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This note supplies some additional details for understanding [2, Chapter 5]. In particular,
We provide some background on the Karush-Kuhn-Tucker (KKT) conditions that are used
there. The KKT conditions are applicable to general non-linear optimization problems, but
in the context of solving Fisher’s market, these conditions are applied to a particular convex
program called the Eisenberg-Gale convex program. Remarkably, this convex program binds
together the individual but inter-dependent optimizations of the buyers in Fisher’s market
into a single optimization program.

1 Karush-Kuhn-Tucker (KKT) Conditions

We first specify a general non-linear constrained optimization in a standard format. Here,
x = (x1, . . . , xn) denotes a vector (or array) of n variables.

Min f(x)

Subject to

gi(x) ≤ 0, i = 1, . . . ,m

Below is the Lagrange function for the above mathematical program, where λ = (λ1, . . . , λm)
are dual variables (also known as Lagrange multipliers) corresponding to the constraints
gi(x) ≤ 0 for i = 1, . . . ,m.

L(x,λ) = f(x) +
∑
i

λigi(x).

The KKT conditions are necessary conditions for optimality, meaning that these con-
ditions are true for sure at any optimal solution for the above mathematical program.
These necessary conditions become sufficient under various conditions. One such condition
is Slater’s condition, which is applicable when the program is convex and feasible.

If x∗ is an optimal solution, then there exists λ∗ such that the following four KKT
conditions hold.
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• Stationary condition:
∇L(x∗,λ∗) = 0.

That is, ∂f(x∗)
∂xk

+
∑

i λ
∗
i
∂gi(x

∗)
∂xk

= 0, for any xk.

• Primal feasibility condition:
gi(x

∗) ≤ 0, for i = 1, . . . ,m.

• Dual feasibility condition:
λ∗
i ≥ 0, for i = 1, . . . ,m.

• Complementary slackness condition:
λ∗
i gi(x

∗) = 0, for i = 1, . . . ,m.

2 The Eisenberg-Gale Convex Program (1959)

In [2, Chapter 5], the Eisenberg-Gale convex program [1] is presented in the context of
Fisher’s market. In this market model, there are n goods (indexed by j) and n′ buyers
(indexed by i). There is 1 divisible unit of each good. Each buyer i has a budget ei and has
a utility ui,j per unit of good j. Buyer i’s utility from an allocation xi = (xi,1, . . . , xi,n) is
ui(xi) =

∑
j xi,jui,j.

Under the constraint that each buyer uses their budget to maximize own utility, the model
seeks to find equilibrium allocations x∗, which are allocations for market clearance (i.e., no
surplus of goods or money). This invites the question equilibrium prices of goods. The
beauty of duality theory is that equilibrium prices arise as duals of equilibrium allocations.

Usually, it is hard to derive one single optimization routine when there are many in-
dividual optimizations (e.g., each buyer maximizing own utility) that are tied together by
some global constraints (e.g., a supply of 1 unit per good). However, in this case, com-
puter scientists remarkably connected this market model with the Eisenberg-Gale convex
program. The objective function is to maximize the budget-weighted geometric mean of the

buyers’ utilities: (
∏

i u
ei
i )

1∑
i ei . Since 1∑

i ei
is a constant, it can be discarded from maximiza-

tion. Then, taking log gives us
∑

i ei log ui, where ui is used as a shorthand notation for
ui(xi) =

∑
j xi,jui,j. The Eisenberg-Gale convex program for Fisher’s market is given below.

Max
∑
i

ei log

(∑
j

ui,jxi,j

)
Subject to∑

i

xi,j ≤ 1, ∀j

xi,j ≥ 0, ∀i, j

We reshape this program to conform to the standard format given in Section 1.
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Min −
∑
i

ei log

(∑
j

ui,jxi,j

)
Subject to∑

i

xi,j − 1 ≤ 0, ∀j

− xi,j ≤ 0, ∀i, j

Below is the Lagrange function, where λj and µi,j are dual variables corresponding to the
first and second group of constraints, respectively. In the context of Fisher’s market, λj is
nothing but the price of good j.

L(x,λ,µ) = −
∑
i

ei log

(∑
j

ui,jxi,j

)
+
∑
j

λj

(∑
i

xi,j − 1

)
+
∑
i

∑
j

µi,j(−xi,j).

If x∗ is an optimal solution, then there exist λ∗ and µ∗ such that the following KKT
conditions hold.

Stationary condition:
For any xi,j,

∂L

∂xi,j

= 0.

− eiui,j∑
j ui,jx∗

i,j

+ λ∗
j − µ∗

i,j = 0.

eiui,j∑
j ui,jx∗

i,j

= λ∗
j − µ∗

i,j.

As we will show in dual feasibility below, µ∗
i,j ≥ 0. Therefore, in general, the following

holds.

eiui,j∑
j ui,jx∗

i,j

≤ λ∗
j .

ui,j

λ∗
j

≤
∑

j ui,jx
∗
i,j

ei
. (1)

Moreover, if µ∗
i,j = 0, the above inequality becomes an equality as follows.

ui,j

λ∗
j

=

∑
j ui,jx

∗
i,j

ei
. (2)
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Primal feasibility: ∑
i

x∗
i,j ≤ 1, ∀j

x∗
i,j ≥ 0, ∀i, j

Dual feasibility:

λ∗
j ≥ 0, ∀j

µ∗
i,j ≥ 0, ∀i, j

Complementary slackness:

1. For the first group of constraints:

λ∗
j

(∑
i

x∗
i,j − 1

)
= 0, ∀j

Therefore, if λ∗
j > 0, then

∑
i x

∗
i,j = 1, for any j. In the context of Fisher’s market,

this means that at an optimal solution, if the price of a good j is positive, then that
good is sold out.

2. For the second group of constraints:

µ∗
i,jx

∗
i,j = 0, ∀i, j

Therefore, if x∗
i,j > 0, then µ∗

i,j = 0. In the context of Fisher’s market, whenever a
buyer i buys a good j (i.e., x∗

i,j > 0), it must be the case that µ∗
i,j = 0, and in this case,

Equation (2) gives us the following.

ui,j

λ∗
j

=

∑
j ui,jx

∗
i,j

ei
.

Using Inequality (1), this means that whenever a buyer i buys a good j at an optimal
solution, the buyer is inevitably maximizing the bang per buck.

The above two underlined statements will be used next to show that the Eisenberg-Gale
convex program computes an equilibrium point of Fisher’s market.

3 Proof: Eisenberg-Gale Solves Fisher’s Market

We present a more elaborate version of the proof given in Theorem 5.1 of [2]. We show that
if each good has some interested buyer (i.e., a buyer who gets positive utility from the good),
then an optimal solution of the Eisenberg-Gale convex program is an equilibrium point of
Fisher’s market. The proof consists of two parts. Put together, these two parts show that
the market clears at an optimal solution of the Eisenberg-Gale convex program, thereby
giving us a constructive proof of equilibrium existence as well.
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Part 1: All goods are sold out.

The first complementary slackness condition above shows that at an optimal solution, the
price of good j, λ∗

j > 0, then good j is sold out. Here, we show that for all goods j, λ∗
j > 0.

Suppose that λ∗
j = 0 for some good j. Inequality (1) gives us the following for any i.

ui,j ≤ λ∗
j ×

∑
j ui,jx

∗
i,j

ei
= 0,∀i

ui,j ≤ 0,∀i.

That is, no buyer is interested in good j, which is a contradiction.

Part 2: No buyer has unspent money.

Consider any buyer i. Since buyers maximize their utilities, there must be a good j such
that x∗

i,j > 0.1 The second complementary slackness condition gives us the following.

ui,j

λ∗
j

=

∑
j ui,jx

∗
i,j

ei

=⇒ ui,jei = uiλ
∗
i

=⇒ ei
∑
j

ui,jx
∗
i,j = ui

∑
j

λ∗
ix

∗
i,j [multiplying both sides with x∗

i,j and summing over all j]

=⇒ eiui = ui

∑
j

λ∗
ix

∗
i,j

=⇒ ei =
∑
j

λ∗
ix

∗
i,j [dividing by ui, since ui > 0].

Therefore, all buyers i have spent all of their budget.
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1Otherwise, buyer i’s utility for all goods is 0. As such, buyer i can be taken out of the market.
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