CSci 350: A Computing Perspective on GIS
RDBMS and Spatial data




Data

= GIS deals with geospatial data - B il
. . . o
= Huge amounts of digital geospatial data available et N
» from remote sensing, satellites, aerial photogt J_———t 2 B = /3 "
- . . I"‘ w e 3 - :1": . .- = *
» from existing cartographic maps - o i

b

_10-Meter Resolution Color
_ oatellite Imagery{Sat 10)




GIS data

GIS data handles geographic objects
» data has descriptive attribute + spatial component
organized into “themes” (layers)
a theme consists of objects of the same type
e.g. river theme, road theme, etc
each theme has a schema and instances

e.g. theme city

» city = { name, population, location}
theme country

* country = {name, capital, population, region}
theme language

* language = {language, region}

operations on themes

e projection

selection

union



overlay of spatial data (spatial join)

¢« TIXOT2

» essentially computes the intersections of the two themes. It produces a new
theme where each object in the intersected map is labeled with its attributes
from both themes

e.g. country XD language

Questions:
 size of output?
* how to compute intersections?

» efficiency?...




= geometric selection

« window query

* point query

* [others]

= other theme operations

» topological: what countries are adjacent to belgium?

« geometric: what’s the distance paris-berlin?

 Interpolation: estimate an attribute at a given point




Storing spatial data

At the beginning, GIS were built directly on top of the file systems.
 data 1s stored in files, controlled by the application
« problems with security, concurrency, etc

Store spatial data in a DBMS
RDBMS suitable for spatial data?
not too flexible (hard to define spatial types )

no data independence (formulation queries requires knowledge of how data is
stored)

efficiency is questionable

how to express geometric/topologic computations with relations?
* e¢.g. adjacency test, or point query

indexing structures not appropriate




Relational model and spatial data

Structure
 relational tables may be awkward for storing spatial data
e e.g. 1magine storing the segments that form the boundary of a polygon

Indexes

 relational DB provide indexing structures that work well with standard tabular
data

» e.g. to provide fast accesses to movie titles, RDMS keeps FILM 1n a balanced
search tree ordered by title

» BST: insert, delete, search fast

 spatial data requires specialized indices
» standard RDMS indexes are not efficient

Performance
» spatial data requires many types of joins, which are expensive
 difficult to achieve good performance with generic join technology
* need specialized algorithms that work on geometric data




Indexing

Indexing 1D data
e Input: A set of n 1D-points S = { x1, x2, x3, ... xn}

« Store S 1n a structure to answer efficiently the following types of questions
 search (x): does point x exist in S

» nearestNeighbor(x): return the nearest neighbor of point X in S

» range(a, b): return all the points in S that fall between a and b

Indexing 2D data
* Input: A set of n 2D-points S = { p=(x,y) }
« Store S 1n a structure to answer efficiently the following types of questions
» search (p): does point p = (X,y) exist in S
» nearestNeighbor(p): return the nearest neighbor of point p in S
« range(x1, x2, yl, y2): return all the points in S that fall in [x1 x x2] X [y1 x y2]



Storing spatial data

Loosely coupled approach
» separate DBMS from spatial data
* have a specific module that handles spatial data
* e.g. Arcinfo

Integrated approach
build an extension on top of DBMS that handles spatial data

many traditional DBMS started to offer a spatial extension

e.g. Oracle 81, Postgres
extend SQL to manipulate spatial data
adapt DBMS functionality to handle spatial data



Requirements from a spatial DBMS
Integrate spatial data at the logical level while satisfying data independence
Integrate new functionality into SQL to capture geometric data

An efficient physical representation of data

Efficient indexing structures for spatial data and efficient algorithms.

10




