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1. INTRODUCTION
“Money, says the proverb, makes money. When you have got a little, it is often easy to

get more. The great difficulty is to get that little.” — Adam Smith

Microfinance programs are typically not-for-profit programs with a humanitar-
ian mission of poverty alleviation and women empowerment. We begin with a one-
paragraph historical account of microfinance movement, followed by a brief discussion
on several distinctive characteristics of the market. The goal is to help the reader ap-
preciate the potential societal impact of this line of work as well as to give the reader
an insight into our model.

A chain of unsuspecting events led to today’s worldwide microfinance movement. We
only need to go as far back as the 1970s to get to its root. The place of its inception was
a small village in Bangladesh and the person credited for the idea is Dr. Muhammad
Yunus, an Economics professor at that time. It was a time when the newborn nation
was struggling to recover from a devastating war and an ensuing famine. A blessing
in disguise may it be called, it led Yunus to design a small-scale experiment on micro-
lending as a tool for poverty alleviation. The feedback from that experimentation gave
Yunus and his students the insight that micro-lending mechanism, with its social and
humanitarian goals, could successfully intervene in the informal credit market that
was predominated by opportunistic moneylenders. Although far from experiencing a
smooth ride, the microfinance movement has nevertheless been a great success story
ever since, especially considering the fact that it began with just a small, out-of-pocket
investment on 42 clients and boasts a staggering 100 million poor clients worldwide at
present [X. Gine and Morduch 2006]. Yunus and his organization Grameen Bank have
recently been honored with the Nobel peace prize “for their efforts to create economic
and social development from below.”1

We next discuss the key characteristics of microfinance markets that will help us
understand some of the peculiarities of this system and will also serve as justifications
for our modeling decisions.

First, there are two sides in a microfinance market: microfinance institutions (MFIs)
and borrowers. The MFIs are almost always not-for-profit “banks” that obtain funding
from donor agencies at low interest rates and provide loans to mostly poor clients to
invest on household projects like husking, weaving, crafting, livestock raising, agri-
cultural cultivation [de Aghion and Morduch 2005]. In Section 2, we model MFIs as
not-for-profit humanitarian organizations with the objective of “market clearance.” We
model borrowers at an aggregate level as non-industrial or non-corporate agents, as
evident from their activities. To piece together these two sides, we need to discuss
some peculiar aspects of microfinance programs.

A puzzling element in the success of microfinance programs is that while commercial
banks dealing with well-off customers struggle to recover loans, MFIs operate without
taking any collateral and yet experience very low default rates. (For the benefit of the
reader, Appendix A provides a table with a summary of the different acronyms used in
this article.) The central mechanism that MFIs use to mitigate risks is known as the
group lending with joint-liability contract. Roughly speaking, loans are given to groups
of clients, and if a person fails to repay her loan, then either her partners repay it on
her behalf or the whole group gets excluded from the program. Besides risk-mitigation,
this mechanism also helps lower MFI’s cost of monitoring clients’ projects. Although we
do not model individuals in this work, group lending with joint-liability contract is key

1http://www.nobelprize.org/nobel prizes/peace/laureates/2006/
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to our model. In particular, it accounts for the modeling assumption of full repayment
of loans (more on it later).

Individual components of microfinance systems have been subjected to various the-
oretical and empirical studies. For example, the adverse selection problem has been
analyzed by Ghatak and Guinnane [Ghatak and Guinnane 1999]. This problem arises
when loans that are targeted toward safe clients, end up in risky clients instead. The
failure of many loan programs by state-owned banks in developing countries has been
attributed to this problem [de Aghion and Morduch 2005]. It has been shown that
in the absence of collateral, if the clients are allowed to choose their own partners,
then an assortative matching takes place that mitigates the adverse selection problem
[Ghatak and Guinnane 1999]. An empirical validation of this result can be found in
a World Bank study conducted in Peru [X. Gine and Morduch 2006], where the au-
thors designed 11 different games of two basic types—repeated one-shot games and
dynamic games—which were played for seven months by actual human subjects. Ex-
perimental results show that if the players are allowed to choose their own partners,
then like-minded players are paired together. Such an assortative matching induces
risk aversion. Although we do not model partnership-formation among individuals, we
do assume that assortative matching helps mitigate the adverse selection problem. In
other words, we assume that loans end up in “safe hands” who invest these loans in
projects that lead to repayment.

Another potential problem for a microfinance program is moral hazard, which is the
problem of enforcing sincere efforts from the borrowers in utilizing the loan in their
projects, as well as eliciting truthfulness about the outcome of the projects (in case
of a failed project, borrowers do not have any obligation to repay their loans). Clearly,
moral hazard is a deterrent to repayment of loans. The theoretical model of Ghatak and
Guinnane shows that if a non-monetary social sanction is effective, then group lending
with a joint-liability contract improves repayment rates [Ghatak and Guinnane 1999].
The authors also show that group lending mechanism can reduce the bank’s cost of
auditing by letting peers in a group audit each other’s case and by limiting the bank’s
auditing to only the case where the whole group claims to be unable to pay. In line
with these studies, we will assume that assortative matching and joint-liability con-
tracts would mitigate the moral hazard problem. We will further assume that due to
these mechanisms, there would be no default on loans. This assumption of complete
repayment of loans may seem idealistic. However, besides the studies cited above, prac-
tical evidence also suggests very high repayment rates. For example, Grameen Bank’s
loan recovery rate is 99.46% [Institute of Microfinance (InM) 2009].

Several empirical studies investigated whether competition among MFIs has any
substantial effect on interest rates. As reported in [Porteous 2006], competition among
the MFIs has had little effect on the interest rates in countries like Bangladesh and
Uganda, whereas it has driven the interest rates down in Bolivia. Furthermore, many
MFIs do not use interest rates as a “weapon for competition,” as much as they use
other features such as larger loan size, shorter waiting period, and flexibility in loan
repayment [Wright and Alamgir 2004]. Although these studies did not mathematically
model the system, their findings are useful in our model. For example, in our model,
interest rate is not the only factor that attracts borrowers. In particular, borrowers
in a village diversify their aggregate loan portfolio. We also address the question of
competition vs. interest rates [Porteous 2006], among other questions, through our
model.

1.1. Brief Overview of Our Model, Approach, and Questions Addressed
We present a two-sided networked economy model, consisting of microfinance institu-
tions (MFIs) and villages. Each MFI has branches in a subset of villages and has the
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same interest rate in all of its branches. Each village can only interact with the MFIs
having branches there. The MFIs want to set their interest rates to achieve market-
clearance. The objective of each village is to borrow the maximum amount of diversified
loans (defined in Section 2) such that they would be able to repay the loans with inter-
est. The villages invest their loans in productive projects and they apply the revenues
from those projects toward repayment of their loans. An equilibrium point is specified
by interest rates and loan allocations such that the objectives of the MFIs and the
villages are achieved.

This paper proposes a computational game-theoretic framework grounded in arti-
ficial intelligence (AI) and and machine learning within computer science (CS) for
studying causality in strategic scenarios that often appear in economic settings. We
call this framework causal strategic inference. Within the context of this paper, we use
this framework to mathematically model microfinance markets as a networked sys-
tem, learn the model from real-world data, and design algorithms to predict the effects
of interventions. After providing a formal mathematical definition of a microfinance
market, we study some of its equilibrium and computational properties. We provide
algorithms to perform causal strategic inference to answer a variety of questions about
the potential consequences of interventions in the system (i.e., counterfactual queries).
We answer these based on the resulting joint predictions of villages’ loan allocations
and banks’ interest rates after performing such interventions.

1.2. Our Contributions
Mathematically, we model real-world microfinance markets. Computationally, we com-
plement it with an AI approach to learning the model and designing algorithms for it.
Our main contributions are the following.

(1) We show that a special case of our problem is equivalent to an Eisenberg-Gale
convex program, which leads us to the proof of the existence an equilibrium point
as well as the uniqueness of the equilibrium interest rates.

(2) We give a primal-dual based constructive proof of the existence of an equilibrium
point in the general setting. A cornerstone of our proof is showing that the strategic
complementarity property [Bulow et al. 1985] is inherent in our model.

(3) We use real-world microfinance data from Bangladesh and Bolivia to learn the re-
spective models. Our learning procedure takes into account the important practical
problem of equilibrium selection.

(4) We demonstrate how our model can be applied to formulating a variety of impor-
tant policy decisions. For example, what are the effects of an interest rate ceiling?
How does an intervention by introducing new MFIs affect the market? What would
happen if a loss-making MFI is removed from the market, or if an MFI decides to
close some of its branches?

We next give a very brief description of causal strategic inference. For details, we
refer the reader to Appendix C. We also refer the reader interested in how our work
fits within the existing literature in econometrics, game theory, CS, AI, and machine
learning to Appendix D for a thorough comparative study.

1.3. Causal Strategic Inference
A game in non-cooperative game theory is mathematically defined by a set of players,
a set of actions for each player, and a payoff function for each player that maps each
joint-action to a real number [von Neumann and Morgenstern 1947; Fudenberg and
Tirole 1991]. Here, a joint-action is specified by an action for each player. A central
solution concept in non-cooperative game theory is Nash equilibrium [Nash 1951]. We
can define a pure-strategy Nash equilibrium (PSNE) as a joint-action of the players
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such that every player plays the best response to the other players’ actions simultane-
ously. 2 Here, a best-response of a player to the the other players’ actions is defined by
an action that maximizes its payoff with respect to the corresponding joint-action. Of
course, a best-response of a player may not be unique. Yet, the definition of Nash equi-
librium signifies stability in the sense that no player has any incentive to unilaterally
deviate to a different action.

As mentioned in Section 1.1, our goal is to study one type of causal queries known
as interventions in game-theoretic settings. Interventions are generally carried out
by “surgeries” [Pearl 2000]. We detail the notion of surgeries in game theoretic set-
tings in Appendix C. One common type of surgery we use here is changing the struc-
ture of the game. That is, how will a PSNE change if we make certain changes to a
game-theoretic model? For example, what would happen to a microfinance market if
loss-making government-owned MFIs are removed? How would the market react if
subsidies are injected into certain MFIs? Such intervention questions are addressed in
Section 6 using our model of microfinance markets.

We study the aforementioned causal questions under the heading of causal strategic
inference. We should mention here that we learn our model using real-world data only
once, before doing any intervention. After performing interventions, we answer causal
questions via PSNE computation. Often times, PSNE computation before and after an
intervention helps us understand the effect of the intervention.

We review similar studies of causal strategic inference in econometrics in Ap-
pendix D. One major difference between our approach and that of many econometrics
studies is that the latter approach is in large part analytic, whereas ours is algorithmic.
Yes, econometricians do provide algorithms (e.g., algorithms for estimating parame-
ters), but for the most part, those algorithms are primarily driven by analytic tech-
niques. See, for example, the two-step estimator for discrete games of incomplete in-
formation [Bajari et al. 2010a]. In contrast, the main focus of this paper is an approach
rooted in algorithms, computation, AI, and machine learning ideas. Several other dif-
ferences between econometrics and our approach are described in Appendix D.3.

1.4. Brief Review of Literature in Microfinance and Econometrics
The effectiveness of microfinance has been extensively studied in econometrics. Closest
to ours in terms of modeling is Salim [2013]’s investigation of whether the objective
function of MFIs is to maximize profit or to alleviate poverty. The author uses branch
placement by two of the most prominent MFIs in Bangladesh to show that their objec-
tive functions are in line with poverty alleviation. The majority of the other studies fo-
cuses on the implications and effectiveness of microfinance and its various components.
For example, Mahjabeen [2008] studies the welfare and distributional implications of
Grameen Bank in Bangladesh. The author shows that Grameen Bank has a positive
impact on increasing income and welfare and reducing poverty at a household level.
The social welfare claims of microfinance have been constantly under the microscope.
Khandker [2005] uses panel data from Bangladesh to show that microfinance indeed
helps poverty alleviation. In a more recent study, Becchetti and Castriota [2011] show
that the post-tsunami equity injection into a Sri Lankan MFI significantly helped the
recovery of clients heavily impacted by the tsunami. In contrast to these economet-
rics studies, we do not evaluate the effectiveness of microfinance. Instead, we model a
microfinance market with the goal of performing interventions.

2There is a more general solution concept known as mixed-strategy Nash equilibrium (MSNE), in which
each player independently chooses a probability distribution for playing one of its actions so that every
player maximizes the expected payoff simultaneously [Fudenberg and Tirole 1991].
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Going beyond the specific setting of microfinance, econometrics is rich with studies
on modeling markets and economies, estimating the model parameters, and studying
causality using the models [Heckman and Vytlacil 2007; Abbring and Heckman 2007].
One of the prime differences between the main vein of econometrics studies and this
work is that here we have a strictly game-theoretic setting without any element of sta-
tistical modeling. 3 We make this distinction clear by comparing and contrasting our
model with a strawman structural equation model. We present the strawman model
in Section 4.1, learn it using data from Bangladesh in Section 5.3, and perform inter-
ventions using it in Section 6.

Another major difference is that unlike most of the econometrics literature, we do
not consider the observed data to be an equilibrium. We give details in Section 3.2. In
fact, there is some evidence (e.g., an interest rate cap that matches our prediction) that
suggests that the observed data may not correspond to an equilibrium (see Section 6).

Within econometrics, market entry decisions are viewed as strategic and are nat-
urally modeled game theoretically. In Appendix D.2, we review the relevant litera-
ture, beginning from the early equilibrium model by Bjorn and Vuong [1984] to some
of the recent developments, including Ciliberto and Tamer [2009]’s model of airline
markets. We also compare and contrast our approach with market entry models in
Appendix D.3. In sum, our computational approach is rooted in algorithmic theory,
where we do not have any closed-form solutions for the quantities we are interested
in. Furthermore, the majority of the work on entry market models uses random utility
models [McFadden 1974; 1981], whereas ours is inspired by the classical Arrow-Debreu
competitive economy model [Arrow and Debreu 1954a] rooted in applied general equi-
librium (AGE) [Kehoe et al. 2005] 4. Also, as mentioned in the previous paragraph, we
do not assume the observed data to be an equilibrium.

Although our model can be classified as a networked economy model within the AGE
framework, there are various differences between the AGE literature and our work.
First, in most of the AGE literature, including the seminal work of Arrow and Debreu
[1954a], prices are homogeneous in the first degree meaning that the constraints do
not change if we scale prices by the same factor. As we will see in Section 2.2, that
does not hold in our case. This has implications beyond just the proof of equilibrium
existence. There are other differences as well, which we outline in Appendix D.4. We
also present a strawman AGE model in Section 4.2 and compare and contrast it with
our model in Section 6.

1.5. Overview of the Article
We begin by formally presenting our proposed model of microfinance markets, and es-
tablishing some of its more analytic properties, in Section 2. In Section 3, we discuss
computational aspects of our work for both inference and learning. In Section 4, we de-
sign two strawman models and compare them with our model. In Section 5, we present
an empirical study of our general approach on two real-world microfinance markets:
Bolivia and Bangladesh. In Section 6, we illustrate how our proposed approach may be
applied for policy making, using those two real-world markets as particular instances.
In Section 7, we conclude the article with a brief summary of our work and a few
remarks, including opportunities for future work.

3We thank one of the anonymous TEAC reviewers for pointing this.
4 Quoting Mas-Colell et al. [1995], “From a substantive viewpoint, general equilibrium theory has a more
specific meaning: It is a theory of the determination of equilibrium prices and quantities in a system of per-
fectly competitive markets. This theory is often referred to as the Walrasian theory of markets.” Therefore,
although our work is inspired by AGE models for determining equilibrium prices and quantities, it is not an
AGE model from this substantive viewpoint.
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2. OUR MODEL OF MICROFINANCE MARKETS
We model microfinance markets as a two-sided market consisting of MFIs and villages.
Each MFI has a certain number of branches, each branch being located in a distinct
village and dealing with borrowers within that village only. Similarly, each village
can only interact with the MFIs present there. Each MFI has a fixed amount of loan
and wants to disburse all of it. On the other hand, the villages want to maximize an
objective function that involves the total amount of loan it receives and how diversified
that loan portfolio is, subject to the constraint that after investing the loan, it would
be able to repay it with its accrued interest.

2.1. Preliminary Notation and Definitions
There are n MFIs and m villages. First, for simplicity of presentation, we denote
[n] ≡ {1, 2, . . . , n}, and similarly for [m]. We use the following notation heavily in the
remainder of the article.

— Vi ≡ set of villages where MFI i operates
—Bj ≡ set of MFIs that operate in village j
— Ti ≡ finite total amount of loan available to MFI i to be disbursed
— ri ≡ flat interest rate at which MFI i gives loans
— xj,i ≡ amount of loan borrowed by village j from MFI i

The following function also plays a key role in our model.

Definition 2.1. (Revenue-Generation Function of a Village) We denote by

gj(l) ≡ dj + ej l (1)

the revenue generation function of village j, which is a function of the loan amount
l ≥ 0, and defined in terms of two parameters corresponding to each village j:

(1) the initial endowment dj > 0 (i.e., each village has other sources of income
[de Aghion and Morduch 2005, Ch. 1.3]) and

(2) the rate of revenue generation ej ≥ 1.

For each MFI i, we assume that Ti > 0. Finally, the villages have a diversifica-
tion parameter λ ≥ 0 that quantifies how much they want their loan portfolios to
be diversified.5 We delay further discussion of the diversification parameter λ until
Sections 2.2, 2.3, and 5. But as a preview, we choose λ following a systematic cross-
validation procedure. Roughly, we use this parameter as our way to account for, or in
some general sense “rationalize,” real-world behavior some may find “irrational” at a
glance: i.e., village’s obtaining loans from banks with interest rates higher than the
minimum over all those banks (locally) available to them.

We provide a notation legend in Appendix B for the benefit of the reader.

2.2. Problem Formulation
The following is a formal mathematical definition of our microfinance model as a type
of two-sided network economy.

Definition 2.2. (Microfinance Market Model Parameters) A two-sided networked
microfinance model, or a microfinance market for short, is defined by the tuple
(n,m,T,V,B, e,d, λ), where T ≡ (Ti)i∈[n], V ≡ (Vi)i∈[n], B ≡ (Bj)j∈[m], e ≡ (ej)j∈[m],
d ≡ (dj)j∈[m], and each component is as defined in the previous subsection (Sec-
tion 2.1).

5For simplicity, we assume that all the villages have the same diversification parameters.
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We note that when we apply our model to real-world settings, we will see that the
parameters dj ’s and ej ’s, in contrast to the other input parameters defining our mi-
crofinance market model (Definition 2.2), are not explicitly mentioned in the data
and therefore, need to be learned from the data. We present the machine learning
scheme for that in Section 3.2. We should also note that implicit in the definition
is that our model has an underlying undirected network structure: that is, we have
j ∈ Vi ⇐⇒ i ∈ Bj .

We now explain the semantics of our model.
Each MFI i wishes to set its interest rate ri in a way that it is able to lend all of its

available money Ti, subject to the constraints that the MFI cannot lend more money
than it has available, and that the interest rates must be non-negative. When all the
MFIs are able to do so, it corresponds to the well-known notion of market clearance in
economics. The following is the optimization problem for MFI i, which we will refer to
as the MFI-side optimization problem. Note that this problem is basically a constraint
satisfaction problem (CSP) because of the constant objective function.

Definition 2.3. (Optimization Problem P iM of Each MFI i)

max
ri

1 (2)

subject to ri

Ti −∑
j∈Vi

xj,i

 = 0 (3)

∑
j∈Vi

xj,i ≤ Ti (4)

ri ≥ 0

On the other hand, each village j wishes to maximize the amount of diversified loans
it can obtain, subject to the constraint that it is able to repay that loan. We will call
the following the village-side optimization problem.

Definition 2.4. (Optimization Problem P jV for Each Village j)

max
xj=(xj,i)i∈Bj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i
(5)

subject to
∑
i∈Bj

xj,i(1 + ri − ej) ≤ dj (6)

xj ≥ 0

We will call the second term in the objective function given in Equation 5 of Defini-
tion 2.4 the diversification term. Note that although this term bears a similarity with
the well-known entropic term (i.e., Shannon’s entropy), it can be mathematically dif-
ferent. This is because the value of the xj,i’s can be larger than 1. Although we can
think of the diversification parameter λ as exogenous, we will assume that λ is small
enough so that the first term in the objective function dominates the second. We re-
turn to this last point and provide more details in Section 2.5. We will call the first
constraint of P jV given in Equation 6 of Definition 2.4 the budget constraint. It sim-
ply expresses that each village j is able to repay the loan with accrued interest, i.e.,∑
i∈Bj

xj,i(1 + ri) ≤ gj

(∑
i∈Bj

xj,i

)
. Here, the assumption is that the revenue genera-

tion function is linear. (We refer the reader to Definition 2.1.)
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For the two-sided market defined by each (local, distributed) optimization problem
P iM or P jV for each MFI i or village j, respectively, we will apply the solution concept
of a (general) equilibrium point (r∗,x∗), which is a global solution concept defined here
by (individually optimal) interest rates r∗i for each MFI i and vectors x∗j ≡ (x∗j,i)i∈Bj

of
(individually optimal) loan allocations for each village j such that the following two
conditions hold. First, given the allocations x, each MFI i is individually optimal (i.e.,
for each individual MFI i, we have that r∗i is an optimal solution to P iM , as given in
Definition 2.3, given (x∗j )j∈Vi

). Second, given the interest rates r∗, each village j is in-
dividually optimal (i.e., for each individual village j, we have that x∗j is an optimal
solution to P jV , as given in Definition 2.4, given (r∗i )i∈Bj

). A formal mathematical defi-
nition follows.

Definition 2.5. (Equilibrium Point of a Microfinance Market) We call the tuple
(r∗,x∗) a general or market equilibrium point, or simply an equilibrium, of a microfi-
nance market (n,m,T,V,B, e,d, λ) if, simultaneously,

(1) (r∗i is a solution of P iM for all i) for each MFI i ∈ [n], we have r∗i ≥ 0 and the
instantiations of the variables in Equations 3 and 4 based on the equilibrium point
satisfy the respective conditions given in those equations; and

(2) (x∗j is a solution of P jV for all j) for each village j ∈ [m], we have x∗j ≥ 0 (pointwise),

x∗j ∈ argmaxxj=(xj,i)i∈Bj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i
,

and the instantiations of the variables in Equation 6 (budget constraint) based on
the equilibrium point satisfy the respective condition given in that equation.

Said differently, no MFI i and no village j has any incentive to unilaterally deviate
from their equilibrium prescribed by r∗i and x∗j , respectively, because none would gain
anything strictly better given the loan demands (x∗j )j∈Vi

for all the villages that MFI i
serves and interest rates (r∗i )i∈Bj for all the MFIs serving village j, respectively, at the
equilibrium.

The parameter Ti for all MFI i and the diversification parameter λ are assumed to
be exogenous inputs to this model. The revenue generation functions gj of the villages
j are to be estimated from the data. The interest rates ri of MFIs i and the allocations
xj,i for any village j and MFI i ∈ Bj are to be defined by an equilibrium point.

An important observation here is that the MFI-side optimization problem P iM (Def-
inition 2.3) does not have any direct control over the allocations x (in the sense that
each P iM treats x as exogenous). Similarly, each village-side optimization problem P jV
(Definition 2.4) does not have any direct control over the interest rates r. Of course, the
interest rates r and the allocations x influence each other indirectly. In this setting,
as formally stated in Definition 2.5, an equilibrium is specified by (r∗,x∗) such that
all the optimizations (P iM )i∈[n] and (P jV )j∈[m] are solved simultaneously with respect
to (r∗,x∗). This notion of an equilibrium point is rooted in the classical mathematical-
economics literature on markets [Debreu 1952; Arrow and Debreu 1954b].

2.3. Justification of Modeling Aspects
Various aspects of our modeling choice have been inspired by the book of de Aghion and
Morduch [2005] and several empirical studies on microfinance systems [Morduch 1999;
Wright and Alamgir 2004; Porteous 2006]. We list some of these modeling aspects
below. In the discussion, we often refer the reader back to some of our comments in the
Introduction, and several concepts presented there.
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Objective of MFIs. As noted in Introduction, we model MFIs as not-for-profit organi-
zations. This may seem unusual at first, especially considering MFIs are banks. The
perception that MFIs are making profits while serving the poor has been described as
a “myth” in Chapter 1 of de Aghion and Morduch 2005’s book. In fact, the book devotes
a whole chapter to bust this myth and establish that MFIs very much depend on sub-
sidies for sustainability. We refer the reader to Chapter 9 of de Aghion and Morduch
[2005] and to Morduch [1999]. Therefore, our modeling of MFIs as not-for-profit orga-
nizations is aligned with their humanitarian goals as well as a considerable amount of
significant empirical evidence.

Objective of Villages. As mentioned in Introduction, typical customers of MFIs are
low-income people engaged in small household projects such as rice husking, weav-
ing, crafting, etc. A large majority of these customers are women working at home
(e.g., Grameen Bank, a leading MFI, has a 95% female customer base) [de Aghion
and Morduch 2005]. Clearly, there is a distinction between customers borrowing from
an MFI and those borrowing from commercial banks, because many of the latter are
for-profit corporations. Therefore, in line with the empirical evidence [de Aghion and
Morduch 2005], we have modeled the village side as non-corporate agents wishing
to obtain loans to invest in small household projects, not as revenue-maximizing or
profit-maximizing agents.

Diversification of Loan Portfolios. Clearly, one would expect a village to seek loan
only from the MFIs offering the lowest interest rate. However, real-world data in Sec-
tion 5 reflects that it is often the case that the same village borrows from multiple
MFIs at different interest rates. For example, Bagerhat Sadar in Bangladesh borrows
from all major MFIs, including BRAC, Grameen Bank, and BRDB, at varying interest
rates. In addition, empirical studies suggest that interest rates are not the only deter-
minant for the demands of the villages [Wright and Alamgir 2004; Porteous 2006] (see
Introduction for further discussion). In fact, many of the non-governmental organiza-
tion (NGO) MFIs in Bangladesh, which operate at relatively high interest rates, attract
customers by offering various facilities, such as large loan sizes, shorter waiting peri-
ods, and flexible repayment schemes [Wright and Alamgir 2004]. We have added the
diversification term in the village objective function to reflect this. Furthermore, this
formulation being in line with the quantal response approach [McKelvey and Palfrey
1995], a similar interpretation can be ascribed to it. For example, mathematical psy-
chology literature suggests that human subjects are more likely to respond according
to such an approach [Luce 1959].

Complete Repayment of Loans. A hallmark of microfinance systems worldwide is
very high repayment rates. For example, loan recovery rates of Grameen Bank is
99.46% and that of PKSF is 99.51% [Institute of Microfinance (InM) 2009]. As ex-
plained earlier in Introduction, this striking phenomenon is typically attributed to
joint liability contracts, which mitigates moral hazard, and to assortative matching,
which mitigates adverse selection. In line with such empirical evidence, we assume
that the village side completely repays its loan.

2.4. Special Case: No Diversification of Loan Portfolios
It is useful to first study the case of non-diversified loan portfolios, i.e., λ = 0.

Definition 2.6. We say that a microfinance market (n,m,T,V,B, e,d, λ) is without
loan-portfolio diversification if λ = 0.

We start with this case because, from a purely mathematical and computational per-
spective, starting our study with the simplest case may allow us to gain some insights
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into the problem. In this case, the villages simply wish to maximize the amount of loan
that they can borrow. Several properties of an equilibrium point (Definition 2.5) can be
derived for this special case. We will later exploit these to establish one of our theoret-
ical results. We refer the reader to Appendix E for all proofs. The following property
states that at any equilibrium point, the villages will only borrow at the lowest interest
rate and the MFIs will not have any excess demand or supply.

PROPERTY 2.7. At any equilibrium point (r∗,x∗), every MFI i’s supply must match
the demand for its loan, i.e.,

∑
j∈Vi

x∗j,i = Ti (Equation 3). Furthermore, every village
j borrows only from those MFIs i ∈ Bj that offer the lowest interest rate. That is,∑
i∈Bj ,r∗i =r

∗
mj

x∗j,i(1 + r∗i − ej) = dj (Equation 6) for mj ∈ argmini∈Bj
r∗i , and x∗j,k = 0

for any MFI k /∈ mj .

We refer the reader to Appendix E.1 for a formal proof of this property.
The following properties are related in that they jointly preclude certain trivial

allocations at an equilibrium point. In particular, the next property, proved in Ap-
pendix E.3, says that each village will receive some non-zero amount of loan by spend-
ing its initial endowment.

PROPERTY 2.8. At any equilibrium point (r∗,x∗), each village j has non-zero loan
demands x∗j,i from some MFI i: formally, for any village j, there exists an MFI i ∈ Bj
such that x∗j,i > 0.

We next present a lower bound on interest rates at an equilibrium point, which will
be used in proving the main result of this section. The proof is in Appendix E.2.

PROPERTY 2.9. At any equilibrium point (r∗,x∗), for every MFI i, r∗i > maxj∈Vi
ej−

1.

The following property, proved in Appendix E.4, is similar to Property 2.8, only that
it states the MFI side of the equilibrium situation.

PROPERTY 2.10. At any equilibrium point (r∗,x∗), every MFI i has some village
j ∈ Vi with non-zero loan demand x∗j,i from i: formally, for any MFI i, there exists a
village j ∈ Vi such that x∗j,i > 0.

2.4.1. Eisenberg-Gale Formulation for the Case of No Diversification of Loan Portfolios and
Village-independent Revenue Generating Functions. We now present an Eisenberg-Gale con-
vex program formulation of a restricted case of our model where the diversification
parameter λ = 0 and all the villages j, have the same revenue generation function gj
(Definition 2.1). 6

Definition 2.11. We say that a microfinance market (n,m,T,V,B, e,d, λ) has
village-independent revenue generating functions if e and d are such that, for all vil-
lages j ∈ [m], we have ej = e and dj = d, for some real-valued numbers e and d,
independent of j.

We prove that computing a market equilibrium in this case is equivalent to solv-
ing the following Eisenberg-Gale convex program [Eisenberg and Gale 1959; Vazirani
2007]. 7

6The reader should not confuse e here for the “natural exponential” constant.
7This is not exactly the convex program that Eisenberg and Gale defined [Eisenberg and Gale 1959, p. 166],
but rather a simple variant adapted to our context.
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Definition 2.12. (Eisenberg-Gale Program PE for Microfinance Markets
without Loan-Portfolio Diversification and with Village-Independent Rev-
enue Generating Functions)

min
z

m∑
j=1

− log
∑
i∈Bj

zj,i (7)

subject to
∑
j∈Vi

zj,i − Ti ≤ 0, 1 ≤ i ≤ n (8)

zj,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi
The main idea of the proof is to make a concrete connection between an equilibrium
point (r∗,x∗) of a microfinance market and the variables z of PE (Definition 2.12). In
particular, we define x∗j,i ≡ z∗j,i and express r∗i in terms of certain dual variables of
PE . Once we do that, we show that the equilibrium conditions (Definition 2.5) for the
aforementioned special case of no diversification of loan-portfolios (Definition 2.6 and
village-independent revenue generating functions (Definition 2.11) are equivalent to
the Karush-Kuhn-Tucker (KKT) conditions of PE .

The Eisenberg-Gale formulation immediately implies the existence of an equilib-
rium point, and the uniqueness of the equilibrium interest rates as a corollary. The
proof of the following theorem is in Appendix E.5.

THEOREM 2.13. The special case of microfinance markets with village-independent
revenue generating functions and no loan portfolio diversification has an equivalent
Eisenberg-Gale formulation given in Definition 2.12.

The following corollary is an immediate computational consequence of the convex-
programming properties of the Eisenberg-Gale formulation.

COROLLARY 2.14. For the above special case, there exists an equilibrium point with
unique interest rates [Eisenberg and Gale 1959] and a combinatorial polynomial-time
algorithm to compute it [Vazirani 2007].

Theorem 2.13 allows us to make a connection between a more restricted case of our
model and the linear Fisher model. When λ = 0, and all the villages have an identical
revenue generation function and all the MFIs have the same total amount of money,
our model is indeed a graphical linear Fisher model where all the utility coefficients
are set to 1. The reader is referred to the convex program 5.1 [Vazirani 2007] and the
Eisenberg-Gale formulation PE (Definition 2.12) above to verify this. To emphasize the
network structure of microfinance markets, the running time of the convex program is
polynomial in the number of variables of the program, which in this case is the number
of edges of the bipartite graph induced by the Vi’s (or equivalently, the Bj ’s).

2.5. Equilibrium Properties of General Case
We are now back to the general case of the problem, formally specified by mathematical
programs (P iM )i∈[m] (Definition 2.3) and P jV (Definition 2.4) in Section 2.2. We begin
with an expository discussion on the village objective function (Equation 5), which can
be rewritten as

∑
i∈Bj

xj,i−λ
∑
i∈Bj

xj,i log xj,i. While the first term wants to maximize
the total amount of loan, the second term wants, in colloquial terms, “not to put all the
eggs in one basket.” For this reason, we name it the diversification term. The extent
of this diversification is controlled by the exogenous parameter λ ≥ 0. However, if λ
is sufficiently small, then the first term dominates the second term, i.e.,

∑
i∈Bj

xj,i ≥
λ
∑
i∈Bj

xj,i log xj,i. This roughly says that it is more important to the villages to obtain
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as much loan as possible than to diversify its loan portfolio. We deem this as a desirable
property of the model given the behavior exhibited in the real-world data in which
villages may have demand for loans from banks other than the one with the minimum
interest rates among all those locally available to the village, a point we return to in
Section 5. We view our approach to dealing with apparent diversification is a simple
first step. While we do recognize that there may be several other ways to approach this
issue, we did not explore it in this work. For theoretical purposes, it would suffice to
assume the following.

ASSUMPTION 2.1. The diversification parameter λ satisfies the following condition:

0 ≤ λ ≤ 1

2 + log Tmax
,

where Tmax ≡ maxi Ti and, without loss of generality, Ti > 1 for all i.

The following equilibrium properties will be used in the next section (Section 3). The
proof is in Appendix E.6.

PROPERTY 2.15. The first constraint of the village-side optimization programs
(P jV )j∈[m] (Definition 2.4) must be tight at any equilibrium point.

Let us define eimax ≡ maxj∈Vi ej and dimax ≡ maxj∈Vi dj , where ej is village j’s rate of
revenue generation and dj is j’s initial endowment. We can obtain the following bounds
on interest rates.

PROPERTY 2.16. At any equilibrium point, for each MFI i, eimax−1 < r∗i ≤
|Vi|dimax

Ti
+

eimax − 1.

The proof is in Appendix E.7.

3. COMPUTATIONAL SCHEME
In this section, we will primarily focus on two computational problems:

(1) learning the model from data and
(2) designing an algorithm to compute an equilibrium point.

Although in practice, we first solve the learning problem before going on to computing
an equilibrium point, for clarity of presentation, we will reverse the order here.

3.1. Computing an Equilibrium Point
We will now give a constructive proof of the existence of an equilibrium point of a mi-
crofinance market (n,m,T,V,B, e,d, λ), given as input, with respect to the programs
(P iM )i∈[n] (Definition 2.3) and (P jV )j∈[m] (Definition 2.4), stated in Section 2.2, formally
defining the game-theoretic model. Here we assume that λ > 0; we discussed the case
of λ = 0 in the previous section (Section 2.4). The goal is to compute an equilibrium
point consisting of an interest rate r∗i for each MFI i and a vector of loan allocations x∗j
for each village j. We will also prove that an equilibrium point always exists. But first,
let us give a brief outline of the equilibrium computation scheme in Algorithm 1.

As preview of the technical discussion of the algorithm, we note that it might be
interpreted as a type of sequential partial best-response dynamics. The villages’ de-
mands always correspond to full best responses to the current interest rates of the lo-
cal banks to which each village has access. The banks’ interest rates are typically only
partial best responses, roughly in the direction of the best-response gradient, given
the local demands of the villages that each bank serves. While neither sequential best-
response dynamics nor best-response-gradient dynamics are guaranteed to converge

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:14 Irfan and Ortiz

in general, we show here that our sequence of partial best-response dynamics always
converges to an equilibrium point of the microfinance market. (We note that in practice
the equilibrium may potentially be approximate because of inherent numerical impre-
cisions induced by the computer representation of real-valued numbers.) The ensuing
technical results will be presented in the context of the outline given in Algorithm 1.

ALGORITHM 1: Outline of Equilibrium Computation

1: For each MFI i, initialize its interest rate ri to eimax − 1.
2: For each village j, compute its best-response loan demands xj for the current interest rates

ri for all banks i ∈ Bj serving the village j.
3: repeat
4: for all MFI i do
5: while Ti 6=

∑
j∈Vi

xj,i do
6: Update interest rate ri: intuitively this operation seeks to set the local interest rate

in a direction that would reduce the (local) difference Ti −
∑

j∈Vi
xj,i between the

local total supply of loans Ti and the current local loan demands
∑

j∈Vi
xj,i (Details

provided in Section 3.1.1).
7: For each village j ∈ Vi, update its best response xj to reflect the update in ri (Details

provided in Section 3.1.2).
8: end while
9: end for
10: until no change in ri occurs for any i

It turns out to be more convenient for the presentation to first characterize the best
response of the villages used in Line 7 of Algorithm 1, before specifying the details of
how to update ri in Line 6 at each round of the algorithm.

LEMMA 3.1. (Village’s Best Response) Given the interest rates of all the MFIs,
the following is the unique best response of any village j to any MFI i ∈ Bj :

x∗j,i = exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(9)

where α∗j ≥ 0 is the unique solution to∑
i∈Bj

exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(1 + ri − ej) = dj . (10)

The proof is in Appendix E.8.
In the above characterization of the village best response, as soon as the interest rate

ri of some MFI i changes in Line 6 of Algorithm 1, both the best response allocation
x∗j,i and the Lagrange multiplier α∗j change in Line 7, for any village j ∈ Vi. Next, we
show the direction of these changes.

LEMMA 3.2. (Strategic Substitutability) Whenever ri strictly increases (de-
creases) in Line 6, xj,i must strictly decrease (increase) for every village j ∈ Vi in Line 7
of Algorithm 1.

The proof is in Appendix E.9.
The next lemma is a cornerstone of our theoretical results. Here, we use the term

turn of an MFI to refer to the iterative execution of Line 6, wherein an MFI tries to
set its interest rate to make supply equal demand. At the end of its turn, an MFI has
successfully set its interest rate to achieve this objective.
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LEMMA 3.3. (Strategic Complementarity) Suppose that an MFI i has strictly
increased its interest rate at the end of its turn. Thereafter, it cannot be the best response
of any other MFI k to strictly lower its interest rate when its turn comes in the algorithm.

The proof is in Appendix E.10.
In essence, Lemma 3.2 is a result of strategic substitutability [Dubey et al. 2006] be-

tween the MFI and the village sides, while Lemma 3.3 is a result of strategic comple-
mentarity [Bulow et al. 1985] among the MFIs. We will see that our algorithm exploits
these two properties as we fill in the details of Lines 6 and 7 next.

3.1.1. Line 6: MFI’s Best Response. By Lemma 3.2, the total demand for MFI i’s loan
monotonically decreases with the increase of ri. Therefore, a simple search, such as a
binary search, between the upper and the lower bounds of ri as stated in Property 2.16,
can efficiently find the “right” value of ri that makes supply equal demand for MFI i.
For example, in the first iteration of the while loop, in Line 6, the value of ri is set to the
midpoint rmi =

rli+r
h
i

2 between its lower bound rli and upper bounds rhi . Then the best
response of the villages are computed in the next line. If still Ti 6=

∑
j∈Vi

xj,i then in

the next iteration, in Line 6, the value of ri is set to either rli+r
m
i

2 or rmi +rhi
2 depending on

whether Ti >
∑
j∈Vi

xj,i or the opposite, respectively. The search progresses in this way
until Ti =

∑
j∈Vi

xj,i. As an implementation note, to circumvent issues of numerical
precision, we can adopt the notion of ε-equilibrium point, where the market ε-clears
(i.e., the absolute value of the difference between supply and demand for each MFI i is
below ε) and each village plays its ε-best response (i.e., it cannot improve its objective
function more than ε by changing its current response). Having said that, all of our
results hold for ε = 0.

3.1.2. Line 7: Village’s Best Response. We use Lemma 3.1 to compute each village j’s best
response x∗j,i to MFIs i ∈ Bj . However, Equation 9 requires computation of α∗j , the so-
lution to Equation 10. We can exploit the convexity of the left-hand side of Equation 10
to design a simple search algorithm to find α∗j up to a desired numerical accuracy.

Next, we make the following statement about our constructive proof of the existence
of an equilibrium point. The proof is in Appendix E.11.

THEOREM 3.4. There always exists an equilibrium point in a microfinance mar-
ket specified by all the optimization programs (P iM )i∈[n] (Definition 2.3) and (P jV )j∈[m]

(Definition 2.4).

We would like to emphasize that Algorithm 1 exploits the network structure among
the villages and the banks. In particular, Line 7 acts locally on the edges incident on
villages j ∈ Vi. Although the induced bipartite graphs of the microfinance markets
we consider in the experiments (Section 5) happen to be relatively dense, there is no
reason to expect that this will always be the case in every microfinance system, partic-
ularly large ones, either now or in the future.

3.2. Learning the Model from Behavioral Data
We take a machine learning based optimization approach to learn the model from data
on interest rates and loan allocations. The inputs to the machine learning problem are

(1) the spatial structure of the market (specified by Bj for each village j, or equiva-
lently, by Vi for each MFI i),

(2) the observed loan allocations x̃j,i for each village j and each MFI i ∈ Bj ,
(3) the observed interest rates r̃i, and
(4) the total supply Ti for each MFI i.
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The objective of the learning scheme is to instantiate parameters ej and dj of the rev-
enue generation function of each village j, as well as to compute allocations x∗ and
interest rates r∗ that satisfy equilibrium conditions. In essence, the goal is to learn
the model so that an equilibrium point closely approximates the observed data. Note
that we do not assume that the observed data corresponds to an equilibrium point,
but rather want to instantiate our model such that it would lead to an equilibrium
point that is “close” to the observed behavioral data. Using index i for MFIs and j for
villages, the optimization program is formally defined below.

min
e,d,r

∑
i

∑
j∈Vi

(x∗j,i − x̃j,i)2 + C
∑
i

(r∗i − r̃i)2 (11)

such that
for all j,

x∗j ∈ argmaxxj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i
(12)

s. t.
∑
i∈Bj

xj,i(1 + r∗i − ej) ≤ dj

xj ≥ 0

ej ≥ 1, dj ≥ 0∑
j∈Vi

x∗j,i = Ti, for all i

ri ≥ ej − 1, for all i and all j ∈ Vi

Equation 11 above defines a nested (bi-level) optimization program [Bard 2013]. The
factor C in the objective function is a constant, and it can be viewed as a weighting
parameter to reconcile the differing scales of the two terms in the objective function.
To emphasize how the computational representation corresponding to the formulation
of the program exploits the network structure of the microfinance market, note that
the expressions in the objective functions and the constraints involve only local aspects
of each bank or each village (i.e., via the Bj ’s ot the Vi’s).

In the interior optimization program (Equation 12), we always make sure that x∗

are best responses of the villages, with respect to the model parameters and interest
rates r∗. In fact, we exploit the results of Lemma 3.1 to compute x∗ more efficiently.
That is, instead of searching for xj,i’s that optimize the interior objective function, it
suffices to search for Lagrange multipliers αj in a much smaller search space and then
apply Equation 9 to compute x∗. We used the interior-point algorithm of MATLAB’s
large-scale optimization package to solve the above program (Equation 11); at that
point, the interior optimization program (Equation 12) would had been solved using
the results of Lemma 3.1.

Initialization plays a big role in solving this problem fast, especially in large in-
stances (e.g., the instance with data from Bangladesh that has thousands of con-
straints and variables). If we initialize the parameters arbitrarily, then the interior
point algorithm spends an enormous amount of time searching for a feasible solution.
Fortunately, we can avoid this problem by computing a feasible solution first. For this,
with arbitrary values of e and d as inputs, we run Algorithm 1 and compute an initial
equilibrium point with respect to the inputs of e and d. Subsequently, the learning
procedure updates e and d compute an optimal solution. Using such an initial feasible
solution to the above optimization problem, we observed a much faster convergence.

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 00, Publication date: 0000.



Causal Inference in Microfinance Markets 00:17

In order to compare and contrast our approach with common approaches rooted in
econometrics and applied general equilibrium (AGE), we next present two elementary
models.

4. STRAWMAN MODELS
As detailed in Appendix C, causality has been studied in a variety of disciplines. Close
to our study here are structural equation models widely used in econometrics [Heck-
man and Vytlacil 2007; Abbring and Heckman 2007] and general equilibrium models
used in a variety of economic settings [Kehoe et al. 2005] (please see Footnote 4 on the
meaning of general equilibrium and why our model is not exactly a general equilibrium
model). We next present very simple structural equation and general equilibrium mod-
els. The goal is not to devise new research alternatives, but to position our work within
well-known causal models for market settings. We further use these two simple models
for compare and contrast when we present policy experiments in Section 6.

4.1. Strawman Structural Equation Model
Following is a simple structural equation model for a two-sided microfinance market.
Below, all the noise terms ζ and η are respectively independent.

For each MFI i:

ri =
∑
j∈Vi

wj,ixj,i + bi + ζi (13)

ζi ∼ N (0, σ2
i )

For each village j and for each MFI i ∈ Bj :

xj,i =
∑
k∈Bj

vj,i,krk + aj,i + ηj,i (14)

ηj,i ∼ N (0, ν2j,i)

We use linear regression to learn w, b, v, and a above. The challenge with linear
regression in our setting is that we only have one sample of data. This is because the
loan allocations across the villages and the interest rates of the MFIs together give
us one snapshot of the market. 8 As can be readily seen, without multiple samples
the problem becomes singular. In order to synthesize multiple samples we introduce
Gaussian noise into the data. This helps to the extent of removing the problem of
singularity and thereby solving the linear regression. Beyond that, the learned wj,i
and vj,i,k parameters hover around 0 and the bi and aj,i parameters hover around the
average (over noisy samples) interest rates and loan allocations, respectively. 9 We
further discuss learning using data from Bangladesh in Section 5.3.

Once the w, b, v, and a parameters have been learned using linear regression, we
solve the following optimization using Matlab’s optimization package to compute an
equilibrium point. For predicting the effect of an intervention, such as closing a bank,
we do not re-learn the model; we use the same model learned before in the following
optimization to compute a new equilibrium point. We discuss the results in Section 6.

8We thank an anonymous TEAC reviewer for pointing out that one could posit distributional assumptions
similar to auctions where valuations can be estimated even though bids can be thought of as a snapshot.
This is an interesting direction, since we do not consider stochasticity in this work.
9Although we leave the details, it can be shown that with enough samples, the w and v values will converge
to 0 and the b and a values will converge to the observed interest rates and loan allocations, respectively.

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:18 Irfan and Ortiz

min
r,x

∑
i

ri −
∑
j∈Vi

wj,ixj,i + bi

2

+
∑
j

∑
i∈Bj

xj,i −
∑
k∈Bj

vj,i,krk + aj,i

2

(15)

subject to
∑
j∈Vi

xj,i ≤ Ti

r ≥ 0

x ≥ 0

In sum, the simple structural equation model, when learned using noisy versions
of a single sample, cannot capture the interdependence between interest rates and
loan allocations. This has a direct effect on studying interventions (Section 6). This
model, albeit simple, distinguishes our game-theoretic approach from structural equa-
tion model approach. It can be shown that an extension of this strawman model us-
ing Tinbergen’s linear-quadratic structural equation model [Tinbergen 1956; Heckman
et al. 2003] gives similar outcomes.

4.2. Strawman Applied General Equilibrium (AGE) Model
We consider another simple model broadly within applied general equilibrium (AGE)
models [Kehoe et al. 2005] and more narrowly within the Arrow-Debreu competitive
economy setting [Arrow and Debreu 1954a]. Among numerous utility functions tradi-
tionally applied, we choose the Cobb-Douglas function (the logarithmic version of it),
since it allows each village to obtain loans from all MFIs operating in that village and
thereby capturing the diversification of loan allocations that we observe in data. Other
widely used utility functions, such as the Leontief function, allows a village to borrow
only from the lowest interest rate MFI(s) operating in that village. Next, we present
the village and MFI sides of our simple AGE model.

For each village j:

max
xj

∑
i∈Bj

τj,i lnxj,i

subject to
∑
i∈Bj

xj,i(1 + ri) ≤ dj (16)

xj,i ≥ 0, ∀i ∈ Bj
For each MFI i: ∑

j∈Vi

xj,i − Ti = 0 (17)

In this simple model, τj,i is the Cobb-Douglas function parameter corresponding
to village j’s preference for MFI i. Note that unlike Definition 2.4, this model does
not have a revenue generation function. This is because in classical AGE models,
such as Arrow-Debreu competitive economy [Arrow and Debreu 1954a] or Fisher mar-
ket [Fisher 1892], the endowment parameter dj is fixed and cannot be changed. The
MFI side of this model enforces the market clearance condition. In the MFI side, it is
implicit that xj,i’s are functions of ri’s.

Taking the Lagrangian of the village side (16), using the first oder condition of op-
timality, and after some algebra to substitute the Lagrangian variables, we get the
following best response equation for each village j.
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xj,i =
τj,idj(∑

k∈Bj
τj,k

)
(1 + ri)

(18)

Note that we are able to express loan allocations xj,i in terms of model parameters
τj,i’s, dj , and interest rate ri. Also, xj,i decreases as ri increases, which captures what
we would expect in real world. We next use Equation (18) to substitute the xj,i terms
in the MFI side Equation (17).

ri =
1

Ti

∑
j∈Vi

τj,idj∑
k∈Bj

τj,k
− 1 (19)

In order to learn the model, we first use the observed values of xj,i’s and ri’s from the
data into the the first constraint of the village side (16) and estimate dj ’s. Note that this
constraint will be an equality at optimal. We then estimate τj,i using Equation (18). For
this, note that we for any i, τj,i is divided by the same quantity

∑
k∈Bj

τj,k. Therefore,
for each i, we first estimate τj,i as xj,i(1 + ri)/dj . We then normalize tauj,i for each i.
The model learned using data from Bangladesh is discussed in Section 5.3.

It is evident from Equation (19) that ri is determined by MFI i’s total loan Ti, prefer-
ence parameters τj,i’s, and endowment of villages dj ’s. Interestingly, ri does not depend
on loan allocations x. Furthermore, we can substitute ri in Equation (18) and express
the xj,i terms independent of ri’s. Even though Equations (18) and (19) lead to a clean,
analytic solution for an equilibrium point, they have profound implications on inter-
ventions. We discuss it further in Section 6.

5. EMPIRICAL STUDY
We base our empirical study on microfinance data of Bangladesh and Bolivia. The
reason we chose these two countries is that over time, microfinance programs in these
two countries have behaved very differently with respect to competition and interest
rates [Porteous 2006].

5.1. Case Study: Bolivia
Here, we discuss our empirical study in the context of Bolivia’s microfinance market.

5.1.1. Data. We have obtained microfinance data of Bolivia from several sources, such
as ASOFIN,10 the apex body of MFIs in Bolivia, and the Central Bank of Bolivia.11

We were only able to collect somewhat coarse, region-level data. The data, dated June
2011, consists of eight MFIs operating in 10 regions. These MFIs (and their interest
rates) are Bancosol (21.54%), Banco Los Andes (19.39%), Banco FIE (20.49%), Prodem
(23.55%), Eco Futuro (29.25%), Fortaleza (21.22%), Fassil (22.38%), and Agro Capital
(21%).The number of edges in the bipartite network is 65, out of a maximum possible
80.

5.1.2. Learning the Model. Given the exogenous parameter λ, the learning scheme
above estimates the parameters ej and dj such that an equilibrium point of the game
is a close approximation to the observed behavioral data. Let us first explain how we
choose the exogenous diversification parameter λ.

Fig. 1 shows how the objective function of the optimization program (Equation 11)
varies as a function of λ. It shows that for a range of smaller values of λ, the objective

10http://www.asofinbolivia.com
11http://www.bcb.gob.bo/
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Fig. 1. Optimal objective function values and entropy of interest rates as λ varies for the Bolivia
case. The plot shows that the objective function value becomes large (which is undesirable) as λ grows.

function value of the learning program is consistently small. (Recall that the optimiza-
tion routine defined in Equation 11 wants to minimize the objective function.) As λ
grows, the objective function value oscillates a lot and is sometimes very high.

Fig. 1 also shows how the interest rates become dissimilar as we vary λ. For that,
we first define a entropy term, κ

∑
i
ri
Z log Z

ri
, where Z =

∑
i ri, where κ is a constant set

to 100. Here, the entropy quantifies the similarity among the interest rates. That is,
higher entropy means the interest rates among the MFIs are more similar. As we can
see in the figure, for relatively low values of λ, the interest rates are similar to each
other; and as λ becomes too high, they become highly dissimilar at some points.

We chose λ = 0.05, because at this level of λ, the objective function value of the
learning optimization is low as well as stable and the interest rates are also allowed
to be relatively dissimilar. As we show later, dissimilarities among the interest rates
of the MFIs are very often observed in the real-world data.

The learned values of the parameters ej and dj for villages j in the Bolivia market
capture the variation among the villages with respect to the revenue generation func-
tion. Although the rate ej of revenue generation varies only from 1.001 to 1.234 among
the villages, the variation in dj is much larger.

The individual loan allocations learned from data closely approximate the observed
allocations. In fact, the average relative deviation between these two allocations is only
4.41% (relative deviation is calculated by abs(xj,i−x̃j,i)∑

i x̃j,i
). Fig. 2 shows this. The 45o line

is the locus of equality between these two allocations.
The learned model matches the total loan allocations of the MFIs due to the con-

straint of the program. As shown later in Fig. 9, the learned interest rates are, how-
ever, slightly different from the observed rates.

Issues of Bias and Variance. Our dataset consists of a single sample. As a result,
the traditional approach of performing cross validation using hold-out sets or plotting
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Fig. 2. Learned allocations vs. observed allocations for the Bolivia dataset. The plot shows that the
learned allocations closely approximate the allocations in the observed data.

learning curves by varying the number of samples would not work in our setting. To
investigate whether our model overfits the data, we have applied the following pro-
cedure of systematically introducing noise to the observed data sample. In the case
of overfitting, increasing the level of noise would lead the equilibrium outcome to be
significantly different from the observed data.

We use a parameter ν to control the level of noise. For any fixed ν, we derive noisy
samples by modifying each non-zero observed allocation x̃j,i by adding to it a random
noise (under certain noise models to be described later). We denote the resulting noisy
allocation by xνj,i and treat the newly constructed noisy dataset as a training set and
the observed dataset as test. We learn the model using the training set. We then find
an equilibrium allocation x∗ using Algorithm 1. We compute the following average
relative deviation as the test error: 1

n

∑
i

1
|Vi|
∑
j

abs(x∗j,i−x̃j,i)

Ti
. The training error is com-

puted similarly, by replacing x̃j,i with xνj,i. For each noise level ν, we perform the whole
procedure a number of times, as we soon describe in the upcoming paragraphs, and
calculate the average error.

Gaussian Noise Model. In this model, we obtain xνj,i by adding to each non-zero ob-
served allocation x̃j,i a Gaussian random noise of mean 0 and standard deviation νσ(i),
where σ(i) is the standard deviation of the allocations of MFI i across all villages in
which it operates. For the Bolivia dataset, we find that varying the noise level ν be-
tween 0 and 1 and taking the average over 25 trials, both the training and test errors
are below 5.83% and are close to each other (i.e., within the 95% confidence interval of
each other). The learning curve, shown in Fig. 3, does not suggest overfitting.

Dirichlet Noise Model. In this noise model, we derive noisy allocations while keeping
the total amount of loan disbursed by each MFI the same as its observed total amount.
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Fig. 3. Learning curve for the Bolivia dataset under Gaussian random noise. The learning curve
does not suggest overfitting. The vertical bars denote individual 95% CI.

We follow the commonly used procedure of deriving a Dirichlet distribution from a
gamma distribution [Gelman et al. 2003, Ch. 18]. We control the noise (i.e., variance)
of the Dirichlet distribution using the parameter ν in the following way. For each MFI
i, xνi = T (i) × Dir(νx̃i).12 As the ν > 0 increases, the variance of the distribution
Dir(νx̃i) decreases. Varying ν from 2−5 (high variance) to 215 (low variance) and taking
the average over 50 trials at each ν, we found that the training and the test errors are
within the confidence intervals of each other across the whole spectrum of noise levels.
The maximum test error of 8.83% occurs at ν = 2−5 where we also get the maximum
offset of the 95% confidence interval, which is 0.66%. Once again, the learning curve,
shown in Fig. 4, does not suggest overfitting.

Equilibrium Selection. In practice, equilibrium selection is an important issue. In
general, we cannot rule out the possibility of multiplicity of equilibria. In such cases,
our learning scheme biases its search for an equilibrium point that most closely ex-
plains the data. One important question is, does the equilibrium point that we com-
pute change drastically when noise is added to our data? In other words, how robust
is our scheme? To answer this question, we extend the above experimental procedure
using the following bootstrapping scheme.13

Suppose that for each noise level ν, we have t trials (i.e., t noisy training sets, each
derived from the observed dataset using a particular noise model with the given pa-
rameter ν). For each noise level ν, we iterate the following procedure M times. At
each iteration k, we uniformly sample t times (with replacement) from the t noisy
training sets and then compute the following relative mean equilibrium allocations:

µ̂j,i =
1
t

∑t
l=1

x
∗(l)
j,i

Ti
(here, x∗(l)j,i denotes equilibrium allocation for the l-th training set).

12Slightly abusing the notation, the vector x̃i corresponds to non-zero observed allocations only.
13In the previous experiment about potential overfitting, the focus was on the distance between an equi-
librium point and the data. Now, our focus is on the distance among different equilibrium points when we
infuse noise to the data.
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Fig. 4. Learning curve for the Bolivia dataset under the Dirichlet noise model. The plot shows the
logarithm of the noise parameter ν on the x-axis. (The vertical bars denote individual 95% CI). Just like in
Fig. 3, the learning curve in this noise model does not indicate overfitting either.

Within the same k-th iteration, we compute the following average absolute deviation
from the mean: δ̂(k) = 1

n

∑
i

1
|Vi|
∑
j

1
t

∑
l abs(x∗(l)j,i /Ti − µ̂j,i). This quantity signifies the

average distance of the equilibria of the sampled examples from the mean equilibrium.
Now, for each value of ν, we average this distance measure over these M iterations.
We perform this bootstrapping procedure for various values of ν.

For the Bolivia dataset, under the Gaussian noise model (described in the previous
paragraph) and using t = 25 and M = 100, we found that this average distance varies
from 0.79% to 0.96%, with the offset of the 95% CI ranging from 0.015% to 0.026% for
varied noise levels 0 < ν ≤ 1. On the other hand, for the Dirichlet noise model and
using t = 50 and M = 100, the maximum average distance is 6.35%, which happens
at a very high variance parameterized by ν = 2−5. The minimum average distance of
0.10% happens at low variance with ν = 214. The offset of the 95% CI ranges from
0.001% to 0.05% across all the noise levels considered. Figs. 5 and 6 show the plots for
these two noise models. Moreover, under both noise models, the equilibrium interest
rates do not deviate much from the mean either. These suggest that an equilibrium
point does not change much when noise is introduced to the data and that our scheme
is robust with respect to noise in the real-world data.

5.1.3. Equilibrium Computation. We discuss equilibrium computation on the model
learned with λ = 0.05. First, we would like to remind the reader about the point we
made regarding equilbrium selection. In practice, we have observed that the equilib-
rium computed by Algorithm 1 converges to the learned values of x and r, even if we
start with different initial values. For example, Fig. 7 shows the case of MFI Bancosol’s
convergence to the same equilibrium interest rate despite different initialization (other

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:24 Irfan and Ortiz

Fig. 5. Average deviation of the equilibrium points from the mean for the Bolivia dataset under
the Gaussian noise model. The plot shows that the equilibrium point computed is robust with respect to
noise. The vertical bars denote individual 95% CI.

Fig. 6. Average deviation of the equilibrium points from the mean for the Bolivia dataset under
the Dirichlet noise model. The plot shows the logarithm of the noise parameter ν on the x-axis. The
vertical bars denote individual 95% CI. Just like in Fig. 5, the plot also shows the robustness of the computed
equilibrium point although the noise model is different—Dirichlet.
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Fig. 7. Two best-response dynamics of Bolivia’s MFI Bancosol with different initialization. Both
of these trajectories converged to the same solution.

interest rates were also differently initialized). This equilibrium interest rate is the
same as the learned one. Not only that, as Fig. 8 shows, individual loan allocations
were also almost the same.

Finally, Fig. 9 shows a comparison among the observed, learned, and equilibrium
interest rates.

5.2. Case Study: Bangladesh
Here, we discuss our empirical study on Bangladesh’s microfinance market.

5.2.1. Data. We have obtained microfinance data, dated December 2005, from Palli
Karma Sahayak Foundation (PKSF), which is the apex body of NGO MFIs in
Bangladesh. There are seven major MFIs (or collections of MFIs) operating in 464 up-
azillas or collections of villages. The data can be simplified as a 464-by-7 matrix where
an element in location (j, i) denotes the number of borrowers that MFI i has in village
j. The bipartite network-structure induced by this data is very dense, consisting of
3096 edges out of a maximum possible 3248.

The seven major MFIs or bodies of MFIs (and their flat interest rates) are BRAC
(15%), ASA (15%), PKSF partner organizations (12.5%), Grameen Bank(10%), BRDB
(8%), Other government organizations (8%), and Other MFIs (12.5%) [Porteous 2006;
Wright and Alamgir 2004]. 14

5.2.2. Learning the Model. Because of the size of Bangladesh data, we faced the prob-
lem of solving a nonlinear optimization problem of the order of thousands of variables

14Quoting Wright and Alamgir [2004] on the interest rates of the government-owned MFIs: ”These vary
from 10% charged [...] to 16% charged by the Bangladesh Academy for Rural Development (BARD), and
15-20% charged by different BRDB programmes.” We take these rates as APRs, which are roughly double of
flat rates.
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Fig. 8. Learned allocations vs. equilibrium allocations. The fact that two allocations are almost iden-
tical provides empirical evidence that the learning algorithm was able to capture an equilibrium point using
the inner part of the nested optimization program (Equation 12).

and constraints. As discussed above, the interior point algorithm is initialized with
a feasible solution, which makes computation a lot faster. Still, solving the problem
takes time on the order of hours on a modern quad-core desktop computer, compared
to minutes for the Bolivia case.

Similar to the Bolivia case, the learned parameters ej (rate of revenue generation)
and dj (revenue from other sources) are non-uniform across the villages j. The varia-
tion is more pronounced for the dj values, whereas the ej values are around 1.07 for all
the villages. A more detailed analysis of the estimated parameters (for example, their
correlation with access to resources such as rivers) is left for future work.

We also obtain a close approximation of observed individual allocations in the
learned model (see Figure 10. For example, the average relative deviation is only 5.54%
when λ = 0.05. The market clears in the learned model, and as Figure 11 shows, the
learned interest rates are close to the actual ones, except for the government MFIs
numbered 5 and 6, which are known to be operating inefficiently, i.e., with much lower
interest rates (8%) than that required for sustainability without subsidies [de Aghion
and Morduch 2005; Wright and Alamgir 2004].

5.2.3. Equilibrium Computation. Similar to the Bolivia case, we have observed that the
best response dynamics of Algorithm 1 quickly converges to the allocations and in-
terest rates of the learned model. Fig. 12 shows the similarity between learned and
equilibrium allocations in this case.

5.3. Strawman Models Using Bangladesh Data
For the simple structural equation model presented in Section 4.1, we use standard
deviations of 0.003 for interest rates and 0.03 for loan allocations to generate 10, 000
noisy samples (Gaussian) from the single Bangladesh data sample that we have. We
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Fig. 9. Comparison among observed, learned, and equilibrium interest rates for the Bolivia
dataset. As the bar-plot shows, the equilibrium interest rates and the observed interest rates do not com-
pletely match, which is ok, because for our model and analysis, we do not assume the data corresponds to
an equilibrium point.

then use these samples to perform linear regression on Equations (13) and (14) to learn
w, b, v, and a. As mentioned in Section 4.1, the learned wj,i and vj,i,k parameters are
very close to 0 and the bi and aj,i parameters are very close to the observed interest
rates and loan allocations, respectively. After the model is learned, we compute an
equilibrium point by solving the optimization problem stated in Section 4.1. We discuss
our results in the next section.

In contrast to the structural equation model, the AGE model presented in Section 4.2
is computationally much less burdensome. This is largely due to the analytical solu-
tions given by Equations (18) and (19). Once we learned the model using Bangladesh
data, we found that the estimated preference parameters τj,i’s reflect the demand for
loans from an MFI. For example, the average τ is highest for Grameen Bank (0.2281)
and lowest for government MFIs (0.0154). In the next section, we discuss the inade-
quacies of this strawman AGE model for examining interventions. 15

6. POLICY EXPERIMENTS
Our end goal of modeling a microfinance economy is to be able to help policy makers
in microfinance sector make decisions, as well as to evaluate possible interventions in
the market. We take the following approach to studying the effects of interventions
and policy decisions. For a specific intervention policy, e.g., removal of government-
owned MFIs, we first learn the model and then compute an equilibrium point, both in
the original setting (before removal of any MFI). Using the model learned earlier, we
compute a new equilibrium point after the removal of the government-owned MFIs.

15We have also learned the AGE model using Bolivia data for some of the interventions.
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Fig. 10. Learned allocations vs. observed allocations for the Bangladesh dataset. Although the
plot shows that the learned and observed allocations are not exactly the same, the learned allocations do
approximate the observed ones.

Finally, we study changes in these two equilibria (before and after removal) in order
to predict the effect of such an intervention. As we demonstrate below, our model can
be used in a variety of settings regarding interventions and policy decisions. We also
draw a distinction between our game-theoretic approach and the traditional structural
equation and applied general equilibrium (AGE) approaches using the two strawman
models that we presented in Section 4.

6.1. The Role of Subsidies
It has been well documented that the sustainability of MFIs very much depends on
subsidies [de Aghion and Morduch 2005; Morduch 1999]. We can ask a related ques-
tion, how does giving subsidies to an MFI affect the market? More concretely, how do
equilibrium interest rates change due to subsidies? To answer this, we first learn the
model and compute an equilibrium point before the injection of new subsidies into an
MFI. We then add the subsidies to the MFI’s total amount of loans to be disbursed and
compute a new equilibrium point. For instance, in the Bolivia case, one of the MFIs
named Eco Futuro (MFI 5) exhibits very high interest rates both in observed data and
equilbrium. A quick look at the data reveals that Eco Futuro is connected to all the
villages, but has very little total loan to be disbursed compared to the leading MFI
Bancosol (MFI 1). As Fig. 13 shows, if we inject further subsidies into Eco Futuro (MFI
5) to make its total loan amount equal to Bancosol’s (MFI 1), not only do these two
MFIs have the same (but lower than before) equilibrium interest rates, it also drives
down the interest rates of the other MFIs.

To compare with the strawman models, note again that we do not re-learn the model
after subsidizing an MFI. For the strawman structural equation model (Section 4.1),
this means that the w and v parameters remain close to 0 and the b and a parameters
remain close to the observed interest rates and loan allocations, respectively (as they
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Fig. 11. Comparison among observed, learned, and equilibrium interest rates for the
Bangladesh dataset. Again, we do not assume that the data corresponds to an equilibrium point. There-
fore, the difference between observed interest rates and equilibrium interest rates suggests an interest-
ing aspect. That is, some banks may be charging less than they should and some may be charging more
than they should. The first aspect is well-established in the literature with respect to government-owned
banks [de Aghion and Morduch 2005]. There is also practical evidence for the second aspect [Porteous 2006],
which we will elaborate when we study interest-rate caps in Section 6.3.

were before the intervention). As a result, when we compute an equilibrium point by
increasing Ti for the subsidized MFI and then solving the optimization problem (15) in
Section 4.1, the equilibrium allocations and interest rates do not change in response to
this subsidization. To see exactly why they do not change, note that the optimal values
of xj,i and ri in (15) are close to aj,i and bi, respectively, while w’s and v’s are close to
0, even when we increase Ti.

Using the strawman AGE model (Section 4.2), increasing Ti does decrease ri and in-
crease xj,i in accordance with Equations (19) and (18). However, when we subsidize Eco
Futuro (MFI 5) and make its total loan equal to Banco Sol’s, 1/T5 becomes so low that
r5 actually becomes an invalid, negative number (-63.13%). Improving this strawman
model to account for this is out of scope here. Furthermore, unlike our model, subsi-
dizing Eco Futuro does not have any effect on the interest rates of the other MFIs.

6.2. Changes in Interest Rates
Our model computes lower equilibrium interest rate (around 12%) for ASA than its
observed interest rate (15%). It is interesting to note that in late 2005, ASA lowered
its interest rate from 15% to 12.5% [Bagazonzya et al. 2010; Porteous 2006], which is
close to what our model predicts at an equilbrium point, as Fig. 11 shows.

In contrast, the equilibrium interest rates computed by the strawman structural
equation model (i.e., solution to the optimization problem (15)) are almost the same as
the observed interest rates. The same is true for the strawman AGE model.
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Fig. 12. Learned allocations vs. equilibrium allocations for the Bangladesh dataset. The plot
shows that the two types of allocations are very similar.

6.3. Cap on Interest-rates
PKSF recently capped the interest rates of its partner organization to 12.5% [Porteous
2006], and more recently, the country’s Microfinance Regulatory Authority (MRA) has
also imposed a ceiling on interest rate at around 13.5% flat.16 Such evidence on interest
rate ceiling is consistent with the outcome of our model. As Fig. 11 shows, our model
predicts that the highest interest rate at an equilibrium point is 13.4975%.

In contrast, as mentioned in Section 6.2, the strawman structural equation model
predicts equilibrium interest rates to be the same as the observed interest rates. When
we perform an intervention on the structural equation model by setting an interest
rate ceiling of 13.5%, we find that equilibrium interest rates for BRAC and ASA go
down from 15% to 13.5%, but unsurprisingly this does not affect the interest rate of
any other MFI whose rates were already below 13.5%. Again, due to the learned pa-
rameters w and v being close to 0, the interdependence among the interest rates (and
allocations) is lost. Similarly, due to Equation (19) of the AGE model, lowering the
interest rate of one MFI does not affect the rates of the other MFIs.

6.4. Shutting Down Governement-Owned MFIs
It is well-documented in the literature that many of the government-owned MFIs do
not have the goal of meeting their operating costs [Wright and Alamgir 2004]. Our
model shows that an intervention by removing government-owned MFIs from the mar-
ket would result in an increase of equilibrium interest rates by approximately 0.5% for
every other MFI. This increase is not that large partly because the government-owned
MFIs supply very little amount of loan to the market compared to the other MFIs. Yet,
it does suggest that less competition leads to higher interest rates, which is consistent
with empirical findings [Porteous 2006].

16https://www.ft.com/content/fd16a1f0-ecea-11df-9912-00144feab49a. Alternative: https://goo.gl/j4JJgZ.
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Fig. 13. Equilibrium interest rates before and after adding subsidies to Bolivia’s Eco Futuro
(MFI 5). As the plot suggests, subsidies help bring down the interest rate of not only Eco Futuro but also
the other MFIs.

In contrast, the strawman structural equation model does not predict any changes
in interest rates when an MFI is shut down (for the same reasons mentioned above).
However, the strawman AGE model does predict an increase in the interest rates
of the other MFIs, although it predicts very sharp rises in interest rates. When the
government-owned MFIs in Bangladesh are shut down, the AGE model predicts that
the other MFIs will increase their rates by a value between 7.57% and 9.23% (e.g.,
BRAC’s interest rate will increase from 15% to 24.23%).

6.5. The Effect of Adding New Branches
Our model can be used to predict how the market would be affected if the underly-
ing network structure is changed due to an MFI’s opening of new branches. For in-
stance, suppose that Fassil (MFI 7) in Bolivia expands its business to all villages (by
adding six new branches). It may seem at first that because of the increase in competi-
tion, equilibrium interest rates would go down. However, since Fassil’s total amount of
loans does not change, the new connections and the ensuing increase in demand actu-
ally increases equilibrium interest rates of all MFIs. In other words, supply remained
the same while demand increased. Similar studies can be done for removing existing
branches.

These effects are not predicted by either of the strawman models. In particular, the
strawman structural equation model predicts no change in interest rates. On the other
hand, the strawman AGE model predicts that the interest rate of Fassil will go up very
sharply by 25.37% (from 22.38% to 47.75%) while those of the other MFIs will go down
by a value between 0.69% and 2.63%. This is opposite to our model’s prediction that
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every MFI’s interest rate will go up due to supply remaining the same amid increasing
demand.

6.6. Other Types of Interventions
Through our model, we can ask more interesting questions such as would an interest
rate ceiling be still respected after the removal of certain MFIs from the market? Sur-
prisingly, according to our discussion above, the answer is yes if we were to remove
government-owned MFIs. Similarly, we can ask what would happen if a major MFI
gets entirely shut down? We can also evaluate effects of subsidies from the donor’s per-
spective (e.g., which MFIs should a donor select and how should the donor distribute
its grants among these MFIs in order to achieve some goal).

7. DISCUSSION AND CONCLUDING REMARKS
In this paper, we studied causal strategic inference in the setting of network-structured
microfinance markets. The ultimate objective for modeling microfinance markets,
learning the model from real-world data, and designing algorithms for computing equi-
librium points was to study policy-level questions. In fact, one of the major challenges
in economic systems is to understand and predict the effects of policy-making without
the possibility or capability of evaluating the policy in practice.

There are several aspects of our model that require further research. For example,
we would like to better understand how the effect of the constant parameter C in
our learning formulation, which modulates the relative importance of how close the
observed allocations and interest rates should be to their closest equilibrium in the
learned model, on the final results, and how we may be able to use cross-validation to
select the “right” value. Similarly, it would be interesting to explore the use of cross
validation to select the diversification parameter, or even individual diversification pa-
rameters for each village. Another research direction is the exploration of alternative
ways to account for the apparent diversification we observe on the real-world data. It
would also be interesting to explore non-linear revenue generating functions (e.g., by
considering revenue generating functions exhibiting diminishing returns). A system-
atic theoretical or empirical study of the sensitivity of our learned models and (causal)
predictions on different modeling choices and assumptions is also an interesting direc-
tion.

Although the Cobb-Douglas utility function for the village side optimization (16)
looked promising, the simple strawman AGE model does not capture the interde-
pendencies among the villages and MFIs. A closer look at the AGE utility function
of the villages reveals that its derivate is proportional to 1

xj,i
, whereas in our model

the derivative is proportional to log 1
xj,i

, which is much less drastic. In the strawman
AGE, this leads to ri being independent of xj,i’s in Equation (19). It is an interest-
ing future direction to investigate how one can adapt standard utility functions like
Cobb-Douglas to rectify this and capture the interdependencies among the villages
and MFIs. The preference parameters τj,i’s could also be made specific to MFIs only
(i.e., τi), which would require more sophisticated learning schemes.

Along the same line, the objective function of the villages can be investigated further.
We have modeled the villages as non-corporate agents that maximize diversified loans
subject to repayment. There could be other alternatives to modeling the village side
that would still maintain the non-corporate nature of the villages. In fact, the diversi-
fication parameter λ abstracts away potentially multiple factors behind diversification.
As a result, the same diversification approach may not work in all microfinance mar-
kets. Modeling the details of diversification is an interesting future direction. Further-
more, in this work, we have modeled the market with villages and MFIs as the basic
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units. It is an exciting future direction to consider finer levels of granularity, such as
households. Going one step further, we have not modeled donor agencies that typically
subsidize MFIs. Future work can incorporate this important part of a microfinance
system. There are several other directions for extending this work. First, the model
that we learned can be analyzed further using real-world evidence. For example, the
learned revenue generation function of a village can be analyzed in correlation with its
access to resources, such as nearby rivers. Also, the temporal aspects of such a model
have been left open here.

Our general approach can be extended to other systems as well, e.g., smart grid
systems. We should mention here that a game-theoretic approach to modeling mar-
kets and performing learning and inference based on the model has been taken before
and is being actively pursued now in econometrics. However, one difference between
our approach and the econometrics approach is that ours is more of an algorithmic ap-
proach than an analytic approach. This allows us to use the classical models of abstract
economies that offer little or no analytic insight. In sum, an algorithmic approach like
ours can help with modeling complex systems with nonlinear utility functions.

APPENDIX

A. TABLE OF ACRONYMS
The following table provides a summary of the different acronyms used throughout the
article, for the benefit of the reader.

Acronym Stands for
AI Artificial Intelligence
ACH Automated Clearinghouse
ATM Automated Teller Machine
CS Computer Science
CSP Constrained Satisfaction Problem
E.U. European Union
i.i.d. independent identically distributed
ISP(s) Internet Service Provider(s)
KKT Karush-Kuhn-Tucker
MFI(s) Microfinance Institution(s)
MSNE Mixed-strategy Nash Equilibrium

(or Equilibria, when clear from context)
NGO Non-governmental Organization
PSNE Pure-strategy Nash Equilibrium

(or Equilibria, when clear from context)
U.S.A. or U.S. United States of America

B. NOTATION LEGEND
The following table provides a legend of the different notation used throughout the
article, for the benefit of the reader.
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Symbol Brief Description
[c] ≡ {1, 2, . . . , c} given positive integer c, set of natural numbers up to c
n number of MFIs
m number of villages
i Index MFIs
Vi ⊂ [m] Set of villages where MFI i operates
j Index villages
Bj ⊂ [n] Set of MFIs that operate on village j
Ti > 0 Finite total amount of loan available to MFI i to be disbursed
l ∈ R+ ∪ {0} a loan amount
dj > 0 initial endowment of village j
ej ≥ 1 rate of revenue generation of village j
gj : R+ ∪ {0} → R+ revenue generating function of village j

(here assumed linear in l, with slope ej and offset dj)
ri > 0 flat interest rate at which MFI i lends
xj,i ≥ 0 amount of loan that village j borrows from MFI i
λ villages’ diversification parameter for loan portfolios
r ≡ (ri)i∈[n] vector of all interest rates for all MFIs
xj ≡ (xj,i)i∈Bj

total amount of loan that village j borrows over all MFIs in Bj
P iM individual optimization program for MFI i
P jV individual optimization program for village j
PE Eisenberg-Gale optimization-program formulation
(r∗,x∗) equilibrium point corresponding to individually,

locally optimal interest rates and allocations

C. CAUSALITY: A CONTESTED GROUND
Causality is one of the most natural quests of the human mind. Not only that it ap-
pears in abundance in our daily life, it also has a long history of scientific expedi-
tion, often embroiled in debates among statisticians, philosophers, economists, and
computer scientists [Little 1995; Pearl 2000; Hoover 2001]. Such a level of contention
among researchers of diverse backgrounds on one single topic is rare and at the same
time indicative of its scientific importance and wide applicability. This paper presents
a framework for studying causality within networked microfinance systems. This may
also be applicable to other strategic scenarios. For simplicity, we call this framework
causal strategic inference.

As mentioned above, causality has always been a highly contested ground. One beau-
tiful example of this is a book edited by Daniel Little [Little 1995]. The chapters of the
book pave the way for an enlightening back and forth debate between philosophers
and economists. For example, in Chapter 2, philosopher James Woodward presents a
causal interpretation of the structural equation models frequently used by economists.
Woodward promotes the manipulability theory of causation as opposed to other al-
ternatives, such as Granger’s notion of causation [Granger 1969]. The manipulability
theory resonates with our intuitive perception of causation. That is, if one variable
causes another in a relationship, then changing or intervening the first variable (or
other related variables) would provide a way of manipulating the latter. Now, an im-
portant question is, does the relationship remain stable while these interventions are
being made? In the case of an autonomous relationship, the answer is yes. One exam-
ple of an autonomous relationship is a law of physics, such as the law of gravitation,
which remains valid under a wide range of interventions. In contrast, non-autonomous
relationships would break down easily under slight changes.
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However, instead of thinking of relationships as simply autonomous versus non-
autonomous, Woodward suggests the notion of the degree of autonomy, which corre-
sponds to the range of interventions (perhaps limited) under which a relationship
would remain stable. Woodward argues that this notion is particularly well suited
for interpreting structural equation models. One significance of this is that it gives
these models an explanatory power, as Woodward says, “autonomous relationships are
causal in character and can be used to provide explanations.”

Later on, in Chapter 4, economist Kevin Hoover presents his view of causality in
econometrics while contesting various points made by the authors of the earlier two
chapters, including Woodward [Little 1995]. To a large degree, Hoover’s view concurs
with that of Woodward. However, the two disagree on some of the fundamental issues,
such as the explanatory power of a causal relationship. Hoover contends that “econo-
metric models do not explain.” Hoover also contests many of the finer constructs, such
as the meanings of “law” and “theory” implied by Woodward, in contrast to an econo-
metrician’s interpretation of these terms.

The reason we brought up the debate between philosophers and economists is two-
fold. First, it gives a snapshot of the ever-contested topic of causality, which only high-
lights its importance across various disciplines. Second, it exposes a key component
of the causality study in general—interventions or changes made to a system. We de-
scribe this notion of interventions in strategic settings in Section C.2 and later show
how we apply it in Section 6. We next draw a contrast between causal probabilistic
inference and causal strategic inference.

C.1. Causal Probabilistic Inference
In recent times, one of the most celebrated success stories in the study of causal-
ity is the development of causal probabilistic inference during the 1990s [Pearl and
Verma 1991; 1992; Pearl 1994; Pearl and Verma 1995; Pearl 1998; 2000]. Applications
of causal probabilistic inference can now be seen in very diverse disciplines, such as
economics, public policy, sociology, CS, and various branches of life sciences, to name
just a few. Given its emergence in wide-ranging application domains, it may at first
be surprising to learn that the issue of causation has been swept under the rug for
decades in classical statistics until 1935 when Sir Ronald Fisher’s seminal work on
randomized experiments [Fisher 1935] was published [Pearl 2000, p. 339–342]. Corre-
lation, rather than causation, had been the prescriptive concept in statistics all those
years. However, correlation alone does not directly answer questions such as: Does
smoking cause cancer? Or, will increasing taxes cause the national debt to go down?

Judea Pearl, the recipient of the ACM Turing award in 2012 and one of the fore-
runners in the pursuit of studying causality in probabilistic settings, notes that the
reason for this apparent neglect of causation in classical statistics is deeply rooted in
the inability of probability theory to express causal statements [Pearl 2000, p. 342].
In particular, the language of probability theory is geared toward expressing observa-
tional inferences, as opposed to causal ones. In an observational inference, we may seek
the probability of some events happening given that some other events have happened.
Probability theory lays out a clear set of rules on how to express and manipulate ob-
servational inferences. In contrast to observational inferences where some events are
observed (or given), causal inferences are accompanied by the mechanism of interven-
tion. An example of an intervention is to set a random variable X (over which we have
control) to a specific value x, which Pearl denotes by do(X = x) [Pearl 2000, p. 23]. An
inference question in connection with this intervention would be to ask what would
the probability of some events happening be once we perform this do operation.

On the surface, the causal inference question having a do(X = x) operation may
seem to be very similar to an observational inference question where X = x is given.
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However, there are two notable differences. First, the do operation has the power to
change the dependency structure among the random variables. Therefore, it can po-
tentially change the joint probability distribution of the random variables. Second and
as alluded above, probability theory, in its original form, cannot express this do oper-
ation mathematically. The study of causality in probabilistic settings has provided us
with a mathematical framework that extends probability theory to express and process
interventions.

In fact, Judea Pearl takes a broader view of causality than just the do operation.
According to Pearl, the study of causality can be hierarchically organized in three nat-
ural types of queries with increasing levels of difficulty: predictions, interventions,
and counterfactuals [Pearl 2000, p. 38]. First, prediction is the type of query where
we observe something about the “system,” and taking that observational knowledge
into account, we are asked to infer something else that we did not observe. The impor-
tant aspect in prediction is that we are not allowed to change anything in the system.
Changing something in the system, which Judea Pearl often refers to as surgery, is
permitted in the second type of causal query—interventions. An example is the the do
operation in probabilistic settings, as outlined above. Counterfactuals, the third type of
causal queries, are the most challenging ones in the sense that we are given some ob-
servation about the system and asked to infer the outcome of the system if the opposite
of that observation, in some sense, were to take place.

The goal of this paper is to study causal inferences in game-theoretic settings at
the second level of queries, interventions, from an AI perspective. Because we believe
that game theory provides a reasonably reliable mathematical framework in which to
encode strategic interactions among a set of distributed decision-makers (i.e.,“players”)
in AI, we refer to this type of inference causal strategic inference.

C.2. Causal Strategic Inference
As mentioned earlier, our goal is to study interventions, the second type of causal
queries, in game-theoretic settings. Interventions are carried out by surgeries. There-
fore, one rudimentary question is what types of surgeries we would allow in the context
of a game-theoretic setting. Put differently, what is the analog of the do operation de-
scribed above in a game-theoretic setting?

Although game theory explicitly represents the actions of the players, it is different
from actions (e.g., the do operation) or interventions in the context of causal proba-
bilistic inference. In game theory, actions are adopted or played by the players of the
game, who are integral parts of the system. However, in causal probabilistic inference,
interventions are performed by someone outside the system, such as an experiment de-
signer. Notably, an intervention involving a set of random variables can be performed
if one has control over them. One implication of such an intervention is that it makes
changes to the original system (and hence the name surgery). Therefore, causal prob-
abilistic inference is a query concerning the changed system, although the given input
is with respect to the system before the changes were made. We will formulate causal
strategic inference in an analogous way. But first, we will answer the question regard-
ing the types of surgeries we perform.

C.2.1. Surgery 1: Setting the Actions of Some of the Players. One way of doing a surgery
on a game is to restrict the actions of some of the players. For example, we can set
the actions of some of the players to particular ones. Now, the question is, how should
we interpret this surgery? For example, suppose that player i’s action has been set
to ai. Should we modify the game in a way that player i’s best response is always
ai, no matter what the other players play? Or, should we keep the game unchanged
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and rather focus only on those equilibria (if any) where player i plays ai as its best
response? Let us consider these two different interpretations.

First, once we set the actions of some of the players, we can modify the original game
in the following way. Consider any player iwhose action has been fixed to ai. The payoff
function of player i is changed so that i’s payoff is 1 for any joint-action in which i plays
ai and 0 for all other joint-actions. This change makes sure that the preset actions are
indeed best responses of the corresponding players in the modified game (with respect
to any action that the other players play). Note that a Nash equilibrium of the modified
game may not be a Nash equilibrium of the original game. In particular, the players
whose actions have been set may not be playing their best response with respect to the
original game. Therefore, the outcome of the modified game is not guaranteed to be
stable with respect to the original game. Such an approach has been used in a line of
work on finding the most influential nodes in a social network [Kleinberg 2007], where
the goal is to maximize the spread of a “new” behavior (e.g., buying a new product) by
selecting a small “seed” set of initial adopters. The underlying mechanism is to set the
actions of the seed players to the one denoting the adoption of the new behavior and
then let the diffusion process set off. At the end of the diffusion process, however, the
seed players may not be playing their best response with respect to the original game.

Controlling the actions of some of the players has also been used in other settings.
For example, in the setting of network routing games, Sharma and Williamson study
the minimum number of users that need to be controlled by a central authority to im-
prove the social welfare of a Nash equilibrium [Sharma and Williamson 2009]. One
motivation is the case where there are two types of users of a network application:
premium users, who have the privilege of choosing their own route of traffic, and ordi-
nary users, who must go by whatever the network administrator has chosen for them
[Roughgarden 2002]. The general problem is to find the minimum fraction of users
to be controlled by the network administrator to achieve a desirable objective. Here,
being controlled by the network administrator, the ordinary users might be forced to
adopt an action that they would not have adopted otherwise.

Second and in contrast to the the point of the previous paragraph, we can also do
interventions by “controlling” the actions of some of the players without changing the
game. For example, after setting the actions of some of the players, we can ask ques-
tions regarding the stable outcomes (e.g., Nash equilibria) where these players play
according to the preset actions. An example of an inference question in this approach
is to ask how many stable outcomes could possibly result from setting the actions of a
subset of the players.

C.2.2. Surgery 2: Changing the Structure of the Game. In this type of surgery, we change
the game without setting the action of any of the players. Note that the notion of
“changing the game” is very much open ended. It can potentially mean changing the
payoff function of a player, removing a player from the game, adding a new player to
the game, changing the set of actions of a player, as well as any combination of these.
Here, we narrow our focus to the structure of a special type of games, namely graphical
games in parametric forms (as opposed to normal forms). We use the term structure
in this context to refer to the underlying topology of the game. One example of an
intervention by changing the structure of a game is to remove a player from the game.
A causal strategic inference question under this type of intervention is to infer how the
outcome of the game would change due to the intervention.

We study such interventions in this paper, where we model a microfinance market in
a game-theoretic way in order to ask causal strategic inference questions, such as what
would happen if some of the loss-making government-owned banks are shut down? To
answer such a question, we first learn the model from real-world data and compute
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an equilibrium point, which reflects the outcome before the removal of any bank. We
then do an intervention by changing the structure of the game (i.e., removing the loss-
making government-owned banks). After that, we compute an equilibrium point of the
resulting game. (Note that after removing the banks, we do not go back and learn the
model again, because we do not have any data under those “hypothetical” conditions.)
The difference in equilibrium outcomes before and after the removal of the banks gives
us the desired answer.

D. CAUSAL STRATEGIC INFERENCE: A COMPARATIVE STUDY
We should first clarify that the idea of interventions in strategic settings is not new.
Some of the surgeries we have mentioned above have been studied before in the con-
text of various application scenarios. However, our main objective here is to build an
AI-based framework for studying causality within networked microfinance systems,
which may be more broadly applicable to handle interventions in strategic settings.

Our particular focus will be on those systems where individuals or entities exhibit
strategic interactions and affect each other in a complex but network-structured way.
The proposed framework of causal strategic inference is composed of the following
components: (1) mathematically modeling a complex system by exploiting advances
in compact representation from the AI literature, (2) learning models from real-world
data using machine learning techniques, and (3) designing algorithms to predict the
effects of interventions based on advances in computational game theory. We will now
review some earlier research relevant to these components, especially from economics
literature.

D.1. Causal Strategic Inference in Econometrics
Modeling strategic scenarios and learning the model are active research topics in
econometrics. Here, we will conduct a brief review of the literature with the goal of
illustrating the difference between our approach and the general approach in econo-
metrics. Since we will not give any detailed specification of our model, the discussion
will be at a high level.

In the econometrics literature, a major application scenario for studying strategic
decision-making is the setting where two or more firms simultaneously decide whether
to enter a market or not [Aguirregabiria and Suzuki 2015]. This decision is strategic,
because a firm’s decision and hence its expected profit depend on the decisions of the
other firms. As a result, game theory has been the prescriptive tool for modeling entry
decisions in econometrics.

Within the general game-theoretic framework, there is a variety of entry-decision
models in econometrics capturing homogeneous versus heterogeneous firms, complete
information versus private information settings, and static versus dynamic games. The
literature also shows different ways of addressing some of the inherent issues like the
multiplicity of equilibria and equilibrium selection. There is, however, one unifying
theme in the literature: almost all of the models are based on the discrete choice model
[McFadden 1974; 1981]. The discrete choice model in its originality does not allow the
utility of an entity to depend on the actions of the other entities. However, the main
ingredient of a game-theoretic model is this interdependence of actions. To account for
this, the econometrics models that we will review indeed extend the original discrete
choice model to what the literature commonly refers to as the discrete game model.

D.2. Review of Related Work in Econometrics
In this section of the appendix, we provide a reasonably comprehensive, detailed re-
view of specific work related to causal strategic inference in econometrics.
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D.2.1. Bjorn and Vuong’s Model of Labor Force Participation. The first discrete game model
is attributed to Bjorn and Vuong [1984], who studied the case of simultaneous decision-
making by a husband and a wife on whether to enter the labor force or not. This is a
two-player game, where each player has two actions. Denoting the action of player
i ∈ {1, 2} by xi ∈ {0, 1} (0 denotes not entering and 1 entering the labor force) and that
of the other player by x−i, the payoff of i is defined using McFadden 1974’s random
utility model as follows.

ũi(xi, x−i) = ui(xi, x−i) + ηi(xi, x−i) (20)

The above payoff function (Equation 20) consists of an observed, deterministic part
ui and an unobserved (to the researcher), random part ηi. The first accounts for ob-
served attributes of the players, such as age, education level, assets, and number of
kids, among others. The latter part accounts for factors that the researcher could not
observe or did not model, and as a result, it appears as a “random shock.” Every player
i observes its own random part ηi, but depending on whether it also observes the other
player’s random part, the game becomes either a complete information or an incom-
plete information game, respectively. The particular model of Bjorn and Vuong is one of
complete information. Here, the best response x∗i of player i can be written as follows.

x∗i = 1 ⇐⇒ ũi(1, x−i)− ũi(0, x−i) > 0. (21)

In other words, according to Equation 21, player i’s best response is to choose the
action that maximizes its payoff with respect to the other player’s action (in the case of
indifference, the player favors action 0). A PSNE is given by (x∗1, x

∗
2) such that both of

players are best responding to each other simultaneously.17 Obviously, there could be
three possible types of outcomes in this game: a unique PSNE, multiple PSNE, and no
PSNE at all. Bjorn and Vuong view the data as a unique equilibrium. However, if the
latter two possibilities of multiplicity and non-existence are ruled out, then they show
that the model no longer remains strategic (that is, the best response of one of the two
players does not depend on the other player’s action). It rather becomes equivalent to a
previously studied simultaneous equations model with structural shift where a certain
“logical consistency condition” must hold [Heckman 1978; Schmidt 1981]. Now, if the
option of the multiplicity of PSNE is kept on table and if the data is viewed as a unique
PSNE, an important question is, which one of the multiple possible PSNE is “played”
in the data? This is typically known as the equilibrium selection problem.

Bjorn and Vuong take a randomized approach to this problem of equilibrium selec-
tion. They assign probabilities to all possible pairs of the reaction functions 18 of the
two players and express the probability of each PSNE in terms of these probabilities.
They then use maximum-likelihood to estimate the probability of observing any par-
ticular PSNE, along with the other parameters of the model that are not detailed here.
They also give a necessary and sufficient condition for these parameters to be identi-
fiable, which means that if that condition holds, then for any outcome of the model,
the estimated parameters are unique. In other words, different instantiations of the
parameters cannot generate the same outcome. In general, identifiability of the pa-
rameters is a major focus in the standard, classical econometrics literature.

17Equation (21) shows that the best response of a player depends on the difference between payoff functions
and hence on the difference between the corresponding random parts of Equation (20). Along with other
simplifying assumptions, Bjorn and Vuong’s main assumption is that this difference between the random
parts is a standard normal distribution with possible correlation between the two players.
18For example, the husband’s reaction function could be one of the followings: choosing action 1 all the time
(no matter what the wife has chosen), choosing 0 all the time, choosing whatever the wife has chosen, and
choosing the opposite of what the wife has chosen.
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Being the first of its kind, Bjorn and Vuong’s model is simplistic and does not scale
well if the number of players is increased. For instance, if there is a large number
of players, then assigning a probability to each possible combination of the reaction
functions of all the players would be computationally expensive. As we will see, much
of the later literature actually avoids combining the reaction functions of the players.

D.2.2. Entry Models of Bresnahan and Reiss. Bresnahan and Reiss [1990] investigate en-
try in monopoly markets using two types of models: a simultaneous, game-theoretic
model and a sequential decision making model. Their empirical study is based on the
markets of automobile dealers with a focus on how market sizes influence entry deci-
sions and whether the second entrant faces entry barrier (i.e., whether the fixed cost
and market opportunities for the second entrant are less favorable compared to the
first entrant).

This is again a two-player, two-action setting. We will first give a brief overview of
the simultaneous-move model of Bresnahan and Reiss. Suppose that ũMi and ũDi are
the payoffs of firm i in a monopoly and a duopoly market, respectively. Similar to Bjorn
and Vuong [1984], here the payoff function consists of two parts: an observable part
and an unobserved, random part. The random part is observed by both the players,
but not by the researcher. The entry decision (x∗1, x

∗
2) would be a PSNE if and only if

the following best response condition holds for all firms i = 1, 2:

x∗i = 1 ⇐⇒ (1− x∗−i)ũMi + x∗−iũ
D
i > 0.

Given a particular model, a PSNE outcome could be one of the following five types:
monopoly by firm 1, monopoly by firm 2, duopoly, no entrant, and finally, monopoly
by either firm 1 or firm 2 (but not duopoly). Once again, the multiplicity of PSNE
is deemed challenging, as the authors say, “The presence of non-unique equilibria in
game-theoretic models makes it impossible to use standard qualitative choice models
to model entrants’ profits.” This is so, because the data is viewed as a unique PSNE.
As Bjorn and Vuong showed earlier, restricting the model to rule out the multiplicity
of PSNE results in a model that is no longer strategic. Therefore, the equilibrium
selection problem arises inevitably.

Regarding the problem of equilibrium selection, Bresnahan and Reiss observe that
if the model is reinterpreted to predict the number of entrants instead of the identity
of the entrants, then the PSNE outcome is always unique. Another approach to avoid
the multiplicity of PSNE is to consider a sequential-move version of the model. It is
easy to show that if the firms do not make their decisions simultaneously, then the
outcome is unique. The estimation of the model parameters using spatially isolated
rural automobile dealership markets shows that the second entrant is not subjected to
entry barrier and that its entry does not cause the first entrant’s profits by much. In
many cases, this is because the market size is already very big when the second firm
enters the market.

In a related paper, Bresnahan and Reiss [1991] discuss the issues of the existence
and the uniqueness of PSNE in discrete game models. They also discuss how one could
deal with MSNE in discrete game models and how these models can be extended to
the cooperative games setting. Although they motivated the needs for MSNE and co-
operative games using real-world examples, they did not actually apply their ideas to
any empirical setting. For instance, they say that “the researcher must exercise care
when selecting these [certain probability] distributions,” which needs to be done on a
case by case basis if we would like to consider MSNE.

D.2.3. Berry’s Model of Entry in Airline Markets. Airline markets, each consisting of a
source-destination pair of cities, have been studied by economists from different points
of view. A common example is various explanations of an airline’s profit due to its hub
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and spoke network [Levine 1987]. Berry [1992] takes a different approach to studying
an airline market, by investigating the effects of strategic entry decisions of an airline
on the profitability of the flights in a market. To model the entry decision of an air-
line in a market, Berry presents a discrete game model that allows for a large number
of heterogeneous airlines. Apart from the specifics of the model, this is one of the key
differences with the previous entry models, such as the ones by Bresnahan and Reiss.
Heterogeneity among the airlines can be observed in terms of their flight networks,
fleets of aircrafts, or the like. Heterogeneity can also the result of unobserved factors.
In Berry’s model, the payoff of an airline i in a market k is defined as follows.

uik(xk) = vk(f(xk)) + φik (22)

In Equation 22, we denote by xk the vector of the entry decisions of each airline i in
a market k, so that xik ∈ 0, 1 denotes an airlines entry decision. The first term in the
payoff function is market specific and captures the competitive effect that comes from
the entry decisions of the airlines. The second term is specific to the airline-market pair
and is treated as a single index of profitability. Berry imposes several assumptions
in order to guarantee the existence of a PSNE and the uniqueness of the number of
PSNE; this is one way to deal with the equilibrium selection problem as mentioned
in the subsection above (Section D.2.2). First, the airlines in a market k can be sorted
according to the profitability index φik, and this ordering is independent of the entry
decisions. Second, the function f(xk) in the first term of Equation 22 is defined as
the count of entrants, i.e., f(xk) =

∑
i xik. Third, the market-specific function vk is

decreasing in the number of entrants.
Each of the two terms in the above payoff function (Equation 22) is further decom-

posed into two parts: one observable part and one unobserved, random part. Again,
the setting here is a complete information game. The main challenge in analytically
characterizing the probability of a certain number of entrants comes from the large
number of airlines: It leads to an exponential number of integrations over the random
parts. Berry proposes two ways to address this. One way is to impose additional re-
strictions on the model, such as removing the part of strategic interaction from the
payoff function (i.e., the number of entrants does not affect an airline’s profit). The
other way is to apply simulation estimators [McFadden 1989]. The estimated model
shows a strong negative influence of competition on an airline’s profit, which can limit
the effectiveness of a policy encouraging the potential entrants.

As Berry points out, his entry model is guided by a “partial equilibrium approach,”
where instead of considering an airline’s network of flight routes, the analysis focuses
on a pair of source-destination cities. However, we know that the network structure of
an airline’s flight routes is one of the most important ingredients of its operation and
profitability. In our view, the major challenge in accounting for this network structure
comes from the analytical approach to the problem. An alternative to deal with this
would be an algorithmic approach, which we pursue in this paper (although not on the
same problem).

Berry’s model has been subsequently extended by others. Ciliberto and Tamer [2009]
allow a general form of heterogeneity among the airlines that no longer guarantees a
unique number of entrants in all the PSNE of the (complete information) game. With-
out assuming a particular equilibrium selection rule, they bound the choice probabili-
ties between an upper and a lower limit. They estimate the parameters of the model by
minimizing the distance between the set of choice probabilities and the probabilities
estimated from the data. Apart from modeling the airline industry, a different work
by Berry et al. [1995] presents techniques to estimate the parameters of an oligopolis-
tic market with a wide range of product differentiation with applications to the U.S.
automobile market.
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D.2.4. Other Models. The three early models that we reviewed above in Sec-
tions D.2.1, D.2.2, and D.2.3 of this Appendix exhibit some of the key aspects of the
general econometrics approach to modeling strategic scenarios, such as the adoption of
a random utility model [McFadden 1974; 1981], analytical characterizations of some of
the quantities of interest, a way of dealing with the multiplicity of PSNE (for example,
a randomized equilibrium selection mechanism) or a way of avoiding the multiplicity
issue altogether (for example, by imposing additional assumptions that would lead to
a unique equilibrium or by reinterpreting the model to predict a common property of
all PSNE, such as the number of players playing a particular action); and the identi-
fiability of the parameters of the model. The literature has since been enriched with
a number of interesting pieces of work extending the previous research as well as in-
jecting new ideas to deal with these challenging tasks. Here, we will briefly review a
sample of some of the widely cited research along this line.

D.2.5. Seim’s Model of Product Differentiation. The early game-theoretic entry models,
such as the one by Berry [1992], focus mostly on firm-specific profits and the com-
petitive effects of multiple entrants, but do not model product differentiation by the
firms. Seim [2006] proposes a discrete game model of entry decisions that allows the
firms to spatially differentiate their products by choosing, for example, a location of
operation. Seim’s empirical study is based on the location choice of video retailers. In
contrast to much of the earlier work, she models entry decisions as a game of incom-
plete information, which accounts for a firm’s lack of information about many of the
characteristics of another firm, such as that firm’s managerial talent. Interestingly,
the reason why many of the earlier models were games of complete information is that
the incomplete information version was thought to be more challenging. For example,
Bresnahan and Reiss [1991, p. 60] say, “Games of private information pose much more
complicated estimation issues.” However, it later turned out that an equilibrium in
an incomplete information game (also known as the Bayes-Nash equilibrium) can be
characterized more easily [Rust 1996] and that the estimation can also be done in a
straightforward two-step method [Bajari et al. 2010a]. As a result, modeling a scenario
as an incomplete information game often serves the dual purpose of modeling various
unobserved idiosyncrasies as well as dealing with that model in a tractable way.

Going back to the model of Seim, a market consists of multiple locations, and each
firm chooses an entry location if it decides to enter the market. The choices of the firms
are made simultaneously. The payoff function of a firm consists of the following terms:
an observable location-specific characteristics (such as the population and the income
level of the potential customers), an unobserved market-specific random term, a com-
petitive effect term that accounts for the decisions of all the firms, and an unobserved
firm and location-specific term that captures the firm’s private information about its
profitability in that location. The last term is assumed to be independently and iden-
tically distributed (i.i.d.) draws from a type-1 extreme-value distribution, which leads
to closed form expressions for a firm’s choice probabilities. The goal of the model is to
predict the unique number of entrants in a PSNE. The estimated model shows that
video retailers use location choice to their competitive advantage. Also, as the market
size increases, the local demand decreases due to the spreading out of the population
density. As a result, the number of entrants does not increase much.

D.2.6. Augereau et al.’s Model of Technology Adoption. Beyond entry decisions, discrete
game models have been designed for many other interesting phenomena, such as adop-
tion of a particular technology. Augereau et al. [2006] study the adoption of the 56K
modem technology by the Internet Service Providers (ISPs) in a market during the
late 1990s. At that time, there were two competing and incompatible implementations
of the 56K standard, one by the U.S. Robotics and the other by Rockwell. If an ISP
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adopts the U.S. Robotics technology, for example, then its customers must also buy
the U.S. Robotics modems to enjoy a high-speed connection. Augereau et al. model the
choice of the ISPs as a discrete game of incomplete information, which accounts for the
characteristics of the market as well as the ISPs and the simultaneous decision of the
ISPs. They show that the ISPs in a market want their choice to be different from their
competitors (so that they do not lose their customers to their competitors).

D.2.7. Sweeting’s Model of the Timing of Radio Commercials. Whereas Augereau et al.’s re-
sult on technology adoption among ISPs can be interpreted as a coordination failure,
Sweeting’s model of radio stations’ choice of timings for playing commercials tells us
the opposite story of coordination and synchronization [Sweeting 2009]. In Sweeting’s
model, the radio stations in a market choose timings for advertisement strategically.
Their payoff function captures market and station specific factors: a competitive factor
that takes the form of the proportion of the other stations that choose the same time,
and a private information term modeled as a “random shock.” Sweeting shows how the
multiplicity of equilibria can help the identification of the parameters of the model.
Estimation is done by the two-step method of Bajari et al. mentioned above [Bajari
et al. 2010a]. The finding of coordination among the radio stations signifies that the
interests of the radio stations are somewhat aligned with the interests of the advertis-
ers. During drivetime hours, the coordination incentive is very strong. Multiplicity of
equilibria is also more common during that time.

D.2.8. Discrete Game Models of the Banking Sector: ATM Networks. Game-theoretic models
have also been developed to capture decision making in the banking sector. Consider
the case of Automated-Teller-Machine (ATM) networks for example. From our daily
experience, the ATM networks of different banks are incompatible unless we pay a
surcharge. This surcharge never covers the cost of the ATM service of a bank. It is
rather intended to attract customers to open deposit accounts at the bank. As a result,
larger banks with many ATMs often charge more surcharge than smaller banks and
credit unions [Hannan et al. 2003].

Ishii [2008] models banks and customers as strategic decision makers in a two-sided
market to understand the effects of this surcharge. In brief, the payoff function of a
customer for choosing a bank (i.e., having a deposit account in that bank) in a market
accounts for the customer’s observable characteristics, the bank’s observable charac-
teristics (e.g., its number of ATMs), the bank’s interest rate (which is determined by
the bank strategically), and the unobservables corresponding to the customer and the
bank. The banks, on the other hand, maximize their profits in two stages. In the first
stage, each bank strategically chooses the number of ATMs to be deployed. In the sec-
ond stage, it chooses an interest rate to maximize its profit given a PSNE from the
previous stage. We will not go into the details of these two stages. The estimation is
done by the generalized method of moments (GMM). The estimated model captures the
phenomenon that when choosing a bank, customers are influenced by the bank’s ATM
network size and its surcharge. It also shows that the revenue from the ATM service
does not cover its cost. Rather, the incentive for a bank to invest in an ATM network
lies in securing a share of the deposit market.

An interesting feature of Ishii’s work is the study of various counterfactuals. For
example, what would happen if the surcharges are declared illegal? In that case, the
model predicts that the market becomes less concentrated. That is, the market share
of customer deposits is reallocated from the larger banks to the smaller ones. In re-
sponse, the larger banks raise the interest rates on deposit, which decreases their
profit. In fact, the overall profit of the industry decreases because of the elimination
of surcharges. To the contrary, the presence of surcharges encourages banks to expand
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their ATM networks, although it makes the market share of customer deposits concen-
trated at the larger banks.

D.2.9. Discrete Game Models of the Banking Sector: Adoption of ACH. Game-theoretic models
of decision making have also been developed to study other phenomena in the banking
industry. One example is the adoption of automated clearinghouse (ACH) technology.
ACH provides an electronic equivalent of paper checks and is commonly used in direct
deposits and automated bill payments. Ackerberg and Gowrisankaran [2006] estimate
the magnitude of network effects in ACH adoption. The model has two sides: banks and
customers (e.g., small businesses), where the customers are treated as homogeneous.
Two banks can do an ACH transaction if both have already adopted this technology.
On the other hand, there are two alternatives for a customer. In a one-way transaction,
a customer may receive ACH payment without adopting the technology, provided that
her bank has adopted it. In a two-way transaction, a customer must also adopt the
ACH technology in addition to her bank.

Ackerberg and Gowrisankaran define a two-stage game. In the first stage, the banks
simultaneously decide whether to adopt ACH or not, and in the second stage, the cus-
tomers decide on the adoption of ACH, given the decision of the banks. This model does
not rule out the multiplicity of equilibria. The way the authors approach equilibrium
selection is by estimating the probability of seeing one of the two extreme equilibria
(Pareto-best and Pareto-worst), which is obviously a simplification compared to consid-
ering all possible equilibria. The estimation of the parameters is done by a simulation
method. The estimated model is used for counterfactual policy experiments. The model
suggests that government subsidy directed toward the customers is more effective for
ACH adoption than that directed toward the banks.

D.2.10. Recent Developments. The subject of discrete game models is an active area of
research in econometrics. Recently, Bajari et al. [2010b] presented methods for identifi-
cation and estimation of discrete game models of complete information, which are also
applicable to general normal-form games. A key feature of their work is that they esti-
mate both the parameters of the model and the equilibrium selection mechanism. For
the latter, they compute all the equilibria of a game using the algorithm of McKelvey
and McLennan [1996]. This is certainly a computationally expensive step for large
games. In a separate work, Bajari et al. [2010c] address estimation of discrete game
models of incomplete information. Finally, an excellent survey of some of the recent
results on the variants of discrete game models (e.g., complete vs. incomplete informa-
tion, static vs. dynamic games) and their identification, estimation, and equilibrium
selection has been presented by Bajari et al. [2010a].

D.3. Causal Strategic Inference: Our Approach
Even though we study a completely different set of problems than the ones reviewed
above, we share the most important ingredient of strategic decision making with all
these problems. However, there are some fundamental differences between our ap-
proach to studying strategic settings and that of econometricians in general. Once
again, since we have not formally defined any of our models, this discussion will not
focus on any detail. It will rather highlight these key differences in the context of
causal strategic inference.

D.3.1. Analytic vs. Algorithmic Approaches. First, an econometrics approach to dealing
with strategic settings is in large part analytic. For the most part, algorithms designed
in econometrics are driven by analytic techniques (e.g., algorithms for estimating pa-
rameters as discussed in Appendix D.2). In contrast, our approach here is rooted in
algorithms, computation, AI, and machine learning ideas.
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Note that we do not claim that an algorithmic approach is better than an analytic
approach. However, it is our view that, in certain situations, an algorithmic approach
might provide a good alternative to an analytic approach. We believe this is particu-
larly the case when we have large, complex systems with an underlying structure. For
example, the network structures of an airline’s flight routes are not often exploited
in the econometrics models of airline markets [Berry 1992]. This could be due to the
challenge posed by dealing with a large, heterogeneous system in an analytic man-
ner. As mentioned above, such complex systems are exactly the focus of this paper. We
show that looking through an algorithmic lens, grounded in an engineering approach
in AI and machine learning within CS, helps us solve problems that would otherwise
be impossible to manage analytically.

D.3.2. Modeling. A common modeling approach in the econometrics literature that we
reviewed is the adoption of the random utility model [McFadden 1974; 1981]. Be-
sides giving a reasonable way of modeling unobservables, this approach sometimes
also leads to simple closed-form expressions that are easy to use. For example, the
choice probabilities in a discrete game model can be expressed in a closed form when
the random parts of the payoff functions are i.i.d. type-1 extreme-value distributed.

In contrast, the modeling approach in this paper is inherently different. We model
two-sided microfinance markets using the well-studied concept of abstract economies
in classical economics [Debreu 1952; Arrow and Debreu 1954b]. Our model of microfi-
nance markets is network-structured, and a very special case of it can be shown to be
one type of Fisher market [Fisher 1892], which has been a subject of intense algorith-
mic study by computer scientists in recent years [Vazirani 2007].

Again, we do not claim that our models are “superior” to the random utility model
in any sense. Rather, with the specific applications that we would like to address here,
our modeling approach serves such purpose best. The key aspects of our models are
heterogeneity, network-structure, compact representation, and the ability to capture
the strategic interactions among a large number of entities.

D.3.3. Estimation. Econometrics and CS, and machine learning in particular, have di-
verging views on the issue of learning a model. As we saw in the literature review
above, the identification of the parameters of a model (or some function of the parame-
ters) is a major concern in econometrics literature, because the estimated parameters
are very often the quantities of interest. To ensure identification, additional restric-
tions are sometimes imposed on the model. Identification with infinite samples is most
common [Bajari et al. 2010b; Bajari et al. 2010c]. In contrast, predictive performance
is of primary interest in machine learning.

There are many contested issues between these two disciplines, which are out of
scope for this paper. It is not that one of the approaches is good and the other is bad.
It is just that they are different. In this paper, we have taken a machine learning
approach to estimation. The estimation is done using a bi-level optimization program.
In our work, the predictive power of a model with respect to unforeseen events has
been the prime focus.

The objective of our estimation is also different from that of the fast growing litera-
ture on causal estimation in CS and statistics. For example, a common technique for
understanding the effects of new product features on consumers is known as bucket
testing [Backstrom and Kleinberg 2011], which basically exposes the feature to a ran-
dom sample of the population and measures its effect on them. With the advent of
online social networks like Facebook, bucket testing can no longer focus on a discon-
nected random sample of users. The reason is that in the setting of an online social
network, the effect of a new feature can be more accurately tested if a user is exposed
to it together with some of her friends.

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:46 Irfan and Ortiz

To extend bucket testing to networked settings, Backstrom and Kleinberg propose a
graph-theoretic sampling technique that addresses these two competing requirements:
samples need to be uniformly random and they also need to be well-connected [Back-
strom and Kleinberg 2011]. Along the same line, Ugander et al. propose graph cluster
randomization techniques to give an efficient algorithm to compute the probability of
the exposure of a user [Ugander et al. 2013]. They also show that their techniques can
lower the estimator variance. In another notable work, Toulis and Kao propose two
techniques for estimating causal peer influence effects—a frequentist approach that
can deal with more complex response functions and a Baysian approach that provides
more accurate estimates under network uncertainties [Toulis and Kao 2013]. In con-
trast to this line of work, our goal is not causal estimation. We rather want to estimate
models that capture strategic interactions.

D.3.4. Equilibrium Selection. Almost all of the models we reviewed above exhibit multi-
plicity of equilibria. Therefore, the question of equilibrium selection naturally arises
as the data is often viewed as a single equilibrium. Econometrics literature suggests
three main ways of dealing with the equilibrium selection problem [Bajari et al. 2010b;
Bajari et al. 2010a]. First, the probability that an equilibrium, which is generated by
the model, is observed in the data is estimated [Bjorn and Vuong 1984; Bajari et al.
2010b]. Sometimes, instead of considering all possible equilibria, only a few equilibria
are considered in this probabilistic approach [Ackerberg and Gowrisankaran 2006].
Second, the model can sometimes be reinterpreted to give a unique outcome, even if
there are multiple equilibria. A typical example is considering the number of entrants
instead of the identity of entrants in an equilibrium of an entry market [Bresnahan
and Reiss 1990; Berry 1992]. Third, the choice probabilities can sometimes be bounded
between two limits, which guides the selection of an equilibrium [Ciliberto and Tamer
2009].

In our study of microfinance markets, our model can potentially generate multi-
ple equilibria. We select one of these equilibria that is “closest” to the observed data.
This equilibrium selection mechanism is embedded in the machine learning procedure.
We also test for the robustness of this mechanism. We find that even if we introduce
considerably large magnitudes of noise in the data, this mechanism selects the same
equilibrium.

D.3.5. Interventions. A key component of causal strategic inference as well as causality
in general is interventions. All of the econometrics studies reviewed above concern two
of the components of causal strategic inference that we mentioned earlier: modeling
a strategic scenario and learning the model. However, many of these studies do not
perform interventions. There are, of course, exceptions. For example, Isii studies the
effect of removing the ATM surcharges [Ishii 2008]. Ackerberg and Gowrisankaran
show the comparative effects of subsides to customers and banks on ACH adoption
[Ackerberg and Gowrisankaran 2006].

The main focus of this work is a wide range of interventions. We perform various
interventions in a microfinance market, such as setting an interest rate cap, removing
a bank from the system, providing subsidies to certain banks to make loans more
affordable, etc. It should be mentioned here that interventions by removing players is
not a new concept. Ballester et al., for example, performed interventions in a criminal
network by removing players from it [Ballester et al. 2006]. As we discuss in more
detail in Sections D.4 and D.5, there are several other examples of this and other
similar kinds of interventions within the CS, AI, and machine learning literature.
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D.4. Connection to Existing Models of Networked Economies
The model introduced is essentially one of networked economy. This is important be-
cause the running times of our algorithms depend directly on the number of edges
connecting banks and villages. In particular, our most general computational schemes
are iterative in nature, and each round takes time linear in the number of edges, which
is indirectly related to the number of villages each bank serves. That number could be
considerably smaller than the product of the number of banks times the number of vil-
lages (i.e., a “fully connected” bipartite graph): indeed, it is not hard to envision cases
in which the number of villages that a bank serves may be constant, independent of
the total number of banks or villages. Thus the network structure of our model can
have immediate practical implications: Exploiting the network structure can yield sig-
nificant savings in computation time in practice if the number of villages, or banks, is
very large.

In recent times, there has been an intense, inter-disciplinary research effort in the
area of networked economies, primarily undertaken by the economics and the CS com-
munities and in many instances jointly by researchers from these two communities.
Subjects of investigation have ranged from generalizing abstract economies in a graph-
ical setting [Kakade et al. 2004], modeling networked markets, such as labor markets
and trades (see, for example, Chapter 10 of [Jackson 2008]), designing mechanisms
with desirable properties for such markets [Babaioff et al. 2004], analyzing how prop-
erties such as competition [Blume et al. 2009] and price variation [Kakade et al. 2005]
are influenced by the underlying network structure, to the most fundamental algorith-
mic question of computing an equilibrium point in such settings [Sarma et al. 2007;
Kakade et al. 2004]. Although we postpone a formal description of our model, we will
now place our model in the context of the existing ones at a very high level.

Let us begin with the Fisher model [Fisher 1892], which consists of a set of buyers
and a set of divisible goods sold by one central seller (i.e., a fully connected network).
The buyers come to the market with some initial endowments of money, and each has
a utility function over bundles of goods. Given the prices of the goods, their objective
is to use their endowment to purchase a bundle of goods that maximizes their utility.
An equilibrium point consists of the unit prices and the allocations of goods such that
each buyer fulfills his objective and in addition, there is no excess demand or excess
supply (i.e., the market clears). A graphical Fisher model with one good consists of
a set of buyers and a set of sellers [Kakade et al. 2005]. All the sellers sell the same
good, but the important aspect of this model is that each buyer has access to a subset
of the sellers, not necessarily all the sellers. An equilibrium point in this graphical
setting is defined similar to the original one. An important distinction between our
model and the graphical Fisher model is that our model allows buyers (i.e., villages)
to invest the goods (i.e., loans) in productive projects, thereby generating revenue that
can be used to pay for the goods (i.e., repay the loans). In other words, the crucial
modeling parameter of “endowment” is no longer a constant in our case. Furthermore,
in our model, the villages have a very different objective function than the one in a
Fisher model [Kakade et al. 2005; Vazirani 2007]. There is, however, an interesting
connection between our model and that of Fisher through an Eisenberg-Gale convex
program formulation, which we show in Section 2.4.1.

Arrow and Debreu gave a very generalized mathematical model of games for com-
petitive markets in their seminal work on competitive economies [Arrow and Debreu
1954b]. In fact, a Fisher economy is a special case of an Arrow-Debreu economy (see,
for example, [Vazirani 2007]). Arrow and Debreu’s proof of the existence of an equilib-
rium point uses Debreu’s concept of abstract economy [Debreu 1952]. Interestingly, an
abstract economy generalizes the concept of games in normal form in non-cooperative
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game theory [von Neumann and Morgenstern 1947], and leads to extensions of Nash’s
seminal result on the “universal” existence of equilibrium in mixed strategies for “fi-
nite” normal-form games [Nash 1950], in the following way. In an abstract economy,
not only a player’s payoff but also her domain of actions are affected by another player’s
choice of action. Putting our model in the context of an abstract economy, a village’s
set of possible demands for loan from an MFI depends on the MFI’s interest rate. For
example, in the simplest setting of one MFI operating in one village, the village cannot
ask for unlimited amount of loan from the MFI if the MFI’s interest rate is above a cer-
tain bound. Our model is an instance of an abstract economy. However, for the same
reasons discussed in the previous paragraph (i.e., variable endowment), the specific
instantiation of an abstract economy leading to the classical Arrow-Debreu model for
markets or more specifically, the recently developed graphical extension to the Arrow-
Debreu model [Kakade et al. 2004], does not really capture our setting.

As a brief aside, Kakade et al. [2005] performed some preliminary experiments based
on “ad hoc” instantiations of their two-sided network economies. They randomly gen-
erated economic network structures and combined them with real-word international
trade data from the United Nations. They did not apply machine learning or other
classical estimation methods to infer their models per se. They applied those specifi-
cally generated instances to study policy making in international trade. In particular,
they studied the price variations that would result from merging the then 15 members
of the European Union (E.U.) into a single economic nation.

Our work is different from various others in networked economies [Kranton and
Minehart 2001; Babaioff et al. 2004; Sarma et al. 2007; Gale and Kariv 2007; Even-
dar et al. 2007; Blume et al. 2009] from the perspectives of modeling, problem speci-
fication, and application. For example, Kranton and Minehart model buyer-seller ex-
change economies as networks with an emphasis on the emergence of links in such
networks [Kranton and Minehart 2001]. They show that although buyers and sellers
are modeled as self-interested non-cooperative agents, “efficient” network structures
are necessarily equilibrium outcomes and that for a restricted case, equilibrium out-
comes are necessarily efficient. In a related work of significant implications, Even-Dar
et al. completely characterize the set of all buyer-seller network structures that are
equilibrium outcomes in their model of exchange economies [Even-dar et al. 2007]. In
contrast to that previous work, we do not study network formation here; that is, we
treat the spatial structure of the branch-banking MFIs as exogenous (arbitrary, but
fixed).

D.5. Connections to Other Work in AI and Machine Learning
There have been a few examples of specific applications of causal strategic inference,
including applications to airline security [Kearns and Ortiz 2004; Kearns 2005] and
computational biology [Pérez-Breva et al. 2006; Pérez-Breva 2007]. A lot of that work
also exploits strategic complementarity for analytical and computational advantage. In
some cases, the resulting algorithms led directly to a constructive proof of the existence
of equilibria, just like some of our technical results presented here.

Kearns and Ortiz [2004] instantiate a game-theoretic model of interdependent secu-
rity based on real-world data on airline reservations and explore the effect of “forcing”
the “largest” airlines to fully invest in security. Using the instantiated game, the au-
thors illustrate the “tipping behavior” induced by such interventions, leading all other
airlines to also fully invest in security, including “smaller” airlines. That behavior hap-
pens to also corresponds to a PSNE of the instantiated game (see also Kearns 2005).
In that work, there is no machine learning per se, just a somewhat “ad hoc” instan-
tiation of the game parameters based on the available real-world dataset. They do
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use methods from “learning in games” (i.e., best-response dynamics), as a heuristic for
equilibrium computation in the instantiated games.

The game-theoretic model of Pérez-Breva et al. [2006] may also be viewed as a type
of two-sided network economy. That model also uses an entropic term for the purpose
of “diversification” of resources, which in that case were the chemical concentrations
of different proteins around the various potential binding sites along the DNA strand.
The authors performed interventions akin to removing players (e.g., “knocking out” a
gene), or controlling or “fixing” the actions of players (e.g., varying the total level of
protein chemical concentrations). That work also applied machine learning ideas simi-
lar to ours to design optimization schemes to infer models from real-world micro-array
data [Pérez-Breva 2007]. But, the specific nature of the payoff function differs consid-
erably, leading to different analytic, computational, and machine learning challenges.

We believe it is fair to say that none of that work just described in the first few
paragraphs of this subsection deals with the higher level of generality of the work
described in this article, in terms of the broad range of interventions and inferences.

We introduced the concept of causal strategic inference within AI in our work on
influence games [Irfan and Ortiz 2014]. Our particular emphasis there was to pro-
vide an alternative game-theoretic approach to the study of influence in social net-
works. We focused on linear influence games (LIGs), which are multiplayer graphi-
cal games [Kearns et al. 2001; Kearns 2007] with parametric, linear-quadratic payoff
functions, but over a finite set of pure strategies, with particular emphasis on binary
values. 19 Honorio and Ortiz [2015] proposed a learning framework for that specific
setting, with emphasis on LIGs.

We applied LIGs to two real-world scenarios: congressional voting and court rulings.
In the first, we learned LIGs from data on voting records from the the US Senate,
which comprises of 100 senators (i.e., each state has 2 senators). The other involved
the 9 Justices of the U.S. Supreme Court [Irfan and Ortiz 2014]. We used data on
their judicial rulings to infer an LIG for that setting based on the machine learning
framework that Honorio and Ortiz [2015] proposed. (Honorio and Ortiz 2015 used the
same dataset on congressional voting, but not the one on judicial rulings, to empirically
evaluate their proposed learning framework.)

E. PROOFS MISSING FROM THE MAIN BODY OF THE ARTICLE
In this section of the appendix we provide all the proofs left out of the main body of the
article.

E.1. Proof of Property 2.7
The proof is by contradiction. Suppose that there is an MFI i such that at an equi-
librium point we have

∑
j∈Vi

x∗j,i < Ti. Clearly, in this situation, MFI i’s constraint of

r∗i

(
Ti −

∑
j∈Vi

x∗j,i

)
= 0 (Equation 3) can only be satisfied if r∗i = 0. However, if r∗i = 0

then for any village j ∈ Vi, the optimal demand x∗j,i will be unbounded. This happens
because each village j wants to maximize

∑
i∈Bj

xj,i (Equation 5), and with r∗i = 0 and
ej ≥ 1, the term (1 + r∗i − ej) in the first constraint of P jV (Equation 6 in Definition 2.4)
becomes≤ 0. Since dj > 0, that constraint is satisfied for x∗j,i = +∞. But x∗j,i = +∞ con-

19One can view LIGs as generalizations of “discrete choice with social interactions” models in economet-
rics [Brock and Durlauf 2001]. Yet, the focus of study and inference approach is again different. The work in
econometrics is mostly analytic, based on a highly constrained version of the models; while ours deals with
more general versions of the model and employs an algorithmic approach to the analysis of large, complex
systems.
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tradicts the constraint
∑
j∈Vi

x∗j,i ≤ Ti in the MFI side (Equation 4 in Definition 2.3).
Therefore, for every MFI i,

∑
j∈Vi

x∗j,i = Ti must hold at any equilibrium point.20

For the second claim, in order to maximize its objective function
∑
i∈Bj

x∗j,i (Equa-
tion 5), every village j will be interested to borrow only from those MFIs that have
the minimum interest rate r∗mj

, where mj ∈ argmini∈Bj
r∗i . Furthermore, at any equi-

librium point, each village’s budget constraint (Equation 6) must hold with equality.
Otherwise, suppose that the following strict inequality holds for some village j at an
equilibrium point:

∑
i∈Bj ,r∗i =r

∗
mj

x∗j,i(1 + r∗i − ej) < dj . Since this is a strict inequality,

village j can still increase its objective function
∑
i∈Bj

x∗j,i. Therefore, village j is not
maximizing its objective function, contradicting our assumption that this is an equi-
librium point.

E.2. Proof of Property 2.9
The proof is by contradiction. Consider any MFI i. Let k ∈ argmaxj∈Vi

ej . Suppose that
r∗i ≤ ek − 1. Then we get by rearranging the terms: (1 + r∗i − ek) ≤ 0. This allows x∗j,i
to go to +∞ (by Equations 5 and 6 for the special case of λ = 0), and that violates the
constraint

∑
j∈Vi

x∗j,i ≤ Ti (Equation 4), contradicting the assumption that this is an
equilibrium point.21

E.3. Proof of Property 2.8
The proof is by contradiction. Suppose that for some village j, and for all i ∈ Bj we
have x∗j,i = 0. Because dj > 0, the constraint

∑
i∈Bj

x∗j,i(1+ r
∗
i − ej) ≤ dj (Equation 6) of

P jV (Definition 2.4) is satisfied, but village j is not maximizing
∑
i∈Bj

x∗j,i (Equation 5).
This contradicts that (r∗,x∗) is an equilibrium point.

E.4. Proof of Property 2.10
The proof is by contradiction. If there exists an MFI i such that for all villages j ∈ Vi,
x∗j,i = 0, then this violates the first constraint of P iM (Equation 3) in the following
way. By Property 2.9, r∗i > 0, and by our modeling assumption, Ti > 0 (Section 2.1).
Therefore, we have r∗i

(
Ti −

∑
j∈Vi

x∗j,i

)
> 0.

E.5. Proof of Theorem 2.13
We begin by stating the KKT conditions for PE (Definition 2.12).

20It is important to note that in the above argument, the village side has been allowed to demand x∗j,i = +∞
even though Ti is finite for MFI i. As mentioned earlier, the reason is that the MFI-side optimization problem
P i
M (Definition 2.3) treats x∗j,i as exogenous and does not have a direct control over it inside P i

M . Moreover,
the village-side optimization problem P j

V (Definition 2.4) for village j selects (x∗j,i)i∈Bj
in order to maximize

its objective function
∑

i∈Bj
x∗j,i (Equation 5), without considering the MFI-side constraint

∑
j∈Vi

x∗j,i ≤ Ti
(Equation 4). The contradiction results from the necessary condition that at any equilibrium point (x∗, r∗),
all the constraints of all programs (P i

M )i∈[n] and (P j
M )j∈[m] must be satisfied.

21Once again, village j’s demand x∗j,i is determined by P j
V (Definition 2.4) without trying to satisfy the

constraints of any P i
M (Definition 2.3), given by Equations 3 and 4, as well as the non-negative constraint.

However, at an equilibrium point (r∗,x∗), both the village-side and the MFI-side problems must be opti-
mized simultaneously.
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Stationary condition:

∇z

 m∑
j=1

− log
∑
i∈Bj

zj,i

+

n∑
i=1

γi∇z

∑
j∈Vi

zj,i − Ti

+

n∑
i=1

∑
j∈Vi

µj,i∇z (−zj,i) = 0

Evaluating this at z∗j,i for any i ∈ {1, ..., n} and any j ∈ Vi, we obtain the following.22

− 1∑
k∈Bj

z∗j,k
+ γ∗i − µ∗j,i = 0 (23)

Primal feasibility: ∑
j∈Vi

z∗j,i − Ti ≤ 0, 1 ≤ i ≤ n

z∗j,i ≥ 0, 1 ≤ i ≤ n j ∈ Vi
Dual feasibility:

γ∗i ≥ 0, 1 ≤ i ≤ n
µ∗j,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi

Complementary slackness:

γ∗i

∑
j∈Vi

z∗j,i − Ti

 = 0, 1 ≤ i ≤ n (24)

µ∗j,i
(
−z∗j,i

)
= 0, 1 ≤ i ≤ n, j ∈ Vi (25)

Note that if γ∗i > 0, then Equation 24 gives us the following.∑
j∈Vi

z∗j,i − Ti = 0, 1 ≤ i ≤ n (26)

Furthermore, if z∗j,i > 0 then Equation 25 implies µ∗j,i = 0. In that case, we obtain the
following from the stationary condition (Equation 23):

γ∗i =
1∑

k∈Bj
z∗j,k

. (27)

We obtain the following properties from the optimality conditions of the Eisenberg-
Gale convex program PE (Definition 2.12).

LEMMA E.1. For any i, there exists a j ∈ Vi such that z∗j,i > 0.

PROOF. Suppose that for some i, and for all j ∈ Vi, z∗j,i = 0. This contradicts the opti-
mality of the objective function 7 in Definition 2.12, because Ti > 0, and

∑
j∈Vi

z∗j,i = 0.
Thus,

∑
j∈Vi

z∗j,i−Ti < 0, and
∑m
j=1− log

∑
i∈Bj

z∗j,i can be further decreased by increas-
ing the value of z∗j,i for some j.

Let us define I∗(j) ≡ {i | z∗j,i > 0}. We will later see that this represents the set of
MFIs from which a village j borrows at an equilibrium point.

LEMMA E.2. For any j, |I∗(j)| > 0.

22We remind the reader that the quantities at an optimal solution are denoted by ∗.
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PROOF. Suppose that z∗j,i = 0 for some j and for all i ∈ Bj . Rearranging the terms
of (23), we have, for any i ∈ Bj ,

γ∗i =
1∑

k∈Bj
z∗j,k

+ µ∗j,i .

Since µ∗j,i ≥ 0 by the dual feasibility condition, we have γ∗i = +∞ from the above
expression. This contradicts the complementary slackness condition (24), because Ti >
0 by our modeling assumption (Section 2.1). Therefore, for any j and some i ∈ Bj , we
have z∗j,i > 0, which completes the proof.

Another way of proving Lemma E.2 is to note that if z∗j,i = 0 for some j and for all
i ∈ Bj , then the objective function of the Eisenberg-Gale program (2.12) goes to +∞.
This cannot happen, because PE (Definition 2.12) is minimizing the objective function
(Equation 7), and the program is guaranteed to have a bounded optimal solution (for
example, one bounded feasible solution is achieved by zj,i = Ti

|Vi| for all i ∈ {1, ..., n} and
all j ∈ Vi).

We can use Lemma E.2 to rewrite Equation 27 in terms of I∗(j). For any j and any
i∗(j) ∈ I∗(j), the following holds.

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

(28)

To present an Eisenberg-Gale formulation of our market model given by the pro-
grams (P iM )i∈[n] (Definition 2.3) and (P jV )j∈[m] (Definition 2.4), we define the following
terms.

x∗j,i ≡ z∗j,i, for all i ∈ {1, ..., n} and all j ∈ Vi (29)
r∗i∗(j) ≡ γ

∗
i∗(j)d+ e− 1, for all j ∈ {1, ...,m} and all i∗(j) ∈ I∗(j) (30)

Note that in Equation 30 above, the equilibrium value r∗i has not been explicitly de-
fined for each i ∈ 1, ..., n. We first prove that ∪j∈{1,...,m}I∗(j) = {1, ..., n} to ensure that
r∗i is defined for all i. We then prove that if i∗(j) = i∗(j′), where i∗(j) ∈ I∗(j) and
i∗(j′) ∈ I∗(j′) for j 6= j′, then r∗i∗(j) = r∗i∗(j′); that is, if the same i appears in two
different I∗(.), then the definition of r∗i is consistent with respect to these two cases.

For the first claim, suppose that for some i, r∗i has not been defined. This implies
that for all j, i /∈ I∗(j). That is, for all j, we have z∗j,i = 0, which violates Lemma E.1.

For the second claim, consider the definition of r∗i∗(j).

r∗i∗(j) = γ∗i∗(j)d+ e− 1

= γ∗i∗(j′)d+ e− 1 [Since i∗(j) = i∗(j′)]

= r∗i∗(j′) [By definition]

Next, we use the definitions given in Equations 29 and 30 above to show that none
of the villages has any left-over money.

d =
1 + r∗i∗(j) − e

γ∗i∗
(
j)

[Rearranging (30)]

= (1 + r∗i∗(j) − e)
∑
k∈Bj

z∗j,k [Using (28)] (31)
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Next, we show that for any i∗(j) ∈ I∗(j), we have

γ∗i∗(j) = min
k∈Bj

γ∗k .

By Equation 28, for any i∗(j) ∈ I∗(j),

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

.

For any l ∈ Bj , we obtain from the stationary condition,

γ∗l ≥
1∑

k∈Bj
z∗j,k

, since µ∗j,l ≥ 0.

Therefore, for any i∗(j) ∈ I∗(j), we have

γ∗i∗(j) = min
k∈Bj

γ∗k .

Thus, using the definition of r∗ from (30), we have r∗i∗(j) = mink∈Bj
r∗k. Furthermore,

for any l ∈ Bj − I∗(j), z∗j,l = 0. We obtain from Equation 31,

d = (1 + min
l∈Bj

r∗l − e)
∑
k∈Bj

z∗j,k

=
∑
k∈Bj

z∗j,k(1 + r∗k − e).

Using the definition of x∗j,k from (29), we obtain

d =
∑
k∈Bj

x∗j,k(1 + r∗k − e).

Furthermore, by Lemma E.1, for any MFI i, there exists a village j ∈ Vi such that
z∗j,i > 0. Thus, we get µ∗j,i = 0. The stationary condition (Equation 23) gives us

γ∗i =
1∑

k∈Bj
z∗j,k

> 0.

That is, for each MFI i, γ∗i > 0. Therefore, r∗i > 0 by (30). Also, (26) holds for γ∗i > 0.
Again, using the definition of x∗j,i from Equation 29, the other equilibrium condition
for our model can be obtained from Equation 26:

Ti −
∑
j∈Vi

x∗j,i = 0.

Thus, the theorem follows.

E.6. Proof of Proposition 2.15
The proof is by contradiction. Suppose that this is not the case, i.e., at an optimal
solution x∗j for some village j,

∑
i∈Bj

x∗j,i(1 + ri − ej) < dj . We will show that village
j can improve its objective function by slightly increasing x∗j,i for any i ∈ Bj while
maintaining the constraint. The derivative of the village-side objective function with
respect to xj,i is

1− λ log x∗j,i − λ ,

which is positive (by Assumption 2.1 and equilibrium condition x∗j,i ≤ Ti).
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E.7. Proof of Proposition 2.16
The proof of eimax − 1 < r∗i is similar to the proof of Property 2.9.

To prove the upper bound, note that the total amount of loan that villages in Vi can
seek from MFI i is at most

∑
j∈Vi

dj
1+ri−ej ; we obtain this bound from the first constraint

(Equation 6) in the village-side optimization programs (P jV )j∈[m] (Definition 2.4), when
each village in Vi seeks loan only from MFI i). We have that the following holds at an
equilibrium point:

Ti ≤
∑
j∈Vi

dj
1 + r∗i − ej

≤ dimax
∑
j∈Vi

1

1 + r∗i − ej

≤ dimax
|Vi|

1 + r∗i − eimax
. (32)

Rewriting the last condition (Equation 32), we obtain r∗i ≤
|Vi|dimax

Ti
+ eimax − 1.

E.8. Proof of Lemma 3.1
Following is the Lagrangian function [Boyd and Vanderberghe 2004] of the village-side
optimization program P jV (Definition 2.4) for village j:

L(xj , αj) =−
∑
i∈Bj

xj,i − λ
∑
i∈Bj

xj,i log
1

xj,i

+ αj

∑
i∈Bj

xj,i(1 + ri − ej)− dj

 .

At an optimal solution, we have ∂L
∂xj,i

= 0 for any i ∈ Bj . Thus, we have

−1− λ log 1

x∗j,i
+ λx∗j,i

1

x∗j,i
+ αj(1 + ri − ej) = 0

⇔ x∗j,i = exp

(
1− λ− αj(1 + ri − ej)

λ

)
. (33)

By Property 2.15, we have
∑
i∈Bj

x∗j,i(1 + ri − ej) = dj . Substituting the expression for
x∗j,i we obtain the second equation (Equation 33) claimed in the statement. Moreover,
we have that α∗j must be unique; otherwise, by the same expression for x∗j,i, we would
have multiplicity in the best response of village j, which is precluded by the convex
optimization P jV .

E.9. Proof of Lemma 3.2
We prove the case of increasing ri. The other case is similar. First, observe that we
cannot simply invoke Equation 9 to prove the statement, because α∗j also changes with
the change in ri. Furthermore, the direction of change of α∗j (i.e., increase or decrease)
is not immediately clear from Equation 10.

Suppose that the value of ri has been increased in Line 6. Suppose, for the sake of
obtaining a contradiction, that in response to this increase, some village j ∈ Vi has
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either increased its value of x∗j,i or kept it unchanged in Line 7. By Property 2.15, the
first constraint (Equation 6) of the village-side program P jV (Definition 2.4) is tight at
any optimal solution, including village j’s previous best response in Line 7 (i.e., the
old values of xj just before the current update in Line 7). Therefore, in the current
best response, village j must strictly decrease the value of x∗j,k for some k ∈ Bj (oth-
erwise that constraint cannot be satisfied, because ri has increased). Rewriting the
expression of x∗j,i given in Lemma 3.1 in terms of α∗j , we obtain the first equation below
(Equation 34). The second equation (Equation 35) follows similarly.

α∗j =
1− λ− λ log x∗j,i

1 + ri − ej
(34)

α∗j =
1− λ− λ log x∗j,k

1 + rk − ej
(35)

By Equation 34, our assumption that x∗j,i has increased or remained the same in re-
sponse to the increase of ri implies that the value of α∗j has strictly decreased from
its previous value. Therefore, by Equation 35, the value of x∗j,k must strictly increase,
which gives us a contradiction (to see this, note that rk has not been changed, i.e., its
value remains the same as the one during village j’s previous best response). There-
fore, whenever ri increases in Line 6, x∗j,i must strictly decrease, for all j ∈ Vi.

E.10. Proof of Lemma 3.3
Consider a village j ∈ Vi. By Lemma 3.2, when an MFI i strictly increases its interest
rate in Line 6, village j must strictly decrease x∗j,i in Line 7. Considering Equation 34,
it may at first seem possible that the value of α∗j can increase, decrease, or even remain
the same, depending on how much x∗j,i has decreased. However, we will next show that

α∗j cannot increase. For this, we define β∗j ≡
α∗j
λ and ρj,i ≡ 1 + ri − ej and rewrite

Equation 10 as follows.

∑
i∈Bj

exp

(
1− λ
λ

)
exp

(
−β∗j ρj,i

)
ρj,i = dj

⇔
∑
i∈Bj

ρj,i

exp
(
β∗j ρj,i

) = dj exp

(
−1 + λ

λ

)
(36)

Here, the right-hand side of Equation 36 is constant, since λ and dj are both constants.
Consider the left hand side. It suffices to show that if we increase ρj,i (i.e., increase ri)
by any amount, but keep β∗j unchanged, then the left-hand side must decrease.23 In
this case, only one term of the sum on the left hand side changes: ρj,i

exp(β∗j ρj,i)
. We show

23Note that increasing β∗j will only further decrease the left hand side.
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that the derivative of this term with respect to ρj,i is non-positive:

1

exp(β∗j ρj,i)
−

β∗j ρj,i

exp(β∗j ρj,i)
≤ 0

⇔ ρj,iβ
∗
j ≥ 1

⇔ (1 + ri − ej)
α∗j
λ
≥ 1

⇔ 1− λ− λ log x∗j,i ≥ λ, by Equation 34

⇔ λ ≤ 1

2 + log x∗j,i
,

which holds by Assumption 2.1. Therefore, the value of αj cannot increase when ri
increases.

Because αj can only decrease when ri increases, using Equation 35, we obtain that
in Line 7 of the algorithm, village j cannot decrease x∗j,k for any k 6= i ∈ Bj . Thus, when
its next turn comes, MFI k can only find a rise in demand for its loans, which can only
exceed Tk, since at the end of every turn, an MFI successfully sets its interest rate so
that the demand for its loan equals its supply. Therefore, by Lemma 3.2, decreasing its
interest rate cannot be MFI k’s best response.

E.11. Proof of Theorem 3.4
Algorithm 1 begins with initial values of interest rates arbitrarily close to their lower
bound established in Property 2.16. By Lemma 3.3, at the end of each iteration of the
for loop over the MFIs in Algorithm 1, the interest rate ri cannot go down (i.e., its
value cannot be lower than that at the start of that iteration). By Lemma 3.1, every
village has a unique best response to these interest rates. Now, the interest rates are
upper bounded by Property 2.16. Therefore, by the well-known monotone convergence
theorem, the process of incrementing the interest rates must come to an end. And that
point of termination must be an equilibrium point.
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