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Abstract
Game theory has been widely used for modeling
strategic behaviors in networked multiagent sys-
tems. However, the context within which these
strategic behaviors take place has received limited
attention. We present a model of strategic behavior
in networks that incorporates the behavioral con-
text, focusing on the contextual aspects of congres-
sional voting. One salient predictive model in po-
litical science is the ideal point model, which as-
signs each senator and each bill a number on the
real line of political spectrum. We extend the clas-
sical ideal point model with network-structured in-
teractions among senators. In contrast to the ideal
point model’s prediction of individual voting be-
havior, we predict joint voting behaviors in a game-
theoretic fashion. The consideration of context al-
lows our model to outperform previous models that
solely focus on the networked interactions with no
contextual parameters. We focus on two fundamen-
tal problems: learning the model using real-world
data and computing stable outcomes of the model
with a view to predicting joint voting behaviors and
identifying most influential senators. We demon-
strate the effectiveness of our model through exper-
iments using data from the 114th U.S. Congress.

1 Introduction
Over the past several decades, game theory has been widely
used to model and analyze strategic interactions among mul-
tiple agents. In particular, games with network-structured in-
teractions, also known as graphical games [Kearns, 2007],
have received a lot of attention in AI due to their succinct
representation size and their applications to many real-world
scenarios. Although one of the hallmarks of game theory
is its reliable encoding of stability as a solution concept,
most strategic interactions are extremely complex in practice,
where context plays a significant role. As a result, any re-
alization of the game-theoretic solution concept of stability
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very much depends on our attention to behavioral context, or
lack thereof.

In this paper, we consider a networked multiagent system
where agents take actions through strategic interactions with
each other. An agent’s action depends not only on others’ ac-
tions in a network-structured fashion but also on the underly-
ing behavioral context. Context being a domain-specific con-
struct, we focus on voting behavior in Congress. In congres-
sional voting, the agenda or issue on which a vote is taking
place gives the context to the voting behavior of the members.
Our framework can also be applied to other settings where
there are (1) network-structured strategic interactions and (2)
issues (or context) on which agents adopt binary actions.

There have been multidisciplinary quests into modeling
and predicting how legislators vote, reflecting a multitude of
factors in play. Perhaps a bill lines up closely with a leg-
islator’s political agenda, or is popular amongst their con-
stituents. Perhaps they feel pressure from their party or other
legislators to confirm a nomination or to pass a bill. Despite
such pressure, senators sometimes vote against the party line.
One recent example is the failure of the so-called “skinny-
repeal of Obamacare” in the U.S. Senate, where Senator Mc-
Cain (R-AZ) gave a dramatic, last-minute nay vote. There are
other examples where senators voted against the party line
due to the bill not lining up with their particular legislative
positions (e.g., pro-choice Republicans or anti-gun-control
Democrats). Therefore, a model of legislative voting behav-
ior should take into account a senator’s legislative position,
the characteristics of the bills, and the network of influence
among the senators. We present the first such model here.

Introduced by Davis et al. [1970], one popular approach
to modeling legislative behavior is the ideal point model. In
this model, each senator i has an ideal point pi ∈ R, rep-
resenting the senator’s political leaning based on how lib-
eral or conservative they are. Each bill l is characterized
by its polarity al ∈ R and its popularity bl ∈ R, anal-
ogous to discrimination and difficulty in item-response the-
ory [Hambleton and Swaminathan, 2013]. Typically, pi and
al are negative for liberal positions and positive for con-
servative, and the bl parameter corresponds to the fraction
of senators voting yea. The probability of senator i voting
yea on a bill l is given by the following logistic function:
p(xi,l = yea | pi, al, bl) = σ(pial + bl).

There are numerous applications and extensions of this



model [Jenkins, 1999; Schickler, 2000; Canes-Wrone et al.,
2002; Clinton et al., 2004; Gerrish, 2013]. For the most part,
these models consider each legislator’s vote as an individ-
ual decision with respect to the issue being voted on. All
elements of social interactions are typically lumped into the
single popularity parameter bl. In the real world, however,
the voting behaviors of legislators are often interdependent
(e.g., deal-making). As a result, each voting outcome can be
thought of as a joint behavioral outcome, which naturally falls
in the territory of game theory.

Game-theoretic models, such as the linear influence game
(LIG) model, have been proposed in the literature [Irfan and
Ortiz, 2011; Irfan, 2013; Irfan and Ortiz, 2014]. In the LIG
model, the actions of players (i.e., senators) influence those of
others in a network-structured fashion, and every player acts
in a way to maximize their payoffs with respect to others.
For example, a Democratic senator may vote yea on a bill
that many Republican senators oppose, and may vote nay if a
close colleague opposes it.

While both the LIG and ideal point models are predictive
models, each is limited in some capacity. The ideal point
model is statistical and provides insight into the ideologies of
individual legislators, but lacks any notion of strategic inter-
actions. The LIG model is game-theoretic and captures the
effects of social influence on votes, but does not take into ac-
count the characteristics of the issue being voted on. Fur-
thermore, the statistical ideal point model gives individual
predictions, while the the game-theoretic LIG model gives
joint predictions. Previous studies to extend the ideal point
model focused on the textual content of the bills [Gerrish,
2013]. Here, we extend the ideal point model in the direction
of network-structured strategic interactions while considering
the content of the bills via the subject tags. We are not aware
of any study on ideal point model with social interactions.

2 Ideal Point Model With Social Interactions
We present a binary-action (+1 for yea vote and -1 for nay)
graphical game [Kearns et al., 2001] model with parametric
payoff functions of quadratic forms. We use a weighted di-
rected graph to represent the network among N agents (or
senators). We use Ni for the set of neighbors of node i.

Senator-Specific Parameters. Each node i is a senator and
has two parameters: a threshold ti ∈ R representing how
“stubborn” Senator i is and an ideal point pi ∈ R representing
the senator’s ideology in the political spectrum. For each di-
rected edge from j to i,wi,j ∈ R denotes the influence weight
that j has on i (this weight can be negative). The influence
weights form a matrix W ∈ RN×N , with diag(W) = 0.

Bill-Specific Parameters. Each bill l being voted on is pa-
rameterized by its polarity al ∈ R representing the bill’s po-
sition in the political spectrum.

Senators’ Choices of Actions. xi ∈ {+1,−1} denotes the
vote of a senator i on a bill l. 1 Here, xi depends on: (1)
the votes of other senators and their influences on i, (2) the
polarity al of the bill l, and (3) the threshold ti. We combine

1We use xi instead of xi,l, since l will be clear from context.

these three factors in the following influence function.

fi(x−i, l) ≡
∑
j∈Ni

Wijxj + (pi · al)− ti (1)

To give an intuition, the first term in (1) is collective, signi-
fying how others’ voting decisions influence senator i’s vot-
ing decision. In contrast, the second term is specific to an
individual senator and a particular bill, capturing how well
a senator’s ideal point matches the polarity of the bill in the
political spectrum. The third term is purely an individualis-
tic term modeling the level of “stubbornness” of a senator.
Another way of viewing this influence function is to consider
the bl parameter of the classical ideal point model. It rep-
resents the fraction of senators voting yea, but does not give
any further details. Our model breaks down bl into a network-
structured influence expression for each senator. The longer
version of this paper provides a detailed discussion and justi-
fication [Irfan and Gordon, 2018].

Note that the senators’ choices of actions are interdepen-
dent on each other. Game theory naturally models such mu-
tual dependencies. We next define some game-theoretic ter-
minology in our context.

A vector of actions, one action per player (or senator), is
called a joint action. A joint action X∗ is a pure-strategy Nash
equilibrium (PSNE) if every player simultaneously plays their
best response x∗i w.r.t. others’ actions (i.e., votes “opti-
mally”). We use PSNE to mathematically represent the stable
outcomes of our model. Following is Senator i’s (quadratic)
payoff function, which is maximized by i’s best response.

ui(xi,x−i, l) ≡ xifi(X−i, l) = xi
(

WT
i,−iX−i + pi · al − ti

)
.

To maximize ui(xi,x−i, l), Senator i’s best response x∗i
will be +1 if fi(X−i, l) ≥ 0. It will be −1 if fi(X−i, l) ≤ 0.
An equality indicates indifference between +1 and −1.

This completes the description of our model. As a his-
torical backdrop, our influence function (1) is grounded in
mathematical sociology as a threshold model of collective be-
havior [Granovetter, 1978]. Particularly within the CS com-
munity, Kempe et al. [2003]’s study of threshold models
with the goal of identifying the most influential nodes in a
network is the precursor to many studies on influence max-
imization [Even-Dar and Shapira, 2007; Kleinberg, 2007;
Mossel and Roch, 2010; Chen et al., 2009; Chen et al., 2010].
In most threshold models, however, the influence weights are
non-negative. Here, we do allow negative weights. Most im-
portantly, in almost all of the previous threshold models, the
context (e.g., the bills in our case) under which players choose
actions has largely been ignored. Here, we incorporate con-
text within threshold models. One subtle but crucial aspect of
our model is that it moves away from the well-studied influ-
ence maximization setting to a strictly game-theoretic setting.

3 Learning the Model
As a synopsis, we wish to learn our game-theoretic model so
that it captures as much of the observed roll call as possible in
the form of PSNE. We can trivially capture all observed roll
call data as PSNE by choosing an empty model, which is not
desirable. Therefore, we want to capture as many of the roll



call instances as possible while having as few PSNE as possi-
ble. On the other spectrum, it may very well be impossible to
capture exactly the observed data as PSNE. A natural way of
approaching the middle ground between these two extremes
is to use a generative mixture model [Murphy, 2012] that gen-
erates the observed data by picking a PSNE with probability
q and a non-PSNE with probability 1 − q. Obviously, we
would like q to be as high as possible while avoiding over-
fitting. Honorio and Ortiz [2015] use this approach to learn
threshold models from behavioral data, which we adapt here.

Let NE(G) be the set of PSNE of our game model G. As
noted above, we want to learn G to maximize the “quality”
of NE(G). Let π(G) be the size of NE(G) relative to the
total number of possible outcomes: π(G) ≡ |NE(G)|/2N . If
M is the number of observed bills, q ·M is the number of
bills that the generative model picks from the set of PSNE.
In order to maximize the quality of our model’s NE(G), we
want to maximize q ·M relative to π(G). This can be written
as q·M
|NE(G)|/2N . Since N and M are fixed, this expression is

proportional to log10
q

|NE(G)| , which allows us to measure the
quality of NE(G) while taking into account its size.

While we leave details to the longer version of the pa-
per [Irfan and Gordon, 2018], it can be shown that the op-
timization task boils down to:

min
W,t,p,a

1

M

∑
l

log
[
1 +

∑
i

e−x
(l)
i (wT

i,−ix
(l)
−i+(pi·al)

)
−ti
]
+

ρ||W||1 + ρ′||p · a||1. (2)

Here, we use an `1-norm regularizer ρ||W||1 in order to
bias the learning to sparse networks and to reduce overfit-
ting. We add another `1-norm regularizer ρ′||p ·a||1 to penal-
ize the ideal points and polarities. We use the `1- projection
method [Schmidt et al., 2007] for optimization.

3.1 Issues with Learning
Anchoring Ideal Points. Traditionally, Democrats have
negative ideal points and Republicans have positive ideal
points. To avoid getting the opposite signs, we set anchors,
which is common in the literature [Gerrish, 2013]. We used
ideal points generated for the 114th Senate 2 to find the
most extreme senators in each party for the 114th Senate.
This meant giving Warren (D-MA) and Sanders (I-VT) ideal
points of -4, and Cruz (R-TX) and Shelby (R-AL) +4.
Determining Validation Bill Polarities. We cross-
validated our model parameters using held-out roll call
data from the same Congress. However, when our model
is given a new bill l′, its polarity al′ is unknown and has
not been learned as l′ was not part of the training set. We
solved this problem using the subject codes provided by
Congress.gov. These hand-entered codes are terms that
describe the bills’ contents (e.g. “Child safety and welfare”,
“Drug Enforcement Administration”, or “Health care cover-
age and access”) and are known to be a good approximation
to topic modeling [Gerrish, 2013]. Each bill usually contains
multiple codes, with the median bill in the 114th Senate

2https://voteviewblog.com/2015/08/16/
alpha-nominate-applied-to-the-114th-senate

containing 60 subject codes out of a total of 737. For a new
bill l′, we approximate its polarity by finding the closest bill
(in terms of Euclidean distance) among the bills already seen
by the model.

3.2 Model Selection
The interplay between the regularization parameters ρ and ρ′
can lead to a mixture of an ideal point model and a social in-
teraction model, or cause the model to strongly shift towards
one or the other. Ideally, we want ρ and ρ′ to produce a net-
work that is sparse enough to avoid overfitting but complex
enough to represent the observed data while maintaining rea-
sonable ideal points. We trained the model using Session I
voting data and rigorously performed cross-validation using
Session II data. We tracked four different measures: the num-
ber of edges, the proportion of training votes that are PSNE,
errors in best responses, and the Euclidean distance between
the learned and the average ideal points. Leaving all details,
including plots, to the longer paper [Irfan and Gordon, 2018],
we settled on ρ = 0.00225 and ρ′ = 0.0004. This produced
a graph of 998 edges, and a validation error of 16.0%.

4 Equilibria Computation
Our model gives joint predictions of senators’ voting behav-
iors in the form of PSNE. As a result, the learned model is
not immediately useful without computing the PSNE. Us-
ing complexity results on LIGs, we show that this problem
is provably hard.

Theorem 1. It is NP-complete to decide whether there exists
a PSNE; whether there exists a PSNE consistent with a des-
ignated set of senators voting yea; and whether there exists a
PSNE with at least a given number of k senators voting yea.

Theorem 2. It is #P-complete to count the number of PSNE,
even when the underlying network is bipartite or star.

To compute all PSNE of our model, we applied a back-
tracking search algorithm [Irfan and Ortiz, 2014] that system-
atically explores the search space of 2100 due to 100 senators
and binary actions. Whenever a node is assigned an action,
we use the NashProp algorithm [Ortiz and Kearns, 2003;
Irfan and Ortiz, 2014] to propagate its action locally and see
if it leads to any contradiction. Perhaps not surprisingly, non-
zero values of the contextual parameters p and a significantly
improve the runtime compared to when either of them is 0.
This is because the backtracking search finds contradictions
more quickly when p and a are non-zero.

When run on a high performance computing grid with
al = 0, the algorithm took 9 minutes to compute all PSNE in
the 100-player game. When al ≈ −3.22 (one of the largest
negative polarities), it took only 0.49 seconds.

5 Experiments: The 114th Senate
We ran our model using roll call and bill-specific data from
the 114th U.S. Senate (2015-2017). We considered all voting
instances that had an associated bill (including amendments),
and ignored all other types of votes (e.g. confirmations).

Congress.gov
https://voteviewblog.com/2015/08/16/alpha-nominate-applied-to-the-114th-senate
https://voteviewblog.com/2015/08/16/alpha-nominate-applied-to-the-114th-senate


Figure 1: A partial view of the learned influence network. Only
the strongest 30% incoming and outgoing edges for each node have
been selected for visualization. Each node represents a senator, with
colors to indicate party and shades to indicate threshold level ti
(darker means higher threshold). Edges represent one’s influence
on another, with black edges representing positive influence and red
edges negative; thickness represents magnitude of influence.

Learned Ideal Points. With very few exceptions, our
model assigns negative ideal points to Democrats and positive
ideal points to Republicans. This is an encouraging result as it
demonstrates our model’s ability to capture ideal point data in
a manner similar to traditional ideal point models. The aver-
age ideal point for Democrats and Independents is -1.49 with
a standard deviation of 0.76, and for Republicans 2.47 with
a standard deviation of 0.79. Details are left to the longer
paper [Irfan and Gordon, 2018].

Influence Network. Fig. 1 gives a visualization of the
learned network. Note that the structure of this network will
not change for different bills.

Comparison with Ideal Point Models. Clinton et al.
[2004] report an accuracy of 89.9% on individual votes in the
106th U.S. House of Representatives. However, that is train-
ing accuracy without any held-out data. The challenge with
measuring test accuracy with held-out data is that the polarity
al of a bill l in the held-out data is unknown. We describe how
we mitigate this challenge using the subject codes of bills in
Section 3.1. Even if we apply the same procedure to the clas-
sical ideal point model, it will perform poorly with respect
to our desirable quality measure log10

q
|NE(G)| , because it is

designed to give individual predictions, not joint predictions.

More specifically, the network structure is basically empty in
the classical ideal point model, which would lead to a stag-
gering number of PSNE (computationally infeasible). This
would exponentially bring down the above quality measure.
Comparison with LIG Model. We compare and contrast
our model with the linear influence game (LIG) model [Irfan
and Ortiz, 2011; Irfan, 2013; Irfan and Ortiz, 2014], which
is the state-of-the-art game-theoretic model on influence in
Congress to our knowledge. Since the LIG model does not
have any notion of bill context while ours does, in order to
compare ours with LIG we look into three distinct types of
bills in the political spectrum: bills that are very much left-
leaning (very negative polarity), bills that are in the middle
(polarity close to 0), and bills that are very much right-leaning
(very positive polarity). Overall, our model produces a much
narrower band of PSNE as its stable-outcome prediction than
the LIG model. In particular, the prediction of our model is
remarkably precise and high-quality if a bill falls in either end
of the political spectrum. Details on the quality of PSNE can
be found in the longer paper [Irfan and Gordon, 2018].
Case Studies. For a right-leaning bill we picked one of the
most controversial bills of the 114th Senate, the Keystone
XL Pipeline bill [Erickson and Lazarus, 2014], for which
al = 1.426. The bill instigated protests from environmental
groups and the public and ultimately passed by a 62–36 vote.
Our model produced one single PSNE for this bill, which cor-
rectly predicted 91 votes. In contrast, the LIG model [Irfan
and Ortiz, 2014] produced 287,400 possible PSNE, where the
median number of correctly predicted votes was 50. We ob-
tained similar results for other types of bills (left leaning and
centrist). Details, including figures, are left to the longer pa-
per [Irfan and Gordon, 2018].
Most Influential Senators. It is natural to ask who the most
influential senators are for passing a bill. The implication is
that when the most influential senators group up and vote yea
on a bill, then everybody else would be influenced to vote yea
(note the lack of diffusion or dynamics and the contrast with
influence maximization). Given the set of all PSNE, we can
compute a small set of most influential senators by applying
the well-known greedy set-cover algorithm with a provable
log-factor approximation guarantee, as applied to LIGs [Irfan
and Ortiz, 2014]. In our model, a set of most influential sena-
tors consists of only four senators: {Carper (D-DE), Schumer
(D-NY), Cruz (R, TX), Peters (D, MI)}. In contrast, due to
its wide band of PSNE, the LIG model gives a much bigger
set of nine most influential senators. This not only highlights
an improvement over LIGs but also makes our framework ap-
plicable to the minimal targeted intervention problem where
we are interested in targeting as few individuals as possible to
achieve a desirable social outcome.

Concluding Remarks
We have presented a model of strategic behavior grounded in
threshold models. Unlike the existing literature on threshold
models, ours takes into account the context under which the
behaviors take place. This leads to significant improvements
over previous models, both in terms of the number of PSNE
as well as the quality of these PSNE.
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Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, ed-
itors, Algorithmic Game Theory, chapter 24, pages 613–
632. Cambridge University Press, 2007.

[Mossel and Roch, 2010] Elchanan Mossel and Sebastien
Roch. Submodularity of influence in social networks:
From local to global. SIAM Journal on Computing,
39(6):2176–2188, 2010.

[Murphy, 2012] Kevin P Murphy. Machine learning: a prob-
abilistic perspective. MIT press, 2012.

[Ortiz and Kearns, 2003] Luis E. Ortiz and Michael Kearns.
Nash propagation for loopy graphical games. In
Suzanna Becker Becker, Sebastian Thrun Thrun, and
Klaus Obermayer, editors, Advances in Neural Informa-
tion Processing Systems 15, pages 817–824, 2003.

[Schickler, 2000] Eric Schickler. Institutional change in the
house of representatives, 1867–1998: a test of partisan and
ideological power balance models. American Political Sci-
ence Review, 94(02):269–288, 2000.

[Schmidt et al., 2007] Mark Schmidt, Glenn Fung, and
Romer Rosales. Fast optimization methods for l1 regu-
larization: A comparative study and two new approaches.
Proceedings of the 18th European Conference on Machine
Learning, ECML ’07, pages 286–297, 2007.

http://www.bowdoin.edu/~mirfan/papers/Mohammad_Tanvir_Irfan_Dissertation.pdf
http://www.bowdoin.edu/~mirfan/papers/Mohammad_Tanvir_Irfan_Dissertation.pdf

	Introduction
	Ideal Point Model With Social Interactions
	Learning the Model
	Issues with Learning
	Model Selection

	Equilibria Computation
	Experiments: The 114th Senate

