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ABSTRACT
Education and learning stand out among many application areas of cognitive computing
due to their practical appeal as well as their research challenge. We can gauge the level
of research challenge once we recognize the broad spectrum of human learning, the com-
plex and not fully understood human learning process, and various influencing factors of
learning, such as pedagogy, technology, and social elements. We survey some of the key
research problems and recent efforts to solve them. In particular, we examine the impor-
tant roles played by the Educational Data Mining and Learning Analytics communities
in these research efforts. We find evidence of significant progress over the last few years.
We also find evidence of concerted efforts by academia and industry in bringing some of
these research results to the public in the form of learning and educational software.

Keywords: Cognitive learning, Learning Analytics, Educational Data Mining,
Cognitive systems, Cognitive computing, Personalized learning, Data science

1 INTRODUCTION

Much of the excitement about cognitive computing is spurred by its enormous
potential in learning, only a small fraction of which has so far been realized.
The overarching goal here is to devise computational frameworks to help us
learn better by exploiting data about our learning processes and activities.
There are two important aspects of it—the mechanisms or insights about
how we actually learn and the external manifestations of our learning activ-
ities. The state of the art at this moment reveals that a lot of energy and focus
have gone into the latter front, while a lot remains to be done on the former
front. An example will help distinguish these two.
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It is well known that humans learn from a very small number of examples.
For instance, it takes us only one example of a stop sign and one example of a
lobster to differentiate one from the other, even though both are red. It is an
extremely complex question how our brains process these two different
objects in terms of their representations as well as their generalizations. The
representation of a stop sign may encode some visual clues about a stop sign,
such as its polygonal shape and its color, whereas its generalization would
enable us to recognize stop signs from various distances as well as angles.
Devising a computational framework to learn from a very small number of
examples is currently at a nascent stage and obviously has an enormous poten-
tial for future work (Lake et al., 2015).

In contrast, we can devise a computational framework for the same task if
we are allowed to use a large number of examples. More specifically, we can
“train” a machine learning algorithm with a large number of labeled examples
of both stop signs and lobsters (Murphy, 2012). Typically, these examples are
represented by various features. In some applications these features are hand-
crafted while in others they are automatically discovered by the algorithm
itself. The important requirement here is a large amount of data. In education
and learning, we often generate a huge amount of data through our learning
activities, which presents us with both an enormous potential and a great chal-
lenge. The reader may readily relate to this as Big Data.

Big Data are typically characterized by five V’s—volume (data are large-
scale), variety (data come in many different forms), velocity (data are gener-
ated over time, often times in a “streaming” fashion), veracity (data have
some elements of uncertainty), and value (extracting actionable intelligence).
In the application settings of education and learning, the first four V’s are
prominently visible. For example, a Learning Management System (LMS)
like Moodle (2016) or any Massive Open Online Course (MOOC) generates
a huge volume of data (see Section 2). Moreover, the data come in a variety
of forms, such as a student’s answers to quantitative questions as well as
essay-type questions, which are very different in many respects. It is also
obvious that the data are generated continually with great velocity and that
there will be uncertainty in the data if we collect data about students’ level
of engagement or their understanding of materials. The cognitive computing
community has embraced the emergence of Big Data, thereby shaping up sev-
eral subfields relevant to education and learning. The ongoing efforts have led
to many success stories.

In the next section, we discuss Educational Data Mining (EDM) and
Learning Analytics (LA)—two major areas of cognitive computing dealing
with education and learning. Next, we present a survey of some recent results
in EDM and LA. We conclude this chapter by touching upon some success
stories and giving pointers to several challenging research directions. The fol-
lowing acronyms are used in this chapter.
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ACT-R Adaptive Control of Thought-Rational

AFM Additive Factor Model
EDM Educational Data Mining
ISPeL Interactive System for Personalized eLearning
ITS Intelligent Tutoring Systems
LA Learning Analytics
LAK Learning Analytics and Knowledge (Conference)
LMS Learning Management System
MOOC Massive Open Online Course
PFA Performance Factors Analysis

2 EDM AND LA

EDM and LA are two emerging areas that embody the major applications of
cognitive computing to education and learning. These two areas are not sepa-
rated by any hard boundary and to the contrary, they often share common
objectives and stakeholders. However, they fundamentally differ in several
dimensions, including research methodology. These differences have been
beautifully explained by Siemens and Baker (2012). In brief, humans play a
central role in LA, whereas the bulk of the work in EDM is performed through
automation. Humans do play a role in EDM, but that is peripheral in compar-
ison to LA where they are the key components of the apparatus. Furthermore,
LA models and analyzes the learning system as a whole, in contrast to EDM’s
divide-and-conquer approach. Next, we address these two areas separately.
We also give an illustrative example for each.

2.1 Educational Data Mining

EDM has been inspired by advances in data mining and machine learning.
The overarching goal is to help teachers, students, and other stakeholders
achieve their respective objectives by utilizing Big Data in education. This
critically hinges on understanding and modeling how students learn. As a
result, The International Educational Data Mining Society (2016) has defined
the field as “concerned with developing methods for exploring the unique and
increasingly large-scale data that come from educational settings, and using
those methods to better understand students, and the settings which they learn
in.” We should note here that this society organizes the annual International
Conference on Educational Data Mining, which debuted in 2008.

The recurrent research themes in EDM are: mining educational data from
various sources that include MOOCs and Intelligent Tutoring Systems (ITS);
mining human–computer interaction (HCI) data in the educational setting;
assessing students’ affective state using multimodal sensory data; modeling
students and predicting their performance; modeling, curating, and evaluating
learning pathways; and connecting EDM with other related disciplines,
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including emerging areas like LA (see Section 2.2) as well as more mature
areas like learning theory and learning sciences.

Although EDM started as a subfield of data mining, it now boasts an inter-
esting and varied research landscape. As we will see in Section 3, it has wel-
comed tools and techniques from HCI and computer vision. In fact, many of
the recent works in EDM can be thought of as data-centric applications of
cognitive computing in education and learning.

For the most part, the methodologies in EDM research are rooted in sev-
eral major areas of computer science, such as data mining and machine
learning. Although EDM research typically keeps humans in the loop, the
major focus is on automation through computational modeling, tools, and
techniques. Next, we present a simplistic example to illustrate this point.

2.1.1 An EDM Example

For this fictitious example, imagine that a tutor has access to multidimen-
sional data about her students’ learning behavior on an online learning system.
In particular, the system has recorded each student’s number of sign-ins and
the percentage of lesson completion as a measure of the student’s progress.
The input data points are shown as black dots in Fig. 1A. This figure is gen-
erated using an online visualization tool (Mohan, 2016). The tutor’s goal is to
classify her students according to their behavior to better assist them. How-
ever, the labeling for this classification is not clear a priori. This is a typical
unsupervised learning problem in machine learning, also known as clustering
(Murphy, 2012).

Among many different approaches to clustering, we pick the well-known
k-means clustering algorithm for this example. The parameter k represents
the number of clusters desired. An illustration is shown in Fig. 1 for k ¼ 4.
The first step is to choose k points for cluster centers (aka centroids), often
times randomly. The initial centroids are shown as triangles in Fig. 1A.

Assuming that the points lie in a 2D Cartesian coordinate plane, the
x coordinate of the centroid is the average of the x coordinates of all the points
that belong to the cluster. The y coordinate of the cluster is calculated
similarly. The same principle applies for points in an n-dimensional space.
However, a suitable distance metric needs to be defined to measure distance
between two points. The centroids need not be actual data points. Next, each
data point is classified to its closest centroid based on a distance metric. This
is shown in Fig. 1B, where different classes of points are shown in different
colors. This classification is not an ideal grouping of points since cluster
boundaries are not crisp. However, this completes one iteration of the
algorithm.

In the next iteration, for each class, its new centroid is recalculated. The
recalculated centroids are shown in Fig. 1C. Since the centroids have changed,
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some of the points will now move into a different class. The recalculation of
the centroids and the classification of the points are repeated, ultimately con-
verging to the scenario shown in Fig. 1D.

The interpretation of clustering is most often left to human experts with
domain knowledge—in this case, the tutor. The tutor may interpret the bottom
left cluster shown in Fig. 1D as the group of students who made very little
progress and also lacked in their level of efforts as evident from the small
number of sign-ins. She may interpret the bottom right cluster as the group

A B

C D

FIG. 1 (A) Input data points and four initial centroids (triangles filled with different colors
(different gray shades in the print version)) are shown. The x-axis represents the number of times

a student has signed in and the y-axis the percentage of lesson completion. Each data point corre-

sponds to one student. (B) The data points are classified according to their proximity to the cen-
troids. (C) The centroid of each of the four classes is recalculated by taking the average of the x
and y coordinates of the data points in that class. (D) Successive iterations of centroid (re-)calcu-

lation and data point classification ultimately converge to this clustering. An interpretation of
these clusters requires human experts with domain knowledge.
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of students who signed in many times but still could not make much progress,
perhaps giving an indication of short attention spans. Based on her interpreta-
tion of the four clusters, the tutor may design separate learning paths for dif-
ferent types of students.

This simple example illustrates many of Siemens and Baker’s points on
EDM (Siemens and Baker, 2012). First, it shows that the main focus of
EDM is automated discovery. Human expertise is a means to that end. Sec-
ond, EDM’s approach of breaking up a problem into smaller parts is obvious
here, since we are dealing with one small part of what we may call ITS. More
interestingly, we can extend this example to model students with the goal of
predicting learning outcomes. Lastly, Fig. 1 illustrates some of the common
tools used in EDM, such as clustering and visualization.

2.2 Learning Analytics

LA is a relatively new field with the overarching goal of synergistically combin-
ing human judgment with technological advances for a wide range of learning
activities, spanning from classroom learning to informal learning. The first
International Conference on Learning Analytics and Knowledge (LAK) was
held in 2011. At that time, the LA community identified LA field as:
“Learning analytics is the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and opti-
mising learning and the environments in which it occurs” (Long and Siemens,
2011). Since then the field has evolved significantly. For example, the sixth
LAK conference held in 2016 Gašević and Lynch (2016) has identified five
major branches of LA: (1) analytic approaches, methods, and tools; (2) theories
and theoretical concepts; (3) measures of learning, change, and success; (4)
learning activities, applications, and interventions; and (5) data sources.

Compared to EDM, LA embodies a broader umbrella of learning settings,
tools, techniques, human and social factors, and applications areas. EDM is
focused on automation and often times concerns with unearthing hidden pat-
terns from data, whereas LA is more holistic and human-centric (Siemens and
Baker, 2012). In a similar vein, as we will see in Section 3, predicting student
performance is a central problem in EDM. In contrast, LA is more concerned
with predicting the outcome of a learning approach or system. Also, LA is
inherently an area of analytics, and therefore various analytical tools, such
as discourse analysis and social network analysis, are more prominent in
LA than in EDM. However, the border between these two fields is sometimes
blurred due to their shared objectives and stakeholders. Furthermore, since
both fields deal with predictive models (although applied to different
domains), many of the computational techniques pertaining to machine
learning and data mining are common between them. Next, we present an
example of a cognitive model for LA.
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2.2.1 An LAs Example

Given LA’s holistic approach to an overall system, it is hard to come up with
simple examples like the one we presented for EDM in Section 2.1.1. Here,
we present a recent application architecture proposed by Gudivada (2016)
for personalized learning. He notes that learning applications typically gener-
ate huge volumes of structured and unstructured data. Structured data can be
easily obtained from a LMS’s logs, whereas unstructured data come from a
variety of sources such as blogs, emails and other forms of course messages,
and discussions. Due to the ease of working with structured data, a vast major-
ity of research on LA deals with only that type of data. However, if we con-
sider building an effective system for personalized learning, dealing with
unstructured data becomes essential. Gudivada proposes a comprehensive
framework for personalized learning that can work with both structured and
unstructured data. The framework is named Interactive System for Persona-
lized eLearning (ISPeL).

Gudivada’s architecture is hierarchical, roughly consisting of the follow-
ing layers: network and hardware layer, databases and data analytics layer,
cognitive analytics layer, and personalization layer. An illustration of the
application level architecture is shown in Fig. 2. Some preliminaries are due
before we describe this architecture.

First, Darwin Information Typing Architecture (DITA) is an XML data
model for single source authoring and multichannel publishing (Bellamy
et al., 2011; White, 2013). A DITA content (e.g., computer algorithms) is
composed of DITA topics (e.g., time and space complexity, greedy algo-
rithms, dynamic programming). It is desirable that each topic is minimal but
self-contained. Second, a Resource Description Framework Schema is a
general-purpose ontology language (Broekstra et al., 2001), typically used
for storing domain information and topic hierarchies. Third, LMSs are soft-
ware applications to facilitate education. Well-known examples of LMSs are
Blackboard, Moodle, and D2L.

We are now ready to describe the ISPeL architecture in a bottom-up fash-
ion. The bottom layer of ISPeL (Fig. 2) consists of nine databases. These data-
bases dynamically keep track of information from various sources in order to
provide the students a personalized learning experience. For example, the
DITA Topics database keeps information about the topics being taught. The
Assessment Data consists of each student’s scores, time to complete tests, per-
formance level on tests, and other related information. The User Models data-
base keeps information about individual students, their preferences and
progress, and learning styles.

The Question Generation Models, Scaffolding & Feedback Models, and
Personalization Models are the main components for generating personalized
questions, feedback, and lesson plans. The Question Generation Models mod-
ule has capability to automatically generate questions for assessing learners.
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This module also supports practice exams before the actual test. The Scaffold-
ing & Feedback Models module features capability to provide guided learning
and context-appropriate feedback. The Personalization Models component
uses prerequisite dependencies among DITA topics and user models to
achieve personalization. Each learner progresses at her own pace, explores
learning materials in any order they choose subject to prerequisite constraints.

The cognitive analytics layer uses the data mentioned earlier together with
various algorithmic and analytical techniques (e.g., data mining, machine
learning, statistical analysis, natural language processing, information visuali-
zation) to provide personalized learning to students. The layer above it deals
with multiple modes of personalized learning, such as anytime, anywhere,
and just-in-time. The next two layers provide authentication and user inter-
face, through which users with different credentials interact with the software
application.

FIG. 2 ISPeL architecture for personalized learning (Gudivada, 2016).
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The ISPeL architecture shown in Fig. 2 is in tune with Siemens and
Baker’s call for connecting LA with EDM (Siemens and Baker, 2012). The
architecture itself is holistic, but some of the individual components of the
whole system are significantly challenging in their own merit. For example,
for ISPeL to provide personalized learning, it is necessary to generate appro-
priate questions and feedback for each individual learner automatically and in
real time. An EDM expert can help with this automation. However, this auto-
mated component must function robustly in concert with the other compo-
nents of the cognitive analytics layer, which illustrates both the beauty and
challenge of LA.

3 RECENT RESEARCH

In this section, we review some recent research on cognitive computing and
its applications to education and learning. Many of these research results have
appeared in the EDM and LAK conferences, which are the premier venues for
publishing research on EDM and LA, respectively. Since EDM and LA are
both very much expansive areas, it will not be possible to touch upon many
of their subareas in this chapter. As a result, we will only present some recent
results in a few selected problem domains. The intention is to give the reader
a sampling of the progress made during the last few years. Let us first illus-
trate the computational challenges using the following example.

Many of our cognitive tasks involve semistructured as well as unstructured
input data. Among these are tasks that we deem very much natural to us. One
example is geometric word problems. Fig. 3 shows a sample problem. Pro-
blems of this type are often specified by a text description in conjunction with
a diagram. In many cases, the text description alone is not sufficient to fully
understand the problem, since some critical information is only given in the
diagram. For example, the text description in Fig. 3 omits the important fact
that AD intersects with BC at point D. Inferring such facts by combining a
text description with the corresponding diagram is natural to us. An extremely
challenging problem is to automate it. Very recently, Seo et al. (2015) have
presented an automated solver for SAT-level word geometric problems. Their
method consists of the following main components: a text parser, a diagram

A

B CD

In the left figure, AD is the bisector 
of the angle BAC. AD is 
perpendicular to BC. Given that 
AD = 2 and DC = 1, what is the 
measure of the angle BAC?

FIG. 3 A sample geometric word problem, similar to the examples given by Seo et al. (2015).
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parser, and an optimizer. These components work together to produce the best
possible formal representation of the problem that can be fed to a standard
geometric problem solver. On unseen, official SAT geometry problems, their
automated solver achieves a remarkable 49% score.

As evident from the earlier example, the full spectrum of human cognition
and learning poses a grand, multiprong research challenge. This challenge is
only magnified when we also consider pedagogy, technology, human judg-
ment, social factors, and various contextual elements. We next present a sur-
vey of some recent research results in several selected categories.

3.1 Intelligent Tutoring Systems

Since the 1970s (Carbonell, 1970), ITS have been at the forefront of artificial
intelligence research with a diverse array of application areas ranging from
physics (Vanlehn et al., 2005) and mathematics (Matsuda and VanLehn,
2005; Melis and Siekmann, 2004) to adult education (Cheung et al., 2003)
and nurse education (Hospers et al., 2003). Here, we will narrow down on
some recent ITS research on learning programming. Since the publication of
Anderson and Reiser’s seminal work on an LISP tutoring system (Anderson
and Reiser, 1985), this field has gained a lot of attention over the years. How-
ever, it is fair to say that we are still far from realizing its full potential.

Any discussion on modern-day ITS must begin with the cognitive
architectures behind ITS. One of the most influential cognitive architectures
is Anderson’s Adaptive Character of Thought-Rational (ACT-R) theory. The
central tenet of the ACT-R theory is that human cognition is the result of inter-
actions among numerous small, indivisible units of knowledge in certain ways.
First, these basic units of knowledge are of two types: declarative and proce-
dural. For any cognitive task, the declarative units of knowledge represent the
states of cognition, or in Anderson’s words, “objects in the environment”
(Anderson, 1996). In contrast, procedural units of knowledge, also known as
productions, transform human cognition from one state to another.

The ACT-R theory gives the details of how these knowledge units interact,
which is out of scope for this chapter. However, we should mention that ACT-
R is not an abstract theory of human cognition. It is rather a concrete frame-
work similar to a programming language. Using a programming language, we
can write programs and run them. Similarly, using ACT-R, we can create a
cognitive model for a specific cognitive task (e.g., computing the factorial
of a number) and simulate it. The simulation details the steps in human cog-
nitive process for that particular task under various modeling assumptions.
These assumptions are usually grounded in extensive psychological experi-
ments. We should also be noted that the ACT-R theory—in its original
form—comes with a LISP interpreter where simulations can be run. Today,
there are also Python and Java implementations of the ACT-R theory
(Harrison, 2002; Stewart and West, 2005).
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Founded on several decades of research on human cognition and intelli-
gence, ITS is now a fast growing area in academia and industry. We now turn
our attention to some cutting-edge research on ITS in a specific learning
domain: programming. Several recent papers deal with the problem of helping
students learn programming, in particular by giving them useful hints in real-
time while they are coding. This is a vastly challenging problem, mainly
because even for very simple programming tasks there are a multitude of dif-
ferent solution approaches, both syntactically and semantically. Even if we
restrict the semantic aspect (i.e., the underlying algorithm) to a single one,
the syntactic variations of implementing the algorithm present a daunting task
for hint generation.

Not surprisingly, earlier work on hint generation focused on more specific
problem-solving tasks, such as logic (Barnes et al., 2008; Stamper et al., 2013)
and linked lists (Fossati et al., 2009). New efforts to tackle broader program-
ming problems are at a nascent stage and use previous students’ solutions to a
programming task to generate hints for a new student who is working on the
same task (Price and Barnes, 2015; Price et al., 2016). The basic technique in
this new line of work is to first represent the previous student–tutor interac-
tions in the form of an interaction network (Eagle et al., 2012). When a
new student asks for a hint, that student’s interaction pattern is matched with
some part of the interaction network and the student is directed to an appro-
priate next step that ultimately leads to a solution. It is not hard to imagine
the potential impact of such work on any ITS that teaches programming.

In a related work, Eagle et al. (2015) present a social network analysis of
the interaction network for multiple problem domains. They found that the
interaction networks exhibit power-law degree distribution. They also showed
the importance of several network properties like degree assortativity for
comparing interaction networks across different domains.

Closely connected to improving an ITS is evaluating its adaptive tutoring
feature, which is very much applicable to ITS for programming. Traditionally,
the literature suggests using evaluation schemes based on machine learning,
such as the Performance Factors Analysis (PFA) cognitive model. This poses
a challenge to course designers without a background in machine learning.
A recent work addresses this issue and presents two new evaluation metrics bet-
ter suited for adaptive tutoring than PFA (González-Brenes and Huang, 2015).

3.2 Clustering and Student Modeling

Clustering is a common technique in EDM for aggregating student data in
order to examine student behavior. Klingler et al. (2016) have recently pre-
sented an evolutionary clustering technique for sequential student data. In
comparison with previous works, their technique improves the stability of
clustering for noisy data. In addition, they show that their work can be
incorporated into any ITS as a black box.
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Another central problem in EDM is student modeling. A lot of interesting
research has emerged on this topic recently. One such work is on modeling
learning curves. Using data from Duolingo (2016), Streeter (2015) has used
probabilistic mixture models to capture the learning curves of language lear-
ners. Here, an individual’s learning curve represents her error percentage over
time. This is an interesting research direction, because prior to this, knowledge
tracing has been the dominant criterion for modeling student learning (Corbett
and Anderson, 1994). Streeter’s work generalizes knowledge tracing and
offers an elegant probabilistic model for modeling learning curves. The para-
meters of the model have been learned using the well-known expectation–
maximization algorithm. Based on the large-scale Duolingo dataset, the mix-
ture model outperforms many of the previous approaches, including popular
cognitive models like Additive Factor Model (AFM) (Cen et al., 2006) and
PFA (Pavlik et al., 2009).

Others have also worked to improve the AFM and PFA models. A recent
cognitive model by MacLellan et al. (2015) has extended these in order to
account for the commonly observed phenomenon that students often make
mistakes on previously learned skills, which the authors have termed slipping.
Their slipping models outperform the baseline AFM and PFA models on five
datasets.

Although a lot of work has been done on modeling student learning,
modeling prior knowledge has received relatively less attention. In a recent
work, Nižnan et al. (2015) have presented several models to estimate prior
knowledge. They started with the basic model of Elo rating and extended it
in several ways. They evaluated the models on prior knowledge of geography,
which is a subject of widely varying prior knowledge. Perhaps surprisingly,
they showed that the more complex extensions of the basic Elo rating model
do not outperform Elo rating by much. Although not mentioned explicitly in
their paper, this could be attributed to the basic Elo rating hitting the sweet
spot between overfitting and underfitting (Murphy, 2012) for that particular
geography dataset.

3.3 Predicting Student Performance

Predicting student performance based on various factors has been a popular line
of research in EDM. Traditionally, student performance has been measured in
specific disciplines or topics, such as algebra (Stapel et al., 2016), programming
in Java (Tomkins et al., 2016), or even as specific as learning fractions in math-
ematics (Olsen et al., 2015). Although many of the research questions on stu-
dent performance are domain-specific, there are some unifying themes: How
would one predict student performance? What factors are most important for
a student’s success? How can an ITS make use of this prediction?

Tomkins et al. (2016) answer some of these questions using their case
study of a high school computer science MOOC. The MOOC is a separate
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course with its own evaluation, but the students taking the MOOC ultimately
take the computer science Advanced Placement (AP) exam. As a result, there
are two performance measures: one coming from the MOOC and the other from
the AP exam. It has been empirically observed that a student’s score in the AP
exam is a better predictor of the student’s future success than the student’s per-
formance in the MOOC. Based on their machine learning framework, Tomkins
et al. identify the most important factors in MOOC for students’ high and low
scores in the AP exam (not MOOC). One such factor is coaching. Many of the
students received coaching while taking the MOOC, while others studied inde-
pendently. The ones that were coached, showed a greater level of activity in the
MOOC’s forum through questions, answers, and other contributions. The coa-
ched students performed better than the independent students in the MOOC.
However, on the actual AP exam, the independent students scored higher.
The authors also connect other features, such as textual content of the students’
forum activities, to their AP exam performance.

Another new study in the context of MOOCs predicts student drop-out and
proposes an intervention study (Whitehill et al., 2015). Student drop-out is an
extremely common phenomenon in MOOCs (Onah et al., 2014; Rivard,
2013). Whitehill et al. note that the reasons for drop-out are not necessarily
related with the quality of the course as there could be exogenous factors.
More importantly, a post-course survey is ineffective in detecting the reasons
for drop-outs, since the response rates for such surveys are usually very low.
The authors present a classification technique for detecting student drop-outs
and propose an intervention strategy in the form of early surveys in order to
retain students. They used the HarvardX MOOC platform to evaluate the
effectiveness of their strategy.

3.4 Affect Detection and Student Engagement

Affective states are closely related to learning and cognition. We react differ-
ently to different experiences during our learning process. Assessing affective
states of students is now gaining traction within both the EDM and LA com-
munities. As we have briefly mentioned in Section 2.1, these problems often
transcend the boundary of EDM beyond traditional data mining and bring
computer vision and multimodal sensory analysis into the fold of EDM
research.

Based on recent research trajectories, we must start with the eyes. Epi-
sodes of mind wandering is common in various learning activities like reading
(Mills and D’Mello, 2015) as well as interacting with an ITS (Mills et al.,
2015). Multiple research works have shown that our eyes hold a clue to
detecting whether we are paying attention or not (Bixler et al., 2016; Hutt
et al., 2016). The interesting observation here is that eye-tracking has been
an active research topic in HCI since the inception of HCI and is now contri-
buting to cognitive computing in learning.
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As we have mentioned earlier, students’ affective states are closely tied to
their learning and therefore to their performance. Based on over one thousand
middle-school students’ interactions with a math tutoring system, San Pedro
et al. (2015) find that the fine-grained variations of affect over time ultimately
impact a student’s test score. For affect detection, the authors used the data of
student interactions with the math tutoring system mentioned earlier. There
exists a long line of prior work on such interaction-based affect detection
(Pardos et al., 2013; Wang et al., 2015) and that many of the affect detectors
today are video based.

Kai et al. (2015) have done a comparative study of these two major affect
detection methods—video based and interaction based—for various affective
states, such as boredom, confusion, delight, frustration while the students play
a game called physics playground. They obtained the ground truth about the
students’ affective states through field observations. They showed that overall
the video-based affect detector slightly outperforms the interaction-based one.
This can be largely attributed to the affective state of delight for which the
video-based detector is very much the superior between the two.

4 CONCLUSION

The frequent interactions between academia and industry are a remarkable
feature of cognitive computing, especially when it comes to its applications
in education and learning. For example, companies like IBM are embracing
cognitive computing to harness the power of Big Data in multiple application
areas, including education (Davis, 2016). In another success story, the ACT-R
theory that we have discussed in Section 3.1 is the key driver of Carnegie
Learning’s MATHia as well as Cognitive Tutor software (Carnegie Learning,
Inc., 2016). The Cognitive Tutor software has been adopted by the Miami-Dade
county public schools in Florida since 2003, following the finding by an
independent research group that the software is indeed more effective than the
traditional curriculum alone. Furthermore, the new generation of LMS software
like Desire2Learn (D2L) boasts predictive analytics features to identify and help
at-risk students (D2L, 2016). Many online platforms for class discussion like
BlikBook, which can often work in conjunction with an LMS, have built-in stu-
dent behavior analytics (BlikBook, 2016). There are many other success stories
stemming from the exchanges between scientific research and real-world
applications.

Two premier conferences in this field—EDM and LA—are great contribu-
tors to a lot of these success stories. These two communities are driven by a
grand vision and some clearly identified long-term goals. For example, we
would like to build an ITS that can offer personalized learning for complex
learning tasks like computer programming and adapt itself with each individ-
ual student’s learning curve as well as prior knowledge. We would like to
detect when a student loses engagement, both in a classroom setting and in
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an ITS session. Not only that, we would like to identify the causal structure
behind it and design appropriate intervention strategies. We would like to
design MOOCs with high student retention rates. We would also like to accu-
rately predict student performance from behavioral data that comes in differ-
ent varieties: structured, semistructured, and unstructured.

In summary, we would like to build cognitive computing applications that
will have a greater understanding of how humans learn and can vastly
improve the quality of learning and education. Are we there yet? No. Have
we made any significant progress? Big yes. In fact, it is fair to say that the
progress made so far is only the tip of the iceberg. What lie ahead are some
extremely hard research problems and many untrodden research paths to
solve those.
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