
CSci 350: A Computing Perspective on GIS

RDBMS and Spatial data

Data
 GIS deals with geospatial data

 Huge amounts of digital geospatial data available
• from remote sensing, satellites, aerial photography
• from existing cartographic maps

2

GIS data
 GIS data handles geographic objects

• data has descriptive attribute + spatial component
 organized into “themes” (layers)

• a theme consists of objects of the same type
• e.g. river theme, road theme, etc
• each theme has a schema and instances
• e.g. theme city

• city = { name, population, location}
• theme country

• country = {name, capital, population, region}
• theme language

• language = {language, region}
 operations on themes

• projection
• selection
• union
• overlay
• geometric selection

3

 overlay of spatial data (spatial join)
• T1 X T2
• essentially computes the intersections of the two themes. It produces a new

theme where each object in the intersected map is labeled with its attributes
from both themes

• e.g. country X language

 Questions:
• size of output?
• how to compute intersections?
• efficiency?...

4

 geometric selection

• window query

• point query

• [others]

 other theme operations
• topological: what countries are adjacent to belgium?
• geometric: what’s the distance paris-berlin?
• interpolation: estimate an attribute at a given point

5

Storing spatial data
 At the beginning, GIS were built directly on top of the file systems.

• data is stored in files, controlled by the application
• problems with security, concurrency, etc

 Store spatial data in a DBMS
 RDBMS suitable for spatial data?

• not too flexible (hard to define spatial types)
• no data independence (formulation queries requires knowledge of how data is

stored)
• efficiency is questionable
• how to express geometric/topologic computations with relations?

• e.g. adjacency test, or point query
• indexing structures not appropriate

6

Relational model and spatial data
 Structure

• relational tables may be awkward for storing spatial data
• e.g. imagine storing the segments that form the boundary of a polygon

 Indexes
• relational DB provide indexing structures that work well with standard tabular

data
• e.g. to provide fast accesses to movie titles, RDMS keeps FILM in a balanced

search tree ordered by title
• BST: insert, delete, search fast

• spatial data requires specialized indices
• standard RDMS indexes are not efficient

 Performance
• spatial data requires many types of joins, which are expensive
• difficult to achieve good performance with generic join technology
• need specialized algorithms that work on geometric data

7

Indexing
 Indexing 1D data

• Input: A set of n 1D-points S = { x1, x2, x3, ... xn}
• Store S in a structure to answer efficiently the following types of questions

• search (x): does point x exist in S
• nearestNeighbor(x): return the nearest neighbor of point x in S
• range(a, b): return all the points in S that fall between a and b

 Indexing 2D data
• Input: A set of n 2D-points S = { p=(x,y) }
• Store S in a structure to answer efficiently the following types of questions

• search (p): does point p = (x,y) exist in S

• nearestNeighbor(p): return the nearest neighbor of point p in S

• range(x1, x2, y1, y2): return all the points in S that fall in [x1 x x2] x [y1 x y2]

8

Storing spatial data
 Loosely coupled approach

• separate DBMS from spatial data
• have a specific module that handles spatial data
• e.g. ArcInfo

 Integrated approach
• build an extension on top of DBMS that handles spatial data
• many traditional DBMS started to offer a spatial extension
• e.g. Oracle 8i, Postgres
• extend SQL to manipulate spatial data
• adapt DBMS functionality to handle spatial data

9

Requirements from a spatial DBMS
 Integrate spatial data at the logical level while satisfying data independence

 Integrate new functionality into SQL to capture geometric data

 An efficient physical representation of data

 Efficient indexing structures for spatial data and efficient algorithms.

10

