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ABSTRACT

Game theory has been widely used for modeling strategic behav-

iors in networked multiagent systems. However, the context within

which these strategic behaviors take place has received limited at-

tention. We present a model of strategic behavior in networks that

incorporates the behavioral context. We focus on the contextual

aspects of congressional voting. A senator’s decision to vote yea or
nay on a bill comes as a result of their ideologies, agendas, and their

interactions with other senators. One salient model in political sci-

ence is the ideal point model, which assigns each senator and each

bill a number on the real line of political spectrum. These points

then allow for prediction of future voting behavior. We extend the

classical ideal point model with network-structured interactions

among senators. In contrast to the ideal point model’s prediction

of individual voting behavior, we predict joint voting behaviors in
a game-theoretic fashion. Our model also includes the character-

istics of a bill. This allows it to outperform previous models that

solely focus on the networked interactions among senators with no

bill-specific parameters. We focus on two fundamental questions:

learning the model using real-world data and computing stable out-
comes of the model in order to predict joint voting behaviors. We

demonstrate the effectiveness of our model through experiments

using data from the 114th U.S. Congress.
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1 INTRODUCTION

We consider a networked multiagent system, where agents demo-

cratically vote on agendas. An agent’s vote depends on her social

interaction with others as well as the agenda on which she is vot-

ing. Here, the agenda gives a context to the voting behaviors of

the agents. Context being a domain-specific construct, we focus on

voting behavior in Congress. Our framework can also be applied to

∗
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other settings where there are (1) network-structured interactions

and (2) issues on which agents adopt binary behaviors.
1

There have been multidisciplinary quests into modeling and pre-

dicting how legislators vote. The actual votes are easy to find by

looking at the roll call data – a record of each individual’s vote on

any given bill, resolution, etc. Roll call data consists of affirmative

yeas, negative nays, and abstentions. The challenges in modeling

and predicting how legislators vote come in identifying patterns

in data, constructing models of voting behavior, and using these

models to make predictions on future votes. Many factors play a

role in senators’ voting behaviors: perhaps the bill lines up closely

with their political agenda, or is popular amongst their constituents.

Perhaps they feel pressure from their party or other legislators to

confirm a nomination or to pass a bill. Despite such pressure, sena-

tors sometimes vote against the party line. One recent example is

Senators Collins (R-ME) and Murkowski (R-AK) voting against the

nomination of Betsy DeVos for Secretary of Education. They could

have genuine concern about the nominee due to their legislative

positions on the left-to-right political spectrum (which indirectly

reflects their constituents’ views) or the nominee’s position on

relevant issues. Another recent example is the failure of the health-

care bill in Senate, where Senator McCain (R-AZ) gave a dramatic,

last-minute nay vote. There are other examples where senators

voted against the party line due to the bill not lining up with their

particular legislative positions (e.g., pro-choice Republicans or anti-

gun-control Democrats). Therefore, a model of legislative voting

behavior should take into account a senator’s legislative position,

the characteristics of the bills, and the network of influence among

the senators. We present the first such model here.

Introduced by Davis et al. [3], one extremely popular approach

to modeling legislative behavior is the ideal point model. It seeks to
give a numeric representation of a senator’s political leaning based

on how liberal or conservative they are. In this model, each senator

i has an ideal point pi ∈ R. Each bill l is characterized by its polarity
al ∈ R and its popularity bl ∈ R, analogous to discrimination
and difficulty in item-response theory [8]. Typically, pi and al are
negative for liberal positions and positive for conservative, and the

bl parameter corresponds to the fraction of senators voting yea.
The probability of senator i voting yea on a bill l is given by the

following logistic function σ .

p(xi,l = yea | pi ,al ,bl ) = σ (pial + bl ). (1)

There are numerous applications of this model. Canes-Wrone

et al. [1], Jenkins [13], and Schickler [21] each use ideal points to

1
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model the House of Representatives at different times in the U.S. his-

tory. Clinton et al. [2] use them to model the U.S. House, Senate, and

even Supreme Court. Ideal point models provide informative results

(e.g. a definition of what it means to be “moderate” or “extreme”).

This model has been extended to factor in the actual content of

bills into voting decisions, adjusting lawmaker’s preferences in

accordance with the bill [6].

For the most part, ideal point models consider each legislator’s

vote as an individual decision with respect to the issue being voted

on. All elements of social interactions are lumped into the single

popularity parameter bl in Equation (1). In real world, however,

the voting behaviors of legislators are often interdependent (e.g.,

deal-making), and as a result each voting outcome can be thought

of as a joint behavioral outcome. Such systems of interdependent

behaviors naturally fall in the territory of game theory.

Game-theoretic models have been proposed in the literature to

model voting behaviors in Senate [10–12]. In the linear influence
game (LIG) model, the actions of players (i.e., senators) influence

those of others in a network-structured fashion, and every player

acts in a way to maximize their payoffs with respect to others. In

the context of legislative bodies, this means that lawmakers vote in

response to the votes of others. For example, a Democratic senator

may vote yea on a bill that many Republican senators oppose, and

may vote nay if a close colleague opposes it. Within this context,

votes occur in a group setting and one legislator’s vote is impossible

to predict without taking into account the votes of others. The LIG

model tries to capture strategic behavior in the sense that lawmakers

influence each other’s votes and that the votes are rationalized

through their network-structured interactions.

While both the LIG and ideal point models are predictive models,

each is limited in some capacity. The ideal point model is statistical

and provides insight into the ideologies of individual legislators, but

lacks any notion of strategic interactions. The LIG model is game-

theoretic and captures the effects of social influence on votes, but

do not take into account the characteristics of the issue being voted

on. Furthermore, the statistical ideal point model gives individual

predictions, while the the game-theoretic LIG model gives joint

predictions. Previous studies to extend the ideal pointmodel focused

on the textual content of the bills [6]. Here, we extend the ideal point

model in the direction of network-structured strategic interactions

among the senators. We also consider the content of the bills via the

subject tags. We are not aware of any study on ideal point model

with social interactions.

Our Contributions. We present a game-theoretic model of strate-

gic behavior in Congress that extends the classical ideal point model

to incorporate the subject areas of the bills and the social interac-

tions among the senators. We learn the model using data from the

114th U.S. Senate (2015–17). We show the hardness of computing

stable outcomes (or pure-strategy Nash equilibria) of the model

and use an effective heuristic for fast computation of stable out-

comes.We also compare and contrast our model with the ideal point

model [2, 3] as well as the state-of-the-art LIG model [10–12]. We

show that our model outperforms both across the whole political

spectrum of bills. We show how our model can be used to identify

the most influential Senators in Congress in the context of a bill.

Notation Description

xi ∈ x Vote of senator i

wi, j ∈ w Influence on senator i from j

ti Threshold of senator i

pi Ideal point of senator i

al Polarity of bill l

Table 1: Notation used in our model

2 AN IDEAL POINT MODEL WITH SOCIAL

INTERACTIONS

We present a binary-action (+1 for yea and -1 for nay) graphical
game [14] model with parametric payoff functions of quadratic

forms. We use a weighted-directed graph to represent the network

structure among the legislative body of N senators. We use Ni
for the set of neighbors of node i in this graph. Below, we present

the senator-specific and bill-specific model parameters. We then

describe how senators vote according to our model.

Senator-Specific Parameters. Each node i is a senator and has two
parameters: a threshold ti ∈ R representing how “stubborn” node i
is and an ideal point pi ∈ R representing the senator’s ideology in

the political spectrum. Each directed edge from j to i is weighted
by the amount of influencewi, j ∈ R that node j has on node i (we
allow negative influence weights). The influence weights together

form a matrixW ∈ RN×N
, with diag(W) = 0.

Bill-Specific Parameters. Each bill l being voted on is parameter-

ized by its polarity al ∈ R representing the bill’s position in the

liberal (negative numbers) to conservative (positive) spectrum.

Senators’ Choices of Actions. Given the above parameters, the

quantity of interest is the vote xi ∈ {+1,−1} of a senator i on
a bill l . 2 In our model, xi depends on: (1) the actions of other

senators and their influences on i , (2) the polarity al of the bill l ,
and (3) threshold ti . We combine these three factors in the following

influence function.

fi (x−i , l) ≡
∑
j ∈Ni

wi jx j + (pi · al ) − ti

= w
T
i,−ix−i + (pi · al ) − ti . (2)

In our model, if fi (x−i , l) > 0), then Senator i will vote yea
on bill l (i.e., xi = +1). If fi (x−i , l) < 0, then xi = −1. Finally, if
fi (x−i , l) = 0, then xi ∈ {+1,−1} (signifying indifference). We next

describe the intuition behind these.

The first term in (2) is collective, signifying how others’ voting

decisions influence senator i’s voting decision. In contrast, the sec-

ond term is specific to an individual senator and a particular bill,

capturing how well a senator’s ideal point matches the polarity of

the bill in the political spectrum. The third term is purely an indi-

vidualistic term modeling the level of “stubbornness” of a senator.

We give more details below.

The first term in (2) gives the net influence on Senator i from
others. This is essentially calculated by subtracting the sum of

incoming influences from those who voted nay from the sum of

incoming influences from those who voted yea. If the first term is

2
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positive, then fi (x−i , l) increases and Senator i will be more inclined

to voting yea (the opposite holds when the first term is negative).

The second term calculates how well Senator i’s ideology aligns

with the polarity of the bill l . Whenever the polarity of a bill lines

up well with the senator’s position, the correspondingpi and al will
have the same sign, which means that the (pi ·al ) term will be some

positive number. This will increase the value of fi (x−i , l), thereby
making it more likely that the senator will vote yea. Alternatively,
if pi and al have different signs, it will decrease fi (x−i , l). Note
that just like in the classical ideal point model, the second term

(pi · al ) does not measure the Euclidean distance between the ideal

point of a senator and the polarity of a bill. Neither does it give any

comparative measure of ideal points between two different senators.

It is indeed specific to a particular senator and a particular bill and

measures how well the signs of their ideal point and polarity match.

The third term ti in (2) is the threshold value denoting “resistance”

or “stubbornness” of Senator i in the face of influences.

Note that Senator i’s choice of action depends on the other sena-

tors’ choices and others’ choices depend on i’s choice. Game theory

naturally models this mutual dependency among senators. We next

define some game-theoretic terminology in our context, which we

will use throughout the paper.

A vector of actions, one action per player/senator, is called a

joint action. A joint action x
∗
is said to be a pure-strategy Nash

equilibrium (PSNE) if no player has any incentive to unilaterally

deviate from their action. Said differently, in a PSNE every player

plays their best response x∗i (i.e., voting in the optimal way) with

respect to others’ actions, simultaneously. We use PSNE to mathe-

matically represent stable outcomes – no player has any incentive to

unilaterally deviate from their action – that our model can generate.

One inherent question here is: How can a player/senator calculate

the best response to others? In game theory, the best response is an

action that maximizes the player’s payoff function, which we define

now in our context.

Following is Senator i’s payoff function. Note that this is a qua-

dratic function of the actions.

ui (xi , x−i , l) ≡ xi fi (x−i , l) = xi
(
w
T
i,−ix−i + pi · al − ti

)
. (3)

The best response x∗i of Senator i to the joint action x−i of the other
senators is the action that maximizes this payoff function. In other

words, Senator i’s best response x∗i will be +1 if fi (x−i , l) ≥ 0.

Conversely, it will be −1 if fi (x−i , l) ≤ 0. An equality indicates

indifference between +1 and −1. This is summarized below.

fi (x−i , l) > 0 ⇒ x∗i = +1,

fi (x−i , l) < 0 ⇒ x∗i = −1, and
fi (x−i , l) = 0 ⇒ x∗i ∈ {−1,+1}

 ⇔ x∗i fi (x−i , l) ≥ 0.

This completes the description of our model. We are interested

in learning the wi, j , pi , al , and ti parameters of the model using

roll call and bill data. We are then interested in computing all PSNE,
which are the voting outcomes predicted by our model. We will

see that learning the model does not readily provide predictions. In

fact, the computation of PSNE is provably hard in our case.

Discussion

As a historical backdrop, our influence function (2) has not been

arbitrarily designed. It is grounded in mathematical sociology as

a threshold model of collective behavior [7] and has been very

popular in studying influence. Particularly within computer science

community, Kempe et al. [15]’s study of threshold models with the

goal of identifying the most influential nodes in a network is the

precursor to many studies on influence maximization [5, 16, 17].

In most threshold models, however, the influence weights are non-

negative. Here, we do allow negative weights. Most importantly, in

almost all of the previous threshold models, the context (e.g., the

bill in our case) under which players choose actions has largely

been ignored. Here, we incorporate context within the threshold

model. We are not aware of any threshold model in our application

area that does it.

The significance of modeling context is that we are able to cap-

ture those situations where a senator feels strongly in favor or

against a bill. As a result, outside influence has less of an effect on

their decision. For example, perhaps the bill concerns an issue that

is key to a senator’s platform, or maybe it is a bill that the senator

proposed. Alternatively, the bill might run completely counter to a

senator’s position, or the bill’s effect could be very harmful to the

senator’s constituents. In any of these cases, the model needs to be

able to reflect a higher (or lower) likelihood of that senator voting

yea (or nay). By adding ideal point and polarity parameters similar

to those in the ideal point model, our model can account for those

voting instances in which senators’ decisions derive primarily from

their alignment with the bill, and not from external influences.

In addition to bill-specific context, we also model social interac-

tions. There are cases in which pi · al ≈ 0, i.e., either Senator i’s
ideal point pi or the polarity al of bill l (or both) are very close to 0.

In such cases, the influence term w
T
i,−ix−i in the payoff function

becomes much more important. Moderate senators are particularly

susceptible to these instances as their smaller pi ’s mean that they

are not pushed one way or another on very polarizing bills as much

as more extreme senators are. This is where the real power of social

interactions comes in, as negotiating with more moderate senators

is a crucial part of passing legislation. This aspect is glaringly absent

in the ideal point model and all of its immediate derivatives.

3 LEARNING THE MODEL

As a synopsis, we learn our game-theoretic model so that it captures

as much of the observed roll call as possible in the form of PSNE.

One trivial example that captures all observed roll call data as PSNE
is an empty model with all parameters 0. In this case, any of the 2

N

possible joint actions is a PSNE, including those observed in the

roll call data. Obviously, this is not desirable. Therefore, we want to

capture as many of the roll call instances as possible in the form of

PSNE while having as few PSNE as possible. On the other spectrum,

if we desire to have exactly the observed data as PSNE, it may very

well be impossible to instantiate the game model to achieve that.

A natural way of approaching the middle ground between these

two extremes is to use a generative mixture model [18] that gener-

ates the observed data by picking a PSNE with probability q and a

non-PSNE with probability 1 − q. Obviously, we would like q to be

as high as possible, while avoiding overfitting. Honorio and Ortiz



[9] use this approach to learn threshold models from behavioral

data (e.g., roll call data). We adapt their algorithms and use their

notation here. In particular, in addition to the usual threshold model

parameters, we also learn senator ideal points and bill polarities.

We first formalize a desirable quality measure below.

Let NE(G) be the set of PSNE of our game model G. As noted
above, we want to maximize the “quality” of PSNE. We could have

a huge set NE(G) which would increase the likelihood of finding

an observed voting outcome as a PSNE, but the quality of NE(G)
in that case would be very low, because most of the PSNE in that

set would not match the data. To formalize the notion of the quality

of PSNE, first, π (G) below quantifies the size of NE(G) relative to
total number of possibilities.

π (G) ≡ |NE(G)|/2N . (4)

IfM is the number of observed bills voted on, q ·M is the number

of bills that the generative model picked from the set of PSNE. In

order to maximize the quality of our model’s NE(G), we want to
maximize q ·M relative to π (G). This can be written as

q ·M
|NE(G) |/2N .

Since N andM are fixed, this expression is proportional to

log
10

q

|NE(G)| (5)

which allows us to measure the quality ofNE(G) while taking into
account its size.

3.1 Learning Algorithm

Wefirst define a loss function to compute the errors in best responses.

Let ℓ be the 0/1 loss function, ℓ(z) = 1[z < 0]. Then

ℓ(fi (x−i ), l) =
{
1 if i not playing best response

0 otherwise.

(6)

Equation (3) defines the payoff function of Senator i . For a given
bill l and the actions of others, Senator i’s best response maxi-

mizes the payoff function ui (xi , x−i , l). Using the loss function

given above, the number of bills that are not captured as PSNE is

given by ∑
l

max

i
ℓ
[
x
(l )
i (wT

i,−ix
(l )
−i + (pi · al ) − ti

) ]
(7)

and the proportion of bills that are not captured as equilibria is

given by

1

M

∑
l

max

i
ℓ
[
x
(l )
i (wT

i,−ix
(l )
−i + (pi · al ) − ti

) ]
. (8)

Finally, the overall optimization function for the model consists of

minimizing the proportion of bills which result in non-PSNE voting

outcomes. It can be shown to be equivalent to maximizing (5).

min

W,t,p,a

1

M

∑
l

max

i
ℓ
[
x
(l )
i (wT

i,−ix
(l )
−i + (pi · al ) − ti

) ]
. (9)

Although we have several additional parameters, our implemen-

tation follows the general framework for threshold models [9]. We

use a logistic loss function ℓ(z) = log(1 + e−z ) in order to produce

a simpler minimization expression with a smooth upper bound. We

also add an ℓ1-norm regularizer ρ | |W| |1 (where ρ > 0) in order to

bias the learning to sparse networks and to reduce the likelihood

of over-fitting to the training data. We add another ℓ1-norm regu-

larizer ρ ′ | |p · a| |1 to penalize the ideal points and polarities as well.

The minimization can be written in the following simultaneous

logistic regression form:

min

W,t,p,a

1

M

∑
l

log

[
1 +

∑
i
e−x

(l )
i (wT

i,−ix
(l )
−i+(pi ·al )

)
−ti

]
+

ρ | |W| |1 + ρ ′ | |p · a| |1 (10)

where ρ, ρ ′ > 0. We use the ℓ1- projection method [22] for opti-

mization. Please see [9] for details in the context of LIGs.

3.2 Issues with Learning

While implementing the learning algorithm, we had to address the

following issues.

Anchoring Ideal Points. Traditionally, Democrats have negative

ideal points and Republicans have positive ideal points. However,

without biasing the optimization (10), it is possible to get the oppo-

site signs. To avoid this, we set anchors, which is common in the

literature [6]. We used ideal points generated by Poole et al. [20]’s

method
3
to find the most extreme senators in each party for the

114th Senate and used those as anchors. This meant giving Warren

(D-MA) and Sanders (I-VT) ideal points of -4, and Cruz (R-TX) and

Shelby (R-AL) ideal points of +4.

Determining Validation Bill Polarities. We cross-validated our

model parameters using held-out roll call data from the same Con-

gress. However, when our model is given a new bill l ′, its polarity
al ′ is unknown and has not been learned as l ′ was not part of
the training set.

4
We solved this problem using the subject codes

provided by Congress.gov. These hand-entered codes are terms

that describe the bills’ contents (e.g. “Child safety and welfare”,

“Drug Enforcement Administration”, or “Health care coverage and

access”). Each bill usually contains multiple codes, with the median

bill in the 114th Senate containing 60 subject codes out of a total of

737. For a new bill l ′, we find the Euclidean distance D between l ′

and each bill l in the training set. This procedure gives the bill l∗ in
the training set whose subject codes most closely match that of l ′.
Then, we assign l∗’s polarity (which was learned during training) to
l ′. This allows us to use the model with new bills, by approximating

their polarities with bills that have already been seen by the model.

An alternative to using the subject codes would be to use the

“topics” in a bill based on the bill text. This technique was used in

the issue-adjusted ideal point model [6]. However, they also tested

their model using the subject codes directly, instead than learning

them using topic modeling. They find that the subject codes serve

as a good approximation to topic modeling.

3.3 Model Selection

The interplay between the regularization parameters ρ and ρ ′ can
lead the model to forming a mixture of an ideal point model and a

social interaction model, or cause it to strongly shift towards one

of the two. The ideal setting for ρ and ρ ′ produces a network that

3
https://voteviewblog.com/2015/08/16/alpha-nominate-applied-to-the-114th-senate

4
Note that the ideal point of the senators, once they are learned using the training

data, can be used with held-out data.

Congress.gov
https://voteviewblog.com/2015/08/16/alpha-nominate-applied-to-the-114th-senate
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Figure 1: The number of edges in the influence network. As ex-

pected, the number of edges ismainly affected by ρ which penalizes

dense graphs.
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Figure 2: Validation error in best responses (in %). The blue region

not only has high error but also degrades the quality measure given

in Equation (5) by generating sparse graphs (due to high ρ) that have
numerous PSNE. The gray region has low error, but produces very

dense graphs that are computationally infeasible.

is sparse enough to avoid overfitting but large enough to represent

the observed data, while also maintaining reasonable ideal points.

We trained the model using Session I voting data and rigorously

performed cross-validation using Session II data. We tracked four

different measures:

(1) The number of edges in the influence network: In order to

avoid overfitting and burden on computing PSNE, we want

this to be below 1,200. The plot is shown in Fig. 1.

(2) The proportion qT of training votes that are PSNE: We desire

a large qT .
(3) Validation error: We consider multiple measures of errors

in best responses with respect to held-out data. The error

percentage is shown in Fig. 2.

(4) The Euclidean distance between the learned ideal points and

the average ideal points: A reasonable assumption is that all

Democrats should have pi < 0 and all Republicans should

have pi > 0. The average ideal points pi over 500 trials for a
model with a ρ and ρ ′ values generating ideal points similar

to Poole et al. [20]’s calculations had this property. We desire

the learned ideal points to be close to those.

We have examined several other plots that are not shown here

for space constraints. In sum, we settled on ρ = 0.00225 and ρ ′ =
0.0004. This produced a graph of 998 edges, and a validation error

of 16.0%. It also produced ideal points close to the average.

4 EQUILIBRIA COMPUTATION

Our model gives joint predictions of senators’ voting behaviors in

the form of PSNE. As a result, the learned model is not immediately

useful without computing the PSNE.We first show that this problem

is provably hard.

Theorem 4.1. It is NP-complete to decide whether there exists a
PSNE; whether there exists a PSNE consistent with a designated set of
senators voting yea; and whether there exists a PSNE with at least a
given number of k senators voting yea.

Theorem 4.2. It is #P-complete to count the number of PSNE, even
when the underlying network is bipartite or star.

Proof Sketch. Given any LIG instance we can create an instance of

our game model by assigning al = 0 for any bill l . The proofs of the
above two theorems then follow from the hardness of LIGs [12]. □

To compute all PSNE of our model, we applied a backtracking

search algorithm [12] that systematically explores the search space

of 2
100

due to 100 senators and binary actions. Whenever a node

is assigned an action, we use the NashProp algorithm [12, 19] to

propagate its action locally and see if it leads to any contradiction.

Perhaps not surprisingly, non-zero values of the contextual param-

eters p and al significantly improve the runtime of the algorithm

compared to when either of them is 0. To see why, we can view

the effect of these two parameters as an adjustment to thresholds t
by −(p · al ). When the threshold is adjusted this way, it increases

or decreases for non-zero values of p and al . This in turn helps

the backtracking search algorithm quickly find contradictions and

prune large areas of the search space.

When run on a high performance computing grid with al = 0,

the algorithm took 9 minutes to compute all PSNE in the 100-player

game. When al ≈ −3.22 (one of the largest negative polarities), it
took only 0.49 seconds.
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Figure 3: Average of learned ideal point values and 95% confidence

intervals (over 500 samples) for senators in the 114th Congress. The

results are consistent with the classical ideal point models without

any social interactions component.

5 EXPERIMENTS: THE 114TH SENATE

We ran our model using roll call and bill-specific data from the 114th

U.S. Senate (2015-2017). In this Senate, the same 100 senators kept

their seats for both sessions. We considered all voting instances

that had an associated bill (including amendments), and ignored

all other types of votes (e.g. confirmations). We used most of the

first session as a training set (308 voting instances) and the second

session as a held-out set (145 voting instances). In total, there were

737 subject codes that appeared in either session.

5.1 Learned Ideal Points

With very few exceptions, our model assigns negative ideal points

to Democrats and positive ideal points to Republicans. A plot of

the learned ideal points is shown in Fig. 3. This is an encouraging

result as it demonstrates the our model’s ability to capture ideal

point data in a manner similar to traditional ideal point models. The

average ideal point for Democrats and Independents is -1.49 with a

standard deviation of 0.76, and for Republicans 2.47 with a standard

deviation of 0.79. One exception is Senator Collins (R-ME), who

is assigned a negative polarity (and we know that she often sides

with Democrats). Another exception is Senator Casey (D-PA), who

is assigned a positive polarity. Note that even though the results

are consistent with the ideal point literature, we must put them in

context together with the influence network for our model.

5.2 Influence Network

Figure 4:Abird’s-eye-view of the learned influence network (force-

directed drawing). only the strongest edges are shown. Each node

represents a senator, with colors to indicate party and shade to in-

dicate threshold ti level (darker means higher threshold). Directed

edge represent one senator’s influence on another, with black edges

representing positive influence and red edges negative.

Fig. 4 illustrates the network as a directed graph with nodes

representing senators and edges representing influence. Only the

strongest 30% incoming and outgoing edges for each node are

shown. Nodes are colored according to their political party (Democrats

– blue, Republicans – red, Independents – green) and shaded accord-

ing to their effective threshold level ti , adjusted by −pi · al . Darker
colors represent higher thresholds (more stubborn) and lighter col-

ors represent lower thresholds (more susceptible to influence). Note

that the structure of this graph will not change for different bills,

but senators’ adjusted thresholds will, due to changes in bill polarity

al . This means that the network would look the same except nodes

would be shaded darker or lighter depending on the bill.

5.3 Comparison with Ideal Point Models

Clinton et al. [2] report an accuracy of 89.9% of the individual

votes in the 106th U.S. House of Representatives. However, that is



training accuracy, since their model is trained using all of the roll-
call data without any held-out data. The challenge with measuring

test accuracy with held-out data is that the polarity al of a bill l in
the held-out data is unknown. We describe how we mitigate this

challenge using the subject codes of bills in Section 3.2. Even if we

apply the same procedure to the ideal point model, it will perform

poorly with respect to the desirable quality measure log
10

q
|NE(G) |

given in Equation (5). The reason is that the ideal point model

is designed to give individual predictions, not joint predictions. 5

For the classical ideal point model, the network structure of social

interactions is empty. As a result, it will lead to a staggering number

of PSNE (computationally infeasible), which will exponentially

bring down the above quality measure.

5.4 Comparison with LIG Model

We compare and contrast our model with the linear influence game

(LIG) model [10–12], which is the state-of-the-art model on influ-

ence in Congress to the best of our knowledge. Since the LIG model

does not have any notion of bill context while ours does, in order to

compare ours with LIG we had to look into three distinct types of

bills in the political spectrum: bills that are very much left-leaning

(very negative polarity), bills that are in the middle (polarity close

to 0), and bills that are very much right-leaning (very positive po-

larity). The results are presented below, followed by a more general

comparison between our model and the LIG model. The bills used

for comparison have been purposely held out from the training set.
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Figure 5: Vote # 49: Approval of Keystone XL Pipeline. Our model

(red) produced one single PSNE that correctly predicted 91 votes.

LIG’s (blue)median correct prediction is 50 votes. Most importantly,

the LIG model predicts several hundred thousand equilibrium out-

comes, which makes it hard to pinpoint the actual outcome.

5
Joining individual behaviors together does not lead to a joint voting behavior, because

it does not model interdependence of actions. That is, if some senator were to change

his/her vote, the ideal point model does not model which specific senators would be

affected by this change and by how much.
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Figure 6: Vote #89: S. Amendment 777 to S.Con.Res.11. Our model

(red) produced one PSNE that correctly predicted 92 votes. LIG’s pre-

dictions are on the left (blue). Once again, our model gives drasti-

cally better quality PSNE compared to LIG.
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Figure 7: Vote #229: Motion to Invoke Cloture on the Motion Re:

H.R. 1735. Our model predicts much fewer and a lot more accurate

PSNE compared to LIG.

Right-Leaning Bill: Keystone XL Pipeline (al = 1.426). This was
one of the most controversial bills of the 114th Senate [4], insti-

gating protests from environmental groups and the public. This

right-leaning bill passed by a 62–36 vote. Our model produced one

single PSNE for this bill, which correctly predicted 91 votes. In con-

trast, the LIG model [12] produced 287,400 possible PSNE, where

the median number of correctly predicted votes was 50. As shown

in Fig. 5, the quality of our model’s PSNE for this bill is significantly

better than the state-of-the-art LIG model.

Left-Leaning Bill: Senate Amendment 777 (al = −3.7025). Pro-
posed by Bernie Sanders, this amendment is a left-leaning one



recognizing climate change and proposing actions to cut carbon

pollution. It failed by a 49–50 vote. Similar to the Keystone bill, our

model produces one single PSNE which correctly predicts 92 of

the votes of Amdt. 777. In contrast, the LIG model gives a median

number of correct votes of 50, among hundreds of thousands of

PSNE. This is shown in Fig. 6.

The above two bills illustrate the LIG model’s inability to capture

the effect of bill content on voting behavior. First, 287,400 possible

PSNE given by the LIG model are too many for any predictive

model. Second, for more extreme legislations, lawmakers become

more rigid in response to influence. Therefore, the number of PSNE

should drop as it gets more difficult for legislators to influence each

other. Our model effectively captures this polarization by narrowing
down the prediction.

Middle-Ground Bill: Motion to Invoke the Cloture Motion (al =
−0.0297). This is a near-unanimous bill that passed by 84–12, with

the nay votes coming from both extremes: Cruz (R-TX), Paul (R-

KY), Warren (D-MA), and Sanders (I-VT). With al ≈ 0, our model

produces 3,242 possible PSNE. This number, while a lot lower than

LIG’s prediction of 287,400 PSNE, stems from the minimization of

the (pi · al ), and therefore a relaxation of the effective threshold

parameter ti (see Equation (2)). As shown in Fig. 7, the overall

quality of the PSNE of our model is much better (i.e., histogram is

on the right) than the quality of PSNE of LIG.

As the above experiments show, our model produces a much

narrower band of PSNE as its stable-outcome prediction than the

LIG model [10–12]. In particular, the prediction of our model is

remarkably precise and high-quality if a bill falls in either end of

the political spectrum. This is further evident from the following

comprehensive comparison in terms of the quality of PSNE.

Quality of PSNE. Recall that one of our learning goals is to maxi-

mize the quality measure of PSNE defined by Equation (5). With

this measure as a yardstick, our results can be comprehensively

compared with the LIG model.

First, even on graphs of similar size, the number of PSNE is much

higher for the LIG than for our model. We can compare the two

by setting al ≈ 0 in order to allow our model to generate a large

number of PSNE (as described above). With a graph of ≈ 900 edges,

the LIG model produces over 287,400 PSNE, taking many hours

of computation time. For a similar sized graph and with al ≈ 0,

our model produces only 3,242 PSNE, taking only minutes. Second,

based Equation (5), LIG’s quality measure is −4.16, whereas ours is
−2.69. Therefore, our model is over 20 times more precise on the

held-out data than the LIG model. Note that non-zero al values
result in a much lower number of PSNE in our case. As a result, the

quality measure of our model is lot more pronounced in such cases.

5.5 Most Influential Senators

It is natural to ask who the most influential senators are for passing

a bill. The implication is that when the most influential senators

group up and vote yea on a bill, then everybody else would be influ-

enced to vote yea. Given the set of all PSNE, we can compute a small

set of most influential senators by applying the well-known greedy

set-cover algorithm with a provable log-factor approximation guar-

antee [12]. According to our model of the 114th Senate, only four

senators constitute the most influential set of senators in the sense

that if they agree on a bill, others will also come along. One such

most influential set is {Carper (D-DE), Schumer (D-NY), Cruz (R,

TX), Peters (D, MI)} (note that the 114th Senate was Republican-

majority). There are several other such sets, which are shown in

Fig. 8(a). In contrast, due to its wide band of predictions, the LIG

model gives a much bigger set of nine most influential senators.

This is shown in Fig. 8(b). This not only highlights an improvement

over the LIG model but also makes our framework applicable to the

minimal targeted intervention problem where we are interested in

intervening as few individuals as possible to achieve a desirable

social outcome (e.g., reducing smoking, eating healthy, etc.).
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Figure 8: A pictorial view of the sets of most-influential nodes.

A directed acyclic graph illustrates all possible selections of most-

influential senators, with each directed path from the top level to

the bottom representing one possible set. Our model selects a much

smaller set of most-influential senators than LIG.

6 CONCLUDING REMARKS

Wehave presented amodel of strategic behavior grounded in thresh-

old models. Unlike the existing literature on threshold models, ours

takes into account the context under which the behaviors take

place. This leads to significant improvements over previous models,

both in terms of the number of PSNE as well as the quality of these

PSNE. Among many exciting future directions is a Bayesian games

perspective on Senate voting.
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