
11/5/19

1

CSCI 3210:
Computational Game Theory

Mohammad T. Irfan

Email: mirfan@bowdoin.edu
Web: www.bowdoin.edu/~mirfan

Many of the slides are adapted from Vazirani's and
Kleinberg-Tardos' textbooks.

Market Equilibria:
An Algorithmic Perspective

Ref: Ch 5 [AGT]
Ch 7 [Kleinberg-Tardos]

1

Market

2

mailto:mirfan@bowdoin.edu
http://www.bowdoin.edu/~mirfan

11/5/19

2

Study of markets

u General equilibrium (GE) theory
u Seeks to explain the behavior of supply, demand and

prices in an economy

u Partial equilibrium vs GE

3

Competitive equilibrium (CE)

u AKA Walrasian equilibrium
u Formal mathematical modeling of markets by Leon

Walras (1874)

u CE consists of prices and allocations

u Equilibrium pricing: demand = supply

u GE ⟹ CE, but CE ⇏ GE

4

11/5/19

3

Background

u Good news
u CE exists in Walrasian economy

u Proved by Arrow and Debreu (1954)

u Bad news
u Existence proof is not algorithmic

Arrow Debreu

5

Background

u 1st Welfare Theorem
u Any CE (Walrasian equilibrium) leads to a “pareto

optimal” allocation of resources

u Social justification
u Let the competitive market do the work

(everybody pursuing self-interest)

u It will lead to pareto optimality (socially maximal
benefit)

Nobody can be better
off without making

somebody else worse
off

6

11/5/19

4

Timeline

u 1954 – 2001
u We are happy. Equilibrium exists.

Why bother about computation?

u Sporadic computational results

u Eisenberg-Gail convex program, 1959

u Scarf’s computation of approximate fixed point, 1973

u Nenakov-Primak convex program, 1983

7

Today’s markets

8

11/5/19

5

Electronic marketplaces

9

Need for algorithms

u New types of markets
u The internet market

u Massive computational power available

u Need to “compute” equilibrium prices

u Effects of

u Technological advances

u New goods

u Changes in the tax structure

u Deng, Papadimitriou and Safra (2002)–
Complexity of finding an equilibrium; polynomial
time algorithm for linear utility case

u Devanur, Papadimitriou, Saberi, Vazirani (2002) –
polynomial time algorithm for Fisher’s linear case

10

11/5/19

6

Fisher economy

u Irving Fisher (1891)
u Mathematical model of a market

Fisher's apparatus to compute
equilibrium prices

11

Fisher economy

12

11/5/19

7

Utility function

utility

amount of milk

13

Utility function

utility

amount of bread

14

11/5/19

8

Utility function

utility

amount of cheese

15

Total utility

u Total utility of a “bundle” of goods
= Sum of the utilities of individual goods

16

11/5/19

9

Easy problem

u Prices given

u What would be the optimal bundle of goods
for a buyer?

1p 2p 3p

Bang-per-buck (BPB)
Example: u2/p2 > u1/p1 > u3/p3

17

Fisher market – setup

u Multiple buyers, with individual
budgets and utilities

u Multiple goods, fixed amount of each
good

u Equilibrium/market-clearing prices
u Each buyer maximizes utility at these prices

u Buyers will exhaust their budgets

u No excess demand or supply

18

11/5/19

10

Fisher’s linear case

u Model parameters (what's given)
u n divisible goods (1 unit each wlog) and n' buyers

u ei = buyer i's budget (integral wlog)

u uij = buyer i's utility per unit of good j (integral wlog)

u Linear utility functions

u Want (not given): equilibrium allocations
u xij = amount of good j that i buys to maximize

his/her utility

u No excess demand or supply

ui (x) = uij xijj=1

n
∑

19

Dual (proof later)

u Want (not given): equilibrium/market-
clearing prices

u Prices: p1, p2, …, pn

u After each buyer is assigned an optimal basket of
goods (xij’s) w.r.t. these prices, there's no excess
demand or supply

u xij’s at these prices: equilibrium/market-clearing
allocations

20

11/5/19

11

Can we formulate an optimization
routine?

u Does LP work?

u Anything else?

21

Main challenge

Optimize
buyer 1's utility

Optimize
buyer 2's utility

Optimize
buyer n's utility

Global constraint:

∀j xiji∑ =1

Convert to a single
optimization

26

11/5/19

12

Eisenberg-Gale
Formulation of
Fisher Market

27

How to devise duals of
nonlinear programs?

Lagrange function
KKT conditions

28

11/5/19

13

Eisenberg-Gale convex program
(1959)
u Equilibrium allocations captured as

u Optimal solutions to the Eisenberg-Gale convex
program

u Objective function
u Money weighted geometric mean of buyers' utilities

max(ui
ei

i
∏)

1/ eii∑ ⇔max(ui
ei

i
∏)⇔max ei loguii∑

29

u Lagrange function

Eisenberg-Gale convex program

max&
'

𝑒' log &
,

𝑢', 𝑥',

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

&
'

𝑥', ≤ 1, ∀𝑗

𝑥', ≥ 0, ∀𝑖, 𝑗

𝐿 𝑥, 𝜆, 𝜇 = −&
'
𝑒' log&

,
𝑢',𝑥', +&

,
𝜆, &

'
𝑥', − 1 +&

'
&
,
𝜇', −𝑥',

30

11/5/19

14

KKT conditions
u Stationary condition

u Primal feasibility

u Dual feasibility

u Complementary slackness

𝑒'𝑢',
∑, 𝑢', 𝑥',∗

= 𝜆,∗ − 𝜇',∗ 1

𝑢',
𝜆,∗

≤
∑, 𝑢',𝑥',∗

𝑒'

&
'
𝑥',∗ ≤ 1, ∀𝑗

𝑥',∗ ≥ 0, ∀𝑖, 𝑗

𝜆'∗, 𝜇',∗ ≥ 0, ∀𝑖, 𝑗

𝜆,∗ &
'
𝑥',∗ − 1 = 0 ⇔ 𝜆,∗ > 0 ⇒&

'
𝑥',∗ = 1

𝜇',∗ (−𝑥',∗) = 0 ⇔ 𝑥',∗ > 0 ⇒ 𝜇',∗ = 0⬚

31

u Prove: There exist market-clearing prices iff
each good has some interested buyer (someone
who gets positive utility for that good)

Does Eisenberg-Gail convex
program work for Fisher market?

32

11/5/19

15

Example

u 2 buyers, 1 good (1 unit of milk)

Buyer 1
Budget, e1 = $100

u11 = 10/unit of milk

x*11 = ?

Buyer 2
Budget, e2 = $50

u21 = 1/unit of milk

x*21 = ?

utility

amount of milk

utility

amount of milk

33

Solution

u x11 = 2/3, x21 = 1/3

x represents x11

x

obj.
fun.

34

11/5/19

16

Solution

u Why x11 = 2/3, x21 = 1/3?

u Set price of milk = $150/unit

x represents x11

35

Primal-dual

u pj
= The price of good j at an equilibrium
= Dual variable corresponding to the primal
constraint for good j:

xij’s: primal
variables

pj’s: dual
variables

xij ≤1i∑

36

11/5/19

17

Interesting properties

u The set of equilibria is convex

u Equilibrium prices are unique!

u All entries rational => equilibrium allocations
and prices rational

42

Flow
Max Flow & Min Cut

Ref: Ch 7 of Kleinberg-Tardos

Slides adapted from the Algorithm Design textbook slides
[Kleinberg, Tardos, K. Wayne, P. Kumar]

43

11/5/19

18

History: Schrijver (2002)
u http://homepages.cwi.nl/~lex/files/histtrpclean.pdf

u Soviet rail network: Harris and Ross [1955] (declassified 1999)

The
bottleneck

44

Big picture

u Tolstoi (1930): Find max flow

u Harris & Ross (1955): Find min cut

u Ford & Fulkerson (1956): They are the same
u Their proof: combinatorial

u Another proof: LP duality

Primal:
max flow

Dual:
min cut

45

http://homepages.cwi.nl/~lex/files/histtrpclean.pdf

11/5/19

19

Applications

communication

Network

telephone exchanges,
computers, satellites

Nodes Arcs

cables, fiber optics,
microwave relays

Flow

voice, video,
packets

circuits gates, registers,
processors wires current

mechanical joints rods, beams, springs heat, energy

hydraulic reservoirs, pumping
stations, lakes pipelines fluid, oil

financial stocks, currency transactions money

transportation airports, rail yards,
street intersections

highways, railbeds,
airway routes

freight,
vehicles,
passengers

chemical sites bonds energy

46

Applications
u Fisher market
u Network connectivity

u Bipartite matching
u Data mining
u Open-pit mining
u Airline scheduling
u Image processing

u Project selection
u Baseball elimination

u Network reliability
u Security of statistical data
u Distributed computing

u Egalitarian stable matching
u Distributed computing

u Many many more . . .

47

11/5/19

20

Max flow problem

48

u Directed graph (may have cycles)

u Two distinguished nodes: s = source, t = sink

u c(e) = capacity of arc e (integer)

Max flow network

Capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

49

11/5/19

21

u Assignment of integer "flow" >= 0 on each arc:
u (Capacity) Can't exceed arc's capacity

u (Conservation) flow in = flow out at any node ≠ s, t

u Flow value
= total flow into t = total flow out of s

Definition: s-t flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0

0 0

0 4 4

0
4 0

00
Capacity

Flow

Value = 4

50

Can we increase the flow value?

u Capacity and flow conservation constraints
are satisfied

u Further increase in flow value?

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

11

1 10

3 8 8

0
4 0

00

Flow

Value = 24

51

11/5/19

22

Max flow problem

u Compute the maximum value of an s-t flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

14

4 10

4 8 9

1
0 0

00

Flow

Value = 28

52

Algorithms for
max flow

53

11/5/19

23

First try: greedy

u Start with f(e) = 0 for all arcs e

u Repeat until stuck:
u Find an s-t path where each edge has f(e) < c(e)

u Push more flow along that path

54

Greedy doesn't work– why?

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

optimal = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

55

11/5/19

24

Fix: residual graph

u A way of undoing previous flows

u v
17
6

capacity

u v11

residual
capacity

6
residual
capacity

flow

Original graph

Residual graph
with “back edge” v->u

56

Ford-Fulkerson algorithm

u Iteratively find s-t paths that admit more
flow in the residual graph
u Such s-t paths: augmenting paths

u Push more flow along augmenting paths

u No further augmenting path?
u Optimal solution!

57

11/5/19

25

Ford-Fulkerson Demo

58

Running time of Ford-Fulkerson

u At most nC iterations

u Total running time: O(mnC)
u n = # of nodes

u m = # of edges

u C = max capacity of any edge

u Not strongly polynomial
u There are strongly polynomial algorithms

59

11/5/19

26

Min cut problem

60

s-t cut
u Partition the nodes into two sets A and B

such that s is in A and t is in B

u (A, B) is called an s-t cut

u Capacity of s-t cut (A, B)
cap(A, B) = sum of capacities of arcs out of A

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A

61

11/5/19

27

s-t cut: more example

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 9 + 15 + 8 + 30
= 62

Note: there's no
flow here!

62

Min cut problem

u Find an s-t cut of minimum capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

1015
4

4
A

Capacity = 10 + 8 + 10
= 28

63

11/5/19

28

Max flow solution

u Max flow value is also 28!

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

15

5 10

3 8 9

1

0 0

00

Flow

Value = 28

64

Max flow vs. min cut

65

11/5/19

29

LP formulation: max flow

u Maximize

u Subject to

v(f) = f (e)
e out of s
∑

f (e)
e into v
∑ = f (e)

e out of v
∑ , ∀v except s, t

0 ≤ f (e) ≤ c(e), ∀e

flow

capacity

Integrality theorem: if all capacities are integers,
then there exists a max flow with all integer flows.

66

LP formulation: min cut

u Dual of max flow

u Weak duality: any flow <= any cut capacity
u Proof (on board) without using LP duality

u Strong duality: max flow = min cut capacity
u Ford-Fulkerson's proof without using LP duality

67

11/5/19

30

Max-flow min-cut theorem

u Ford & Fulkerson (1956)

u In any network, the value of the max flow is
equal to the value of the min cut.

69

How to: max flow à min cut

u Want an s-t cut or partition (A, B)

u A = s and all nodes reachable from s in the
final residual graph

u B = rest of the nodes

70

11/5/19

31

Algorithm for
Fisher Market

Max Flow

71

Reminder: Fisher’s linear case
u Model parameters (what's given)

u n divisible goods (1 unit each wlog) and n' buyers

u ei = buyer i's budget (integral wlog)

u uij = buyer i's utility per unit of good j (integral wlog)

u Linear utility functions

u Want (not given): equilibrium allocations
u xij = amount of good j that i buys to maximize

his/her utility

u Want (not given): equilibrium prices p1, p2, …, pn

u No deficit or surplus of any good
u No deficit or surplus of buyers' budgets

ui (x) = uij xijj=1

n
∑

72

11/5/19

32

Reminder: KKT conditions of
Eisenberg-Gale convex program

u Optimal solutions xij’s and pj’s must satisfy:

u No deficit or surplus of goods

u Can show no deficit or surplus of buyers' budgets

73

Idea of the algorithm

u Look at individual optimization problem

u Buyer i’s optimization program:

u Global constraint:

max uij xijj∑
s.t. pjxijj∑ ≤ ei

∀j xiji∑ =1

74

11/5/19

33

Example

Buyers Goods

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4
2

Utilities

Prices
(variable)

Money

i j

75

Bang-per-buck = utility/price

76

Buyers Goods

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4
2

Utilities

BPB

0.50

0.50

0.40

0.03

76

11/5/19

34

Bang-per-buck = utility/price

77

Buyers Goods

$100

$60

$20

$140

$20

$40

$10

$60

10

20

Utilities

BPB

0.50

0.50

0.40

0.03

77

Bang-per-buck = utility/price

78

Buyers Goods

$100

$60

$20

$140

$20

$40

$10

$60

10

20

BPB

0.50

0.50

0.40

0.03
Equality
Subgraph

78

11/5/19

35

Equality subgraph

u Buyer is happiest when she can buy goods in
equality subgraph

u How to maximize sales (market clearance) in
the equality subgraph at a given price?

Use max flow!
("balanced flow" here)

79

Max flow

Buyers Goods

140

20

40

10

60

Infinite capacity

100

60

20

st

80

11/5/19

36

Idea of the algorithm

u Invariant
u [s, t U Buyers U Goods] is a min-cut

140

20

40

10

60

100

60

20

st

All goods are sold
at these prices

Buyers may still
have excess money

Increase prices
to drain buyers’
excess money!

81

Initialize

u All prices = 1/n, n = # of goods

u Assume
u Each buyer has integral amount of money

82

11/5/19

37

How to raise prices?

u We do not want to kill off any edge from the
equality subgraph

u Multiply prices by the same number x
u Initially x = 1

i

j

k
ij

ik

j

k

k

ik

j

ij

u
u

p
p
p
u

p
u

=Þ

=

83

Algorithm
u Initially x = 1, then x

u How to increase x? (Later)

140

20x

40x

10x

60x

Infinite capacity

100

60

20

st

Buyers Goods

84

11/5/19

38

Algorithm

u x = 2: A buyer’s surplus money = 0 (Event #1)

140

20x

10x

60x

100

60

20

st

New cut

40x

85

Algorithm

u Reinitialize x = 1, work the active part

u Terminate: All are frozen

140

40x

20

120

100

60

20

st

Frozen

Active

80x

86

11/5/19

39

Algorithm

u x = 1.25 (Event #2)

140

40x = 50

20

120

100

60

20

st

Frozen

Active

80x=100

Note: In the original algorithm, the
active buyers are partitioned into sets:
max-surplus buyers and the rest (not
shown here for presentation, but x is
relevant to the max-surplus buyers).

87

Algorithm

u In case of event #2:“Unfreeze” the relevant
part and recurse

88

11/5/19

40

Question
u Is this scenario possible?

u No. Every buyer must have some goods that
maximize BPB. Can't freeze a set of goods unless
all interested buyers of those goods run out of
money.

140

40

10

30

100

60

20

st

Frozen

20

89

More example

u 2 buyers, 2 goods

Buyers Goods

$1

$10

Utilities

2

11

2

1
1

2

1

Price?

Price?

90

11/5/19

41

Example (continued)

2

11

2

+∞
+∞

+∞

$1

$10

s

Buyers Goods

u Initialize all prices to ½
u Compute a "balanced flow" (not shown here)
u Find the buyer(s) with the max surplus money
u Nothing frozen: No subset of goods for which all

interested buyers run out of money

$0.5

$0.5

t utility: (1,1)

utility: (2,1)

Edges maximizing BPB

91

Example (continued)

2

11

2

+∞
+∞

+∞

$1

$10

s

Buyers Goods

u Increase prices of goods that the max-surplus
buyers are interested in

u x > 0 è edge from 1 to 1 disappears

u x = 2 è New edge (event 2) from 2 to 2

$0.5x

$0.5

t (1,1)

(2,1)

Edges maximizing BPB

92

11/5/19

42

Example (continued)

2

11

2
+∞

+∞

+∞

$1

$10

s

Buyers Goods

u Increase prices of goods that the max-surplus
buyers are interested in

u x = 7⅓ è All goods frozen è equilibrium
u Note: all buyers run out of money

$1x

$0.5x

t (1,1)

(2,1)

Edges maximizing BPB

93

Running time

u We can compute x values at event #1 and #2
efficiently

u Balanced flow is polynomial, but not strongly
polynomial
u Running time depends on the amount of money

each buyer has

u O(n4 (logn + nlogU + logM)) applications of max-
flow

u n = # of goods

u U = max uij for any i and j

u M = total amount of money of all buyers

94

