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I the pressure at height = is p(z), we have, from (2.18),
plo) oy
— dp = J gp dz
p(z) 7

or, since p(oo) = 0,
p(z) = Lx gp dz (2.19)

That is, the pressure at level z is equal to the weight of the air in the vertical
column of unit cross-sectional area lying above that level. If the mass of earth’s
atmosphere were uniformly distributed over the globe, the pressure at sea level
would be 1013 mb, or 1.013 x 10° Pa, which is referred to as normal atmo-
spheric pressure and abbreviated as 1 atm.

2.2.1 Geopotential

The geopotential ® at any point in the atmosphere is defined as the ‘work
that must be done against the earth’s gravitational field in order to raise a mass
of 1 kg from sea level to that point. In other words, @ is the gravitational poten-
tial for unit mass. The units of geopotential are J kg™! or m? s~ 2. The force
(in newtons) acting on 1 kg at height z above sea level is numerically equal to g.
The work (in joules) in raising 1 kg from z to z + dz is g dz; therefore,

A = gdz = —adp (2.20)
The geopotential ®(z) at height z is thus given by

O = [ gdz (2.21)

where the geopotential ®(0) at sea level (z = 0) has, by convention, been taken
as zero. It should be emphasized that the geopotential at a particular point in
the atmosphere depends only on the height of that point and not on the path
through which the unit mass is taken in reaching that point. The work done
in taking a mass of 1 kg from point A with geopotential @, to point B with
geopotential @y is Oy — @,.
We can also define a quantity called the geopotential height Z as

Diz) 1

o godod dz (2.22)
0 0

I

Z

where g, is the globally averaged acceleration due to gravity at the earth’s
surface (taken as 9.8 m s~ 2). Geopotential height is used as the vertical coordi-
nate in most atmospheric applications in which energy plays an important role
(for example, the large-scale motions discussed in Chapter 8). It can be seen

from Table 2.1 that the values of z and Z are almost the same in the lower
atmosphere where g, ~ ¢.
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Table 2.1
Values ol the geometric height (2),
geopotential height (7), and acceleration
due to gravity (¢) at 40" latitude
2 (km) 7 (km) g(ms ?)
0 0 9.802
1 1.000 9.798
10 9.986 9.771
20 19.941 9.741
30 29.864 9.710
60 59.449 9.620
90 88.758 9.531
120 117.795 9.443
160 156.096 9.327
200 193.928 9.214
300 286.520 8.940
400 376.370 8.677
500 463.597 8.427
600 548.314 8.186

In meteorological practice it is not convenient to deal with dengity 0 whu?h
cannot be measured directly. By making use of (2.2) or (2.16) to eliminate p in
(2.18), we obtain

dp _ pg _ P9
dz ~ RT R,T,

Rearranging the last expression and using (2.20),

d
io— RT® - _r,17, %2 (2.23)
p

| If we now integrate between pressure levels p; and p,, with geopotentials @

and @,, respectively,
dp
P2
D, — D, = —Ry T, —

p1 p N

Dividing both sides of the last equation by g, and reversing the limits of in-
tegration yields
Rd P1 dp (2 24)
— =—| T,— .
ZZ Zl o P2 v p

2.2.2 Scale height and the hypsometric equation

For an isothermal (temperature constant with height) and dry atmosphere,

2.24) becomes ,
( ! Z, —Z, = H In(p,/p>) (2.25)
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or

Z, VA
P2 = Py eXp {4 i ')' (2.20)
where
RT R T
H=—"="2Y_23T, (2.27)
9o Jdo
H is called the scale height. If Z, — Z, is set successively equal to 0, H, 2H,
3H, ..., py/p; is equal to 1, exp(—1), exp(—2), exp(—3), ... . That is, the

pressure decreases by a factor e (=2.718) for each increase H in geopotential
height. It should be noted that (2.26) is equivalent to (1.8) which was derived
empirically in Section 1.3.1.

Since the atmosphere is well mixed below the turbopause, the pressure and
densities of the individual gases decrease with altitude at the same rate and
with a scale height corresponding to the apparent molecular weight of the
mixture. If we take a value for T, of 288°K near the earth’s surface, the scale
height H for air in the atmosphere is found from (2.27) to be 8% km. Above the
turbopause (about 105 km) the vertical distribution of gases is largely controlled
by molecular diffusion and a scale height may then be defined for each of the
individual gases in air. Since for each gas the scale height is proportional to the
gas constant for a unit mass of a gas, which in turn is inversely proportional to
the molecular weight of that gas, the pressures (and densities) of heavier gases
fall off more rapidly with height above the turbopause than do those of lighter
gases.

Problem 2.2 If the ratio of the number density of oxygen atoms to the number
density of hydrogen atoms at a geopotential height of 200 km above the earth’s surface is
10%, calculate the ratio of the number densities of these two constituents at a geopotential
height of 1400 km assuming an isothermal atmosphere with a temperature of 2000°K.

Solution At these altitudes the distribution of the individual gases is determined by
diffusion and therefore by (2.26). Also, at constant temperature the ratio of the number
densities of two gases is equal to the ratio of their pressures. From (2.26),

(P1400km)o _ (P200km)o €xp[ — 1200 km/Ho(km)]
(Pracoxm)u  (P200km)u €Xp[ — 1200 km/Hy(km) ]

1 1
= 10° exp[— 1200 km <~ — ~>:|
Hy Hy

From the definition of scale height we have, at 2000°K,

R* 2000 R* 2000
°~ 16 98 and - Ha =g
therefore,
L . =884 x107° m™!
H, Hy
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and
WPraookmlo _ 108 axn(— 10.6) = 247

(Praookmn

Hence, the ratio of the number densities of oxygen to hydrogen atoms at a geopotential
height of 1400 km is 2.47. ) .

The temperature of the atmosphere generally varies with height. In thls
case (2.24) may be integrated if we define a mean virtual temperature T, with
respect to In p as shown in Fig. 2.2. That is,

d
— _ (Inpa Inpy [ _p 1 & 798
T, = jm T, d(in p) / jln Jdnp) = [T, / n<p2> (2.29)

Then, from (2.24) and (2.28),

7, — B = Bd—TVIn<&> oy 1n<5’i> (2.29)
9o D2 1)
where the scale height H is now defined as
A = Rd—TV = 29.3T, (2.30)
9o

FROM RADIOSONDE
DATA

VIRTUAL TEMPERATURE  (°K) —

Fig. 2.2 In p versus T, diagram. If area ABC = area CDE, T is the mean virtual temperature with
respect to In p between the pressure levels p; and p,.

2.2.3 Thickness and heights of constant pressure surfaces

The difference in geopotential height Z, — Z; between any two levels in
the atmosphere is called the thickness of the intervening layer. It can be seen
from (2.29) and (2.30) that the thickness of the layer between any two pressure
levels p, and p, is proportional to the mean virtual temperature of the layer.
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We can visualize that as T, increases, the air between the (wo pressure levels
expands so that the layer becomes thicker.

Problem 2.3 Calculate the thickness of the layer between the 1000- and 500-mb

pressure surfaces (a) at a point in the tropics where the mean virtual temperature of the

layer is 9°C, and (b) at a point in the polar regions where the corresponding mean virtual
temperature is —40°C.

Solution From (2.29)

R,T, (/1000 _
AZ = Zso0my — Z1000ms = In{ ——] = 20.3T,

Jo 500

Therefore, for the tropics with T, = 282°K, AZ = 5725 m. For polar regions with T, =
233°K, AZ = 4730 m.

Thickness may readily be evaluated from radiosonde data which provide
measurements of the pressure, temperature, and humidity at various levels in
the atmosphere. The virtual temperature T, at each level may be found from
the measurements of temperature and' humidity and these values plotted
against the pressure on a In p versus T, diagram (see Fig. 2.2). The mean virtual
temperature T, for the layer can be computed on an equal area basis (that is,
area ABC = area CDE in Fig. 2.2) and the thickness evaluated using (2.29).
If p; Is the pressure at ground level, then the value of Z » determined from (2.29)
is the geopotential height at which the air pressure is p,. Given sounding data
from a network of stations it is possible to construct topographical maps of the
distribution of geopotential height on selected pressure surfaces (see Chapter 3).
Calculations such as this are carried out routinely by weather services through-
out the world.

In moving from a given pressure surface to another located above or below
it, the change in the geopotential height is geometrically related to the thickness
of the intervening layer which, in turn, is directly proportional to the mean
virtual temperature of the layer. Thus, if the three-dimensional distribution of
virtual temperature is known together with the distribution of geopotential
height on one pressure surface, it is possible to infer the distribution of geo-
potential height of any other pressure surface. The same hypsometric relation-
ship between the three-dimensional temperature field and the shape of pressure
surface can be used in a qualitative way to gain some useful insights into the

three-dimensional structure of atmospheric disturbances. Let us cogsider the
following examples:

* From the earth’s surface up to the tropopause the core of a hurricane is
warmer than its surroundings. Consequently, the intensity of the storm (as
measured by the depression of the isobaric surfaces) must decrease with
height (Fig. 2.3a). Such warm core lows always exhibit their greatest intensity
near the ground and diminish with increasing height above the ground.
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\;he disturybzlnces depicted in Fig. 2.3b and ¢ 'ezh}llbﬁ }?trr.lplﬁludleo$:rx§rszt2_

t rapidly with height mn the
the tropopause level and damp ou : el
i 10T 1 istent with a phase reversal in p
sphere. This behavior 1s consi o arhere
; le, warm air in the lowe
field at the tropopause level; for example, e
is situated over the cold low in the upper troposphere. These concepts a

illustrated further in Chapter 3.

2.2.4 Reduction of pressure to sea level

. .
In mountainous regions the difference in surface prescslure fr.orrll c;n:hz?;;)rt
i i s in elevation. In order to 1solate
to another is largely due to difference o ey
ichi the passage of weather systems,
f the pressure field which is due to . 1
(t?o redﬁce the pressures to a common reference level. For this purpose, sea leve

is normally used. -
° rll,(z:t the }s]ubscripts g and O refer to conditions at the ground and at sea level

(Z = 0), respectively. For the layer between the earth’s surface and sea level
the hypsometric equation (2.29) assumes the form

Zgzﬁlnp’0

Py

which can be solved to obtain the sea level pressure

Z goZ, (2.31)
Po = Pe eXP(ﬁg) = Pe exP(RdTV>
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where (2.30) has been used to obtain the last expression which shows how the
sea level pressure depends on the mean virtual temperature between ground and
sea level. If Z is small, the scale height H can be evaluated from the ground
temperature. Also, if Z,/H « 1, the exponential in (2.31) can be approximated
by 1 + Z,/H. Since H ~ 8 km for the observed range of ground temperatures
on earth, this approximation is satisfactory provided that Z ¢ 18 less than a few
hundred meters. With this approximation, (2.31) becomes

<l ﬁ)
Po = Py = Py g pg< R.T. (2.32)
Since p, ~ 1000 mb and H ~ 8 km, the pressure correction (in millibars) is
roughly equal to Z, (in meters) divided by 8. In other words, near sea level the
pressure falls about 1 mb for every 8 m of vertical ascent.

When Z, is on the order of 1 km or greater, there is difficulty in estimating
what the mean virtual temperature of the layer would be in the absence of
topography. In practice, a number of empirical corrections are applied to the
surface temperature in the estimation of the scale height H. These procedures
are not entirely satisfactory in eliminating the effects of topography. Therefore,
sea level pressure analysis in mountainous regions still leaves much to be desired.

Problem 2.4 Calculate the geopotential height of the 1000-mb pressure surface when

the pressure at sea level is 1014 mb. The scale height of the atmosphere may be taken as
8 km.

Solution From the hypsometric equation (2.29),
o _ po — 1000\  _/py — 1000
Z1o0oms = H 1 =Hn(1+22 ")~ gl
00D n(moo) n( o000 1000

where pj is the sea level pressure and the relationship In(1 + x) ~ x for x « 1 has been
used. Substituting H ~ 8000 m into this expression gives

Z1000m» ~ 8(po — 1000)

Therefore, with p, = 1014 mb, the geopotential height Z,,y, of the 1000-mb pressure
surface is found to be 112 m above sea level. [Note: similar expressions can be derived to
relate the height of other pressure surfaces to the distribution of pressure on a nearby

constant height level; the constant of proportionality will, in general, depend on the
pressure levels. ]

Problem 2.5 Derive a relationship for the height of a given pressure surface (p) in

terms of the pressure p, and temperature T, at sea level assuming that the temperature
decreases uniformly with height at a rate T deg km™1!.

Solution Let the height of the pressure surface be z; then its temperature T is given by
T=T,—-T:z (2.33)
Combining the hydrostatic equation (2.18) with the ideal gas equation (2.2) yields

dp g
»~ rTY 34
p RT“ (2.34)

Integrating this equation between pr
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From (2.33) and (2.34)

4 ¢ — dz
P R(Ty — 1'2)

es i cights
essure levels po and p and corresponding heig

0 and z and neglecting the variation of g with z, we obtain
pdp 4 [ ci:
f/ p RJ(Ty—T72)
" p g T, — Tz
In—=—-—mhl—F5"
po RT Ty

Therefore,

L [1 - (g)”"’} (2.35)
T T Po

for the calibration of aircraft altimeters. An zzlltlrlnetef:rt Iiz
hich measures the air pressure p. However the sca;s;)wﬂh
he aircraft, where z is related to p by (2.

the U.S. Standard Atmosphere, namely, To =

(This equation forms the basis
simply an aneroid barometer Wi f
altimeter is expressed as the height z of t

iate to
lues for Ty, po, and I' appropria S
;38111( Po :01013.25 mb, and T’ = 6.50 deg km )

2.3 THE FIRST LAW OF THERMODYNAMICS

i i body as a

In addition to the macroscopic k}ne‘qc anril %Jc;;eer;tgl;l gﬁ:r%c}; ttk}l;t Emetiz -
L ol o possesfs"t;trr?(l)slgcﬁi)egtilrn:tcl)rrlfles;.’ Increases in inter'nal kinetic enirgz
I?Otentlal ot (1) : lar motions are manifested as increases in the tempera urd
mftt}tlle fgcr)rc?yofvﬁi(ieezﬁanges in the potential energy of the molecules are cause
O e ’ . .
s theirtliaellta:\é)eo((:i(})/n(f)ifg lliilailttlr(ilr:és takes in a certain quantity of ttl'ea;

o Y d in joules), which it can receive by either thermal corllduc 11(0W
o radia (meazure requ1t the t,>ody may do a certain amount of externa (\;vor <
S dS . ioules). The excess of the energy supplied to the b'cf) tgecse !
oy measuf 1r§ugrnal vx;ork done by the body is ¢ — W Therefore, 1 e
ir(l)dcill;?l\’gztirf f})l(e macroscopic kinetic and FOtemialtﬁgfrt%}; ?Iftélrlsal ZHZ;gy
follows from the principle of conservation of energy

i — w. That is,
of the body must increase by ¢ — W .

q—w=tu; —

.
where u ar 1d u, are the it iternal et 1ergies of the b()dy before and after the char 12€
1 2

In differential form (2.36) becomes

dg — dw = du
at added to the body, dw the diffe'r-
and du the differential increase in

(2.37)

where, dq is the differential increment of he
ential element of work done by the body,



62
20 Atmonpherio Thermodynamics
|lj‘1.l.cvrnz[il cncrgy’ f»l' the body." Equations (2.36) and (2.37) are statements of the
Shl:;lld (t:w of Thermodynamics. In fact, (2.37) provides a (Iciillilim; nll'(lu |I(l
u [ . -3 . bt 1 ‘ ‘ ( ;
o anednﬁ(;lt;;i lthf[l[ the change in mle.rnul energy du is a function only of the
paiel and fina states of the body and is therefore independent of the manner
yI cd e qdy 1s transferred between these two states
Subrslt;); er t(f) visualize the work term dw in (2.37) in a simple case, consider a
subs! Segfi,oo tclan callec}il t}]lf working substance, contained in a cylinlier of ﬁxczi
- nal area which is fitted with a movable, fricti i
T yoreriona area which i novable, rictionless piston (Fig. 2.4).
al is then proportional to the di '
evo ‘ o the distance from the base
e Oyfl}[r}llzlegrr;(;) }tlhi face c_)f tl:he piston, and can be represented on the horizonth
shown in Fig. 2.4. The pressure of the sub i i
can be represented on the verti i i o . e
ical line of this graph. Th
e e : : lis graph. erefore, every state of
b posi;atng;:,t }?;)rgesplcl)n&rﬁg to }? given position of the cylinder, is rep})/resented
raph. en the substance is in ilibri j
sonted by the poit  on thi - equilibrium at a state repre-
. s graph its pressure is p and i
onied . p and its volume V. If the
i)emainrsnoves o'utwards through an incremental distance dx, while the pressure
i ?Sssentlalllsf C(Lnstant at p, the work dW done by the substance in ex
equal to the force exerted on the pi i i _
pand . piston (this force is equal to
¢ A is the cross sectional area of the piston) multiplied by tl?e distalﬁi

CYLINDER

PISTON

PRESSURE —=

VOLUME ——

Fig. 2.4 Re resentation he st O bst € y €r o -Vd a
g o) 1 of state of a su stance in a cylinder on ap lagr
m.

t It shoul ] i S te IhCIefOIe dq
ould b 10ted that neither the heat nor the work f
and A~ ” g 7 f . f h f i
. e . . : q w are functions of state.
a a are not peu‘ect dl_)]él()nllul.\'. he internal energy u isa unction o state; therefore u ’iS
> 5 a

f e : . .
perfect differential. If z = f(x, y), d= is a perfect differential provided that

o

Oy dx Ox dy
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dx through which the piston moves. That is,
dW = pAdx = pdV (2.38)

In other words, the work done by the substance when its volume increases by a
small amount is equal to the pressure of the substance multiplied by its increase
in volume. It should be noted that dW = pdV is equal to the shaded area in
the graph shown in Fig. 2.4; that is, it is equal to the area under the curve PQ.
When the substance passes from state A with volume V, to state B with volume
V, (Fig. 2.4), during which its pressure p changes, the work W done by the
material is equal to the area under the curve AB. That is,

V2
W= fvl pdv (2.39)

Equations (2.38) and (2.39) are quite general and represent the work done by
any material due to a change in its volume.

The pressure—volume (or p—V') diagram shown in Fig. 2.4 is an example of
a thermodynamic diagram in which the physical state of a substance is repre-
sented by two thermodynamic variables. Such diagrams are very useful in
meteorology; we will discuss other examples later in this chapter.

If we are dealing with a unit mass of material, the volume V is replaced by
the specific volume o and the work dw which is done when the specific volume
increases by do is

dw = p do (2.40)

Combination of (2.37) and (2.40) yields
dg = du + p do (2.41)

which is an alternative statement of the First Law of Thermodynamics.” It
should be noted that the First Law of Thermodynamics can be applied to any
system; however, here we shall generally apply it only to gases.

2.3.1 Joule’s law

Following a series of laboratory experiments on air, Joule! concluded in
1848 that when a gas expands without doing external work (for example, by
expanding into a chamber which has been evacuated), and without taking

t We have assumed here that the only external work done by the body is due to its volume chang-
ing. We will see in Section 2.9 that there are other ways in which a body may do external work. We
have also assumed that the macroscopic kinetic and potential energy remain constant. However,
it can be shown (see, for example, R. G. Fleagle and J. A. Businger, “An Introduction to Atmo-
spheric Physics,” Academic Press, New York, 1963, p. 37) that even if the macroscopic kinetic
and potential energies of a parcel of air in the atmosphere are changing, the First Law still takes
the form of (2.41).

t James Prescott Joule (1818—1889) English physicist, one of the great experimentalists of the
nineteenth century. Started his scientific work (carried out in laboratories in his home and at his
own expense) at age 19. Measured the mechanical equivalent of heat. Recognized the dynamical
nature of heat, and developed the principle of conservation of energy. Derived the relationship
for the heat produced by an electric current.





