
CSci 350: A Computing Perspective on GIS

RDBMS and Spatial data

Data
 GIS deals with geospatial data

 Huge amounts of digital geospatial data available
• from remote sensing, satellites, aerial photography
• from existing cartographic maps

2

GIS data
 GIS data handles geographic objects

• data has descriptive attribute + spatial component
 organized into “themes” (layers)

• a theme consists of objects of the same type
• e.g. river theme, road theme, etc
• each theme has a schema and instances
• e.g. theme city

• city = { name, population, location}
• theme country

• country = {name, capital, population, region}
• theme language

• language = {language, region}
 operations on themes

• projection
• selection
• union
• overlay
• geometric selection

3

 overlay of spatial data (spatial join)
• T1 X T2
• essentially computes the intersections of the two themes. It produces a new

theme where each object in the intersected map is labeled with its attributes
from both themes

• e.g. country X language

 Questions:
• size of output?
• how to compute intersections?
• efficiency?...

4

 geometric selection

• window query

• point query

• [others]

 other theme operations
• topological: what countries are adjacent to belgium?
• geometric: what’s the distance paris-berlin?
• interpolation: estimate an attribute at a given point

5

Storing spatial data
 At the beginning, GIS were built directly on top of the file systems.

• data is stored in files, controlled by the application
• problems with security, concurrency, etc

 Store spatial data in a DBMS
 RDBMS suitable for spatial data?

• not too flexible (hard to define spatial types)
• no data independence (formulation queries requires knowledge of how data is

stored)
• efficiency is questionable
• how to express geometric/topologic computations with relations?

• e.g. adjacency test, or point query
• indexing structures not appropriate

6

Relational model and spatial data
 Structure

• relational tables may be awkward for storing spatial data
• e.g. imagine storing the segments that form the boundary of a polygon

 Indexes
• relational DB provide indexing structures that work well with standard tabular

data
• e.g. to provide fast accesses to movie titles, RDMS keeps FILM in a balanced

search tree ordered by title
• BST: insert, delete, search fast

• spatial data requires specialized indices
• standard RDMS indexes are not efficient

 Performance
• spatial data requires many types of joins, which are expensive
• difficult to achieve good performance with generic join technology
• need specialized algorithms that work on geometric data

7

Indexing
 Indexing 1D data

• Input: A set of n 1D-points S = { x1, x2, x3, ... xn}
• Store S in a structure to answer efficiently the following types of questions

• search (x): does point x exist in S
• nearestNeighbor(x): return the nearest neighbor of point x in S
• range(a, b): return all the points in S that fall between a and b

 Indexing 2D data
• Input: A set of n 2D-points S = { p=(x,y) }
• Store S in a structure to answer efficiently the following types of questions

• search (p): does point p = (x,y) exist in S

• nearestNeighbor(p): return the nearest neighbor of point p in S

• range(x1, x2, y1, y2): return all the points in S that fall in [x1 x x2] x [y1 x y2]

8

Storing spatial data
 Loosely coupled approach

• separate DBMS from spatial data
• have a specific module that handles spatial data
• e.g. ArcInfo

 Integrated approach
• build an extension on top of DBMS that handles spatial data
• many traditional DBMS started to offer a spatial extension
• e.g. Oracle 8i, Postgres
• extend SQL to manipulate spatial data
• adapt DBMS functionality to handle spatial data

9

Requirements from a spatial DBMS
 Integrate spatial data at the logical level while satisfying data independence

 Integrate new functionality into SQL to capture geometric data

 An efficient physical representation of data

 Efficient indexing structures for spatial data and efficient algorithms.

10

