basket of
goods (x;;’s) w.r.t. these prices, there’s no excess
demand or supply

> X;i’s at these prices: equilibrium/market-clearing
allocations

20
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Can we formulate an optimization
routine? “

» Does LP work?
» Anything else?

Main challenge

Global constraint:
V] Xy = 1

26

4
R
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Eisenberg-Gale
Formulation of
Fisher Market

28

How to devise duals of

nonlinear programs?
Lagrange function
KKT conditions
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Eisenberg-Gale convex program
(1959)

» Equilibrium allocations captured as

» Optimal solutions to the Eisenberg-Gale convex
program

» Objective function

> Money weighted geometric mean of buyers' utilities

1) e .
max(l |uf") 2 ©max(| |uf‘)©max2.ei logu,
l
i i

29
Eisenberg-Gale convex program
maxz e; log (Z Ui xij>
i J
subject to
Z:xij < 1, Vj
i
xl-j = O, Vi,j
» Lagrange function
L(x,l,u) = —Zei logz UjjXij + le (Z Xij— 1) +ZZMU(—XU)
i J ] 12 L]
30
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KKT conditions

» Stationary condition ) B LIRS )

i
» Primal feasibility in‘,- <LVj
i
x}“j >0,Vi,j
» Dual feasibility Al = 0,vi,

» Complementary slackness

A;(Zx;j—1>=o o 4>0= ) x=1
i

15
ME} (—xfj) =0 © x> 0= py; =0

31

Does Eisenberg-Gail convex

program work for Fisher market?

» Prove: There exist market-clearing prices iff
each good has some interested buyer (someone
who gets positive utility for that good)

32
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Example

» 2 buyers, 1 good (1 unit of milk)

Buyer 1
Budget, e; = $100
Uq1 = 10/unit of milk

Buyer 2
Budget, e, = $50
Up1 = 1/unit of milk

Solution

P Xqq =2/3, X21 = 1/3

function 100 log(10 x) + 50 log(1 — x)
maximize
domain D=x=1

obj. 150 X represents X1
fun.

100+

50+

=50

34
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Solution

> Why X11 = 2/3, X1 = 1/3?
» Set price of milk = $150/unit

function 100 log(10 x) + 50 log(1 — x)
maximize
domain D=x=1

150 F X represents Xy |
\

100 -

50+

-50r1

35
Primal-dual
> pj
= The price of good j at an equilibrium
= Dual variable corresponding to the primal
constraint for good j: ixu =<1
36
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Interesting properties

» The set of equilibria is convex
» Equilibrium prices are unique!

» All entries rational => equilibrium allocations

and prices rational

42
Flow
Max Flow & Min Cut
Ref: Ch 7 of Kleinberg-Tardos
Slides adapted from the Algorithm Design textbook slides
[Kleinberg, Tardos, K. Wayne, P. Kumar]
43
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History: Schrijver (2002)

» http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
» Soviet rail network: Harris and Ross [1955] (declassified 1999)

44

Big picture

» Tolstoi (1930): Find max flow
» Harris & Ross (1955): Find min cut
» Ford & Fulkerson (1956): They are the same

» Their proof: combinatorial
» Another proof: LP duality

45
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Applications

hydraulic
T

airports, rail yards,  highways, railbeds, TSIt

financial

transportation

46

Applications

> Fisher market

> Network connectivity

> Bipartite matching

» Data mining

» Open-pit mining

> Airline scheduling

> Image processing

> Project selection

> Baseball elimination

> Network reliability

> Security of statistical data
> Distributed computing

> Egalitarian stable matching
> Distributed computing

» Many many more . . .

47
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Max flow problem

48
Max flow network
» Directed graph (may have cycles) “‘
» Two distinguished nodes: s = source, t = sink |
» c(e) = capacity of arc e (integer)
\ \T/ 10
Capacity — 15 b 10
| \\\\\\\47////
49
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Definition: s-t flow

» Assignment of integer "flow"” >= 0 on each aré;

> (Capacity) Can't exceed arc's capacity

> (Conservation) flow in = flow out at any node = s, t

» Flow value
= total flow into t = total flow out of

Capaaty —15

4
Flow \@)

Can we increase the flow value!

» Capacity and flow conservation constraints
are satisfied

» Further increase in flow value?

3 a\l
5 ® 8 6
\1 T

40 6 150

Flow
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Max flow problem

» Compute the maximum value of an s-t flow

Algorithms for
max flow

53
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First try: greedy

» Start with f(e) = 0 for all arcs e
» Repeat until stuck:

» Find an s-t path where each edge has f(e) < c(e)
» Push more flow along that path

54
Greedy doesn't work- why?
10
0
greedy = 20
optimal = 30
55
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Fix: residual graph

» A way of undoing previous flows

capacity

oo (G

flow

residual
< capacity

w Residual iraih

6

N
residual
capacity

56

Ford-Fulkerson algorithm

> Iteratively find s-t paths that admit more
flow in the residual graph

> Such s-t paths: augmenting paths
» Push more flow along augmenting paths

» No further augmenting path?
» Optimal solution!

57
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Ford-Fulkerson Demo

58

Running time of Ford-Fulkerson

» At most nC iterations
» Total running time: O(mnC)
> n = # of nodes
> m = # of edges
» C = max capacity of any edge
» Not strongly polynomial

> There are strongly polynomial algorithms

59
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Min cut problem

60

s-t cut

» Partition the nodes into two sets A and B
such that sisinAand tisin B

» (A, B) is called an s-t cut

» Capacity of s-t cut (A, B)
cap(A, B) = sum of capacities of arcs out of A

Capacity = 10 + 5 + 15 9
=30
10 4 15 15 10
5 :+\ w .
10

8
4 6 15
30

N
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s-t cut: more example

Capacity =9 + 15 + 8 + 30

Min cut problem

» Find an s-t cut of minimum capacity

Capacity =10 + 8 + 10

11/5/19
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Max flow solution

> Max flow value is also 28!

Max flow vs. min cut

65
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LP formulation: max flow
flow

|
» Maximize V(f)= E f(e)

eoutof s

capacity

» Subject to
0 =< f(e) = cle), Ve

Y fle) = > fle), Vv excepts.t

e into v e out of v

Integrality theorem: if all capacities are integers,
then there exists a max flow with all integer flows.

66

LP formulation: min cut

» Dual of max flow

» Weak duality: any flow <= any cut capacity
> Proof (on board) without using LP duality

» Strong duality: max flow = min cut capacity
» Ford-Fulkerson's proof without using LP duality

67
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Max-flow min-cut theorem

» Ford & Fulkerson (1956)

» In any network, the value of the max flow is
equal to the value of the min cut.

69
How to: max flow = min cut
» Want an s-t cut or partition (A, B)
» A=s and all nodes reachable from s in the
final residual graph
» B = rest of the nodes
70

11/5/19

30



Algorithm for
Fisher Market

Max Flow

71

Reminder: Fisher’s linear case

» Model parameters (what's given)
» n divisible goods (1 unit each wlog) and n’ buyers
> e; = buyer i's budget (integral wlog)

» u;j=buyer i's utility per unit of good j (integral wlog)
> Linear utility functions

» Want (not given): equilibrium allocations
» x;; = amount of good j that i buys to maximize

his/her utility %(X)= E; U Xi;
» Want (not given): equilibrium prices p4, pz,
» No deficit or surplus of any good
» No deficit or surplus of buyers’ budgets

eoey pn

72
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Reminder: KKT conditions of
Eisenberg-Gale convex program

» Optimal solutions x;;’s and p;’s must satisfy:
1.VjeA: pj >0.
2.VjeA: Dj > 0= EieAxij:L

3. Vi € B,Vj € A: i g Zuca T

(2

4. VieBVje€A:z;; >0 =>%:.L _ z!-eifij$ij'

» No deficit or surplus of goods

» Can show no deficit or surplus of buyers’ budg

73
|dea of the algorithm
» Look at individual optimization problem
» Buyer i’s optimization program:
max Ejul.jxij
S.t. E,-pixif <e,
» Global constraint:
Vj Eixij =1
74
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Example

75

Bang-per-buck = utility/price

$100 0.50
$60 0.50
$20 0.40
$140 © 0.03

76

76
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Bang-per-buck = utility/price
$100 O 10

100 ” '
60 ©

s20 © ] -
e o B -

$20

$40

$10

$60

0.50
0.50
0.40

0.03

77

Bang-per-buck = utility/price

$100 O 10
20

“§

60 @

$20

$140 ©

$20

$40

$10

78
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Equality subgraph

» Buyer is happiest when she can buy goods in

equality subgraph

» How to maximize sales (market clearance) in

the equality subgraph at a given price?

100
t e
20

Max flow

140

20
40
10

60

80
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|dea of the algorithm

=N

82

Initialize

» All prices = 1/n, n = # of goods
» Assume

> Each buyer has integral amount of money

11/5/19
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How to raise prices?

» We do not want to kill off any edge from the

equality subgraph
J ui ulk
1 pj pk
k — & — ik
pj ij

» Multiply prices by the same number x
» Initially x = 1

83

Algorithm

» Initially x = 1, then xT
» How to increase x? (Later)

100

t e

20

140

84
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Algorithm

» x = 2: Abuyer’s surplus money = 0 (Event #1)

Algorithm

» Reinitialize x = 1, work the active part
» Terminate: All are frozen

38



Algorithm

Note: In the original algorithm, the
active buyers are partitioned into sets:

» x=1.25 (Event #2) max-surplus buyers and the rest (not
shown here for presentation, but x is

relevant to the max-surplus buyers).

Algorithm

» In case of event #2:“Unfreeze” the relevant
part and recurse

88
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Question
» Is this scenario possible?

» No. Every buyer must have some goods that
maximize BPB. Can't freeze a set of goods unless

all interested buyers of those goods run out of
Frozen

89

More example

» 2 buyers, 2 goods

Price?

Price?

90
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Example (continued)

Edges maximizing BPB

e G

utility: (1,1)

> Initialize gll prices to 2
» Compute g "balanced flow" (not shown here)
» Find the buyer(s) with the max surplus money

» Nothing frozen: No subset of goods for which al
interested buyers run out of money

91

Example (continued)

Edges maximizing BPB

1)

» Increase prices of goods that the max-surplus
buyers are interested in

» x >0 => edge from 1 to 1 disappears
» x =2 =>» New edge (event 2) from 2 to 2

92
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Example (continued)

Edges maximizing BPB

21

» Increase prices of goods that the max-surplus
buyers are interested in

» x = 7% = All goods frozen =» equilibrium

> Note: all buyers run out of money

93
Running time
» We can compute x values at event #1 and #2
efficiently \
» Balanced flow is polynomial, but not strongly
polynomial
» Running time depends on the amount of money
each buyer has
» O(n* (logn + nlogU + logM)) applications of max-
flow
» n = # of goods
» U = max u;; for any i and j
» M = total amount of money of all buyers
94
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