Chapter 1

Digital Elevation Models
and TIN Algorithms

Marc van Kreveld

Abstract. This survey paper introduces various concepts and
algorithms on terrains. The three basic models—the grid, the
contour lines, and the triangulated irregular network—are de-
scribed briefly, but the emphasis is on the triangulated irregular
network (TIN) model. Algorithms are given for grid to TIN con-
version, TIN traversal, contour line selection and computation,
and drainage network computation. The efficiency of the algo-
rithms is discussed as well.

1.1 Introduction

In the GIS literature, papers abound on terrain issues. Obviously, survey papers
on terrains have been written (most notably, by Weibel and Heller [114]), and
textbooks on GIS and automated cartography also deal with terrains [3, 10,
63, 67, 77, 103, 117]. But no survey has been written with the emphasis on
algorithms on terrains. This is an attempt to do so. It is almost impossible to
produce a complete survey, or even a nearly complete bibliography. Instead, this
survey highlights the most important concepts and problems on terrain data, and
discusses a few algorithms more thoroughly. The emphasis is on the efficiency
of the algorithms, but it appears that ‘model’ and ‘algorithm’ cannot be seen as
separate issues. Two algorithms that compute the drainage network on a terrain
generally use a different model for the drainage network, so the algorithms that
perform the computation cannot really be compared on efficiency: the algorithms
don’t compute the same thing. Even worse, the algorithms may be based on



different terrain models.

Since the choice of a model and an algorithm go hand in hand, this survey will
deal with both. We concentrate on the triangulated irregular network model for
representing terrains, but sometimes we also deal with the other common model,
the grid. The techniques underlying the algorithms have been developed both
by computational geometers and by GIS researchers.

Another issue of importance is how the efficiency of algorithms should be
analyzed. Computational geometers usually consider the worst possible inputs
and make sure that the algorithm works well even in these cases. GIS researchers
often don’t analyze their algorithms, or give timings of an implementation. We’ll
adopt an intermediate view: if the worst case efficiency is of the same order as
the typical efficiency for real-world inputs, then we’ll use worst case analysis. If
there seems to be an important difference, we’ll try to track down why the worst
case analysis is too pessimistic in practice, and try to motivate a more realistic
efficiency statement.

This survey certainly doesn’t include all aspects of terrain modelling and
algorithms. Not included are data compression for terrains [40, 42], surface
networks [88, 111, 116], and dealing with errors and uncertainty [4, 5, 70]. Other
aspects are treated only briefly, like hierarchical terrain modelling, viewshed
analysis, path planning, and statistics. Also, standard algorithms that have been
described in all textbooks on computational geometry [14, 83, 90] are omitted.
These include the computation of subdivision intersections (or: map overlay),
Voronoi diagrams, and Delaunay triangulations.

1.2 Terrain models and representation

1.2.1 The regular square grid

The regular square grid—or simply the grid—is a structure that specifies values
at a regular square tesselation of the domain, see Figure 1.1 (a). In the computer
it is stored as a two-dimensional array. For every square in the tesselation, or
entry in the array, exactly one elevation value is specified. There are different
interpretations of the grid. Firstly, the elevation stored can be thought of as
the elevation for every point inside the square. In this case the digital elevation
model is a non-continuous function. Secondly, the elevation stored can represent
only the elevation at the center point of the square, or the average elevation
inside the square. In these cases, an interpolation method is necessary to get
a digital elevation model that specifies the elevation of every point. A possible
interpolation method for any point p different from a square center is using the
weighted average of the elevations of the four centers surrounding the point p,
where the weight depends on the distances to the centers. But there are other
possibilities too, like interpolation by splines.
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Figure 1.1: Two models for elevation.

1.2.2 The contour line model

In the contour line model to represent elevation, some set of elevation values is
given, and every contour line with one of these elevations is represented in the
model. So a collection of contour lines is stored along with its elevation, see Fig-
ure 1.1 (b). Sometimes the term isoline or isocontour is used when the elevation
model represents something else than height above sea level. Throughout this
survey we’ll continue to use contour line in all situations.

A contour line is usually stored as a sequence of points with its z- and y-
coordinates. It then represents a simple polygon or polygonal chain of which the
elevation is specified. Since the contour line model specifies the elevation only
at a subset of the domain, an interpolation method is needed to determine the
elevation at other points. Since any point lies in a region bounded by contour
lines of only two elevations, one usually only uses the bounding contour lines for
the interpolation.

The contour lines can be stored in a doubly connected edge list [14, 89, 90] or
quad edge structure [54]. An alternative to this representation is by means of the
contour tree [?] (or topographic change tree [65]). An contour line subdivision is
a special type of planar subdivision with no vertices of degree three or greater.
In theory they could exist if a contour line contains a pass, but such a situation
would be coincidental and undesirable in mapping. So one generally assumes
that each contour line is either a cycle of edges (polygon) or a chain between
two points on the boundary of the elevation model. Suppose that every contour
line corresponds to a node in a graph, and two nodes are connected by an arc if
they bound the same region. This graph is easily seen to be a tree, the contour
tree. A contour line model can therefore be stored by storing the contour tree,
and with every node the cycle or chain of edges that together form the contour
line.
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Figure 1.2: A TIN and the network structure for it. The three values and the
list of each vertex are not shown.

1.2.3 The triangulated irregular network model

In the triangulated irregular network model, usually abbreviated to TIN, a finite
set of points is stored together with their elevation. The points need not lie in
any particular pattern, and the density may vary. On these points a planar
triangulation is given. Any point in the domain will lie on a vertex, an edge
or in a triangle of the triangulation. If the point doesn’t lie on a vertex, then
its elevation is obtained by linear interpolation (of 2 points if it lies on an edge,
and of 3 points if it lies in a triangle). So the model is a piecewise linear model
that—in 3-dimensional space—can be visualized as a simply connected set of
triangles. A TIN is continuous but not differentiable in the whole domain. The
TIN model for terrains has been used since the seventies [46, 85, 87].

A possible storage scheme of a TIN is the doubly connected edge list [89, 90]
or the quad edge structure [54]. Both are ways of representing the topology of
any planar subdivision. These representations allow for all necessary traversal
operations in an efficient manner.

An alternative representation can be used for a triangulation, since it is a
special type of planar subdivision, see also Figure 1.2. This alternative saves
storage space and makes traversal and other operaties a bit simpler. For every



triangle ¢, edge e, and vertex v, there is a record (or object) for that feature. The
record of a triangle ¢ has three fields with pointers. These pointers are directed
to the records of each of the three edges incident to ¢. The record of an edge e
has four fields with pointers. Two of the pointers are directed to the records of
the two incident triangles, and the other two pointers are directed to the records
of the incident vertices. The record of a vertex v has three fields with values.
These are the z- and y-coordinates and the elevation of the vertex.

The topological network structure just described allows for finding—for every
triangle—the elevations of its vertices in constant time, finding the adjacent
triangles for a given triangle in constant time, and more. This allows us, for
instance, to walk through the triangulation along a straight line efficiently, which
is necessary to determine a profile of a terrain. Variations on the structure are
possible, for instance by storing a list of pointers at the vertex records to the
incident edges.

1.2.4 Hierarchical models

A hierarchical terrain model is a terrain model that represents a terrain in various
levels of error, or, to make it sound less badly, various levels of imprecision.
Most approaches of this type are based on TINs. Generally, TINs with more
vertices have less error than TINs with fewer vertices. On the other hand, TINs
with many vertices are more expensive to compute on. So if it is okay to have
some error in an application, it may be better to work with a TIN with fewer
vertices. A hierarchical terrain model allows the user to choose a terrain with
the appropriate precision for each task.
Issues of importance of hierarchical terrain modelling are:

e The storage required by the model. Explicitly storing a terrain at many
levels of detail leads to redundancy and excessive use of storage.

e The model may incorporate an efficient search structure automatically. For
instance, locating a point on a terrain may be possible by first locating it
on the coarsest level, and then locating it at repeatedly finer levels of detail.

e The triangulations should preferably be well-shaped, for instance, using
the Delaunay triangulation.

e The model may allow a mixture of different detail levels in different parts
of the terrain. This is useful in flight simulation, where the terrain close
by must be shown with more detail than parts far away.

e It may be important that the model is consistent with respect to morpho-
logic features. For instance, if there is a significant peak in a terrain at
some detail level, one would wish that the same peak also exists on every
finer detail level.

The list of issues already indicates that there probably isn’t one best solution
to all applications. Many hierarchical terrain models have been suggested [16,



18, 20, 35, 59, 95, 110]; the list of references is far from complete. A survey of
the topic also exists [33].

1.3 Access to TINs
1.3.1 Traversal of a TIN

There is an old but good method to traverse a TIN and visit all its vertices,
edges, and triangles in a simple way [47, 49, 51]. The nice thing about the
method is that hardly any additional storage is needed: no mark bits, no stack,
just one access point to the TIN.

Let T be a TIN stored in the structure just described, and let v be the bottom
left vertex of T'. For any triangle, we will give names to the incident edges. This
implies that one edge receives two names, one for each incident triangle. Let ¢ be
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Figure 1.3: Types of edges for the traversal algorithm.

any triangle of the TIN, we name an incident edge to be in if the line containing
that edge separates the vertex v and the interior of the triangle ¢. If the vertex
and the interior of ¢ lie to the same side, the edge is out. If the line supporting
the edge contains the vertex v we have a special case. The edge is out if the
interior of ¢ lies left of the supporting line, otherwise it is in, including the case
of horizontal supporting lines. This is well-defined for TINs with a rectangle as
the boundary, since we chose v to be the bottom left vertex. Notice that any
interior edge of the TIN is in for the one incident triangle and out for the other.

All triangles have either one in edge and two out edges, or two in edges and
one out edge. The in edges will represent the edge through which the triangle
will be entered during a traversal. To make sure that we enter a triangle only
once, consider any triangle with two in edges. These two in edges share a vertex,
and the line through this vertex and through v separates the two in edges. The
in edge that lies above, or left of this line, or is supported by the line, will be
the real in edge. The other in edge will be in-and-back: the traversal enters the
triangle through it, but will go back through that same edge immediately after.
Similarly, for triangles that have two out edges, one will be the first out edge and
the other the last out edge. Consider the line through v and the vertex incident
to both out edges, the first out edge is the one left of this line. Note that for any



triangle, we can determine easily, in constant time, which of its edges are in and
out distinguish the real in and the in-and-back edges, and distinguish the first
and last out edges.

Figure 1.4: Traversing a TIN; numbers at arrows correspond to the algorithm.

The algorithm starts at the triangle that has the bottom left vertex v as a
vertex, and has one edge on the left side of the bounding rectangle. Let that
triangle be t, and let e be the edge on the left side. The algorithm proceeds from
triangle to triangle by crossing edges, and make the decision on which edge to
cross next based solely on the type of edge through which it was just entered,
and the type of triangle it is currently in. Since there are two types of triangles,
and each has three edges, the algorithm distinguishes six cases to decide how the
traversal should proceed, see also Figure 1.4. Edge e will be the first edge crossed
in the traversal. When the algorithm reaches e a second time, the traversal is
completed.

1.

If e is the only in edge of t, then let e’ be the first out edge of ¢, and let
t' be the triangle on the other side of e. Repeat the algorithm with ¢ := ¢/
and e:=¢.

. If e is the real in edge of ¢, then let ¢’ be the out edge of ¢, and let ¢’ be

the triangle on the other side of ¢’. Repeat the algorithm with ¢ := ¢’ and
e:=¢€'.

If e is an in-and-back edge of t, then let ¢’ be the triangle on the other side
of e. Repeat the algorithm with ¢ := ¢’ and e.

If t has two out edges and e is the first one, then let e’ be the last out edge
of t, and let ¢’ be the triangle on the other side of it. Repeat the algorithm
with t :=¢' and e:= €.

If ¢ has two out edges and e is the last one, then let ¢’ be the in edge of
t, and let t' be the triangle on the other side of it. Repeat the algorithm
with t :=¢t' and e:=¢€'.



6. If ¢ is the only out edge of ¢, then let ¢’ be the real in edge and t' the
triangle on the other side of it. Repeat the algorithm with ¢ := ¢’ and
e:=¢.

If there appears to be no triangle on the other side of the edge we have just
crossed, then we return to the previous triangle through the same edge we just
left immediately. Then we proceed as usual: the current triangle has just been
entered through an edge that happens to be part of the bounding rectangle.

The algorithm visits every triangle exactly three times, once through each of
its edges. At all times, we need only know the current triangle, the edge through
which it was accessed, and the vertex v. We can report a triangle when we visit
it for the first time. If all edges or all vertices of the TIN should be reported,
some simple adaptations are needed.

The idea described above has been extended to the traversal of other subdi-
visions than just triangulations [15, 23].

1.3.2 Efficient access to a TIN

In a regular square grid structure there is direct access to every part of the
terrain. If one wants to know the elevation at a point with coordinates x and ¥,
these coordinates can simply be rewritten to index values in the two-dimensional
array. In a TIN this is not so easy, because a TIN is a pointer structure. If one
wants to know the elevation at a point given its coordinates, one could test each
triangle to see if it contains the point. This is rather inefficient, obviously. We
briefly review three methods to gain access to the TIN at a specific point.

Access using quadtrees

Quadtrees and other spatial indexing structures like R-trees can be used to get
access to a TIN at a specific query point efficiently. A quadtree is a rooted search
tree of degree four, meant to store 2-dimensional data. Its nodes represent a
recursive decomposition of a big square (associated with the root of the quadtree)
into four subsquares (the children of the root). Each of the four subsquares is
decomposed into four yet smaller squares. Further decomposition stops as soon
as the part of the TIN that falls in the subsquare is simple enough. For example,
when only a few vertices of the TIN lie inside the square. A leaf node is created
that represents this square, and at the leaf node we store a pointer to the triangle
record of the triangle that contains the center of the square. From that triangle
record we can walk in the topological structure to locate the triangle record of
the triangle that contains the query point.

Another possibility is to take the smallest enclosing axis-parallel rectangle
of each triangle of the TIN. The resulting set of rectangles may overlap, but
one can expect that at each point there won’t be many rectangles containing
it. A quadtree, R-tree, or other 2-dimensional search tree can be used to store
the rectangles, see for instance the book by Samet [92]. For a query point, we



determine all rectangles that contain it, and then find the triangle enclosed by
one of the located rectangles that really contains the query point.

Access using planar point location

In the computational geometry field several efficient methods have been devel-
oped to determine which region of a subdivision contains a given query point.
This problem is known as point location. For a TIN with n triangles, it is pos-
sible to construct an O(n) size data structure that allows for point location in
O(logn) time. Among the many results, the most simple and efficient ones are
by Sarnak and Tarjan [93], Clarkson and Shor [11], Kirkpatrick [60] and Seidel
[96]. Descriptions can also be found in textbooks on computational geometry
[14, 83, 90].

Jump-and-walk strategy

The simplest method to locate a point in a TIN among these three is the jump-
and-walk strategy. It also requires very little additional storage, so it may well
be the best choice in practice. Suppose that access to the TIN structure is
provided by one pointer to some feature. Rather than traversing all triangles
until we find one that contains the query point, we can also traverse the TIN in
a straight line from the access point to the query point. We typically encounter
much fewer triangles on the way than if we would traverse the whole structure.
The query time will be even better to take more than one starting point. Among
those we’ll choose as the real starting point the one closest to the query point,
in the Euclidean sense.

Figure 1.5: Jump-and-walk with three starting points.

In particular, choose m points pq, ..., pmy from the set of vertices of the TIN
at random, and store a copy of those points in an unsorted list. With the copy we
store a pointer to the vertex record in the topological TIN structure. When we
query with a point ¢, we first determine the access point p; closest to ¢ in O(m)
time, and then we start tracing the line segment p;q, starting at the triangle



containing p;. If we choose m to be roughly n'/3, the expected query time is
O(n'/?) under some distribution assumptions [?].

1.3.3 Windowing

When a user is interested in a part of a terrain, then this part must be extracted
from the whole terrain. We assume that the selection of the interesting part
is defined by some rectangle, the window, and all triangles intersecting that
rectangle should be located. Again we take the TIN as the elevation model to
which windowing is applied.

The algorithm consists of two steps. First, the position of the window on the
terrain should be located, and second, the TIN triangles inside the window can
be traversed. We can locate for instance the upper left corner of the window, and
start traversing from there; we already discussed ways to locate a point in a TIN.
Traversal can be done in time linear in the number of triangles intersecting the
window. The ideas of traversal without mark bits can also be applied here [15].

1.4 Conversion between terrain models

Terrain data can be entered into a GIS in various formats. Often, contour
line data is entered when paper maps with contour lines are digitized by hand.
Also quite often, gridded data is the input format, for instance when the data
is acquired by remote sensing or automatic photo-interpretation. There are
various reasons why data in one format may need to be transformed into another.
Gridded data usually is huge in size, resulting in high memory requirements and
slow algorithms when the data is processed further. Contour line data often
needs to be interpreted anyway before anything useful can be done with it. In
several cases it may help to store and compute with TINs instead. Conversion
from TINs into grids or contour lines may also be useful. The former problem
is algorithmically quite straightforward and we won’t discuss it here. The latter
problem shows up when a TIN is visualized as a contour map; we deal with that
issue later in Section 1.6.

This section gives a few algorithms and references for converting to TINs.
First we discuss how point sample data can be converted to a TIN, then grid-
to-TIN conversion is handled, and then we go from contour lines to a TIN.

1.4.1 From point sample to TIN

Suppose a set P of n points in the plane is given, each with an elevation value.
To convert this information into a TIN, one could simply triangulate the point
set. In fact, the triangulation is an interpolation of a region based on the points
of P. It is common to use the Delaunay triangulation because it attempts to
create well-shaped triangles. Efficient algorithms for the Delaunay triangulation
have been known for a while. See for instance Lee and Schachter [68], Guibas
and Stolfi [54], or any textbook on computational geometry [14, 83, 90].

10



When the interpolation provided by the Delaunay triangulation is not appro-
priate, one can use different, more advanced interpolation methods like natural
neighbor interpolation [50, 91, 98], weighted moving averages [3], splines [37], or
Kriging [3, 112]. It is possible to combine the advantages of the TIN with the
quality of these more advanced interpolation methods as follows. Suppose we are
given the point set P together with an interpolation function and a maximum
error. The idea is: construct a TIN based on P and the interpolation function,
such that at any point, the interpolated elevation and the elevation given by the
TIN differ by at most the maximum error. Now it may not suffice to use only
the points of P as TIN vertices, and we need to select more points. Ideally, we
select as few points as possible, the optimization problem that shows up is very
difficult. Heuristics can be used to choose additional points as vertices in the
TIN, and hopefully not too many additional ones. It may also be the case that
only a subset of the points of P is needed to represent the interpolation function
with the desired accuracy. Or perhaps a completely different set of points is best.
In any case, finding a TIn with minimum number of vertices will be difficult.
It is known that the problem of computing a TIN with the minimum number
of vertices, given a TIN and a maximum allowed error, is an NP-hard problem,
implying that efficient algorithms are unlikely to exist.

1.4.2 From grid to TIN

Grid-to-TIN conversion can be seen as a special case of the conversion of sample
points to a TIN. Also, grid-to-TIN conversion can be seen as a special case
of TIN generalization: reducing the number of vertices of a TIN to represent
a terrain. A grid can simply be triangulated to a fine regular triangulation.
Various algorithms have been proposed in the literature; see for instance the
survey by Garland and Heckbert [45], see also Lee [72]. Most of the methods
have the following distinguishing features: (1) selecting which grid points to keep
or discard, and (2) deciding when to stop selecting or discarding.

One method decides which grid points to keep or discard by initially as-
signing an importance to each grid point [7]. The importance is determined by
comparing the elevation of a grid point with the interpolated elevation at the
grid point based on the elevations of the eight neighbors. Only the grid points
where the difference is greatest are kept. These points can be triangulated, for
instance using the Delaunay triangulation, and become the TIN vertices.

A second method differs from the previous one by discarding grid points
incrementally instead of using a precomputed importance [71, 72]. In a sense,
the importance computation is postponed until the point is really discarded. A
more detailed description follows later.

Thirdly, there are methods that start out with a coarse triangulation of only
the four corner grid prints, and keep on refining the triangulation by adding
more points in the triangles [31, 45, 55, 100]. Refining a triangle further stops
when the triangle approximates the grid points that lie in it sufficiently well.

Another method start out by detecting surface specific features on the grid
like peaks, pits, saddle points, ridges, and valley lines [38]. Then they complete

11



Figure 1.6: Left, a TIN with one vertex indicated by a circle. Middle, the
polygon that appears when the indicated vertex is removed. Right, a Delaunay
triangulation of the polygon.

these retained points and line segments to a TIN. Extraction of surface specific
features is discussed later in this survey.

We describe two methods in more detail, namely, the drop heuristic method
by Lee [71, 72] of the second type, and a method by Heller [55] (see also
Fjéllstrom [31) and Garland and Heckbert [45]) of the third type.

The drop heuristic

Lee’s drop heuristic method takes a TIN as its input, and iteratively discards one
vertex at a time to obtain a TIN with fewer vertices. Obviously, it also applies
to grids as input if we consider it to be a triangulated regular grid. If a vertex
is discarded, the incident edges are also removed and a polygon appears in the
subdivision. To get back to a triangulation, the polygon is triangulated using
the Delaunay triangulation. This will ascertain that if the algorithm starts with
a Delaunay triangulation, then after every iteration we’ll still have a Delaunay
triangulation.

To decide which vertex should be discarded, each vertex is temporarily re-
moved and the appearing polygon is triangulated—see Figure 1.6. Then we
determine the vertical distance between the removed point and the new, simpli-
fied TIN. The removed vertex lies in one of the new triangles in the polygon, so
this is easy to do. This vertical distance can be viewed as the error introduced
by the deletion. Once we know the error that would be introduced, we add the
removed vertex back to the TIN and temporarily remove another vertex. After
we have done so for all vertices, we select the one for which the computed error
is smallest and really discard it. The process continues until the created error is
more than the prespecified allowed error.

It should be noted that the error at a vertex after it is discarded can become
bigger when more vertices are discarded. So there is no guarantee that the error
at all of the discarded vertices really is within the prespecified error. The drop
heuristic method completely forgets about vertices that are discarded, although,
at the expense of more computation, a variant of the method could still consider
them. Below we’ll analyze the typical running time of the standard algorithm.
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A straightforward implementation of the algorithm requires O(n logn) time
per iteration on a TIN with n vertices. Discarding the vertices temporarily to
determine their error and retriangulation can be done in O(nlogn) time in total.
This is true because the total complexity of all polygons to be triangulated is
linear in n. Unfortunately, the vertical distances may have to be recomputed
after an iteration, because the deletion of some vertex may result in a change
of introduced error of other vertices. It is possible to construct an example of
a TIN with n vertices where the algorithm has to recompute the errors many
times for many vertices, but this is not a typical case. Observe that if a vertex
v is removed in some iteration, then only the vertices of the TIN adjacent to v
can have a change in introduced error. For all other vertices, the error resulting
from their removal stays the same. So the question is how many neighbors a
vertex in the Delaunay triangulation has. In the worst case this number may
be n — 1, all other vertices, but on the average, a vertex has degree at most six.
We'll analyze the typical case where any vertex that is removed has constant
degree. Under this assumption we can design a variation of the given algorithm
that will run in O(nlogn) time. We describe this variation below.

1. For each vertex v in the TIN:

Temporarily remove it v.

Compute the Delaunay triangulation of the appearing polygon.
e Determine the vertical distance error(v) of v to the new TIN.
e Add the removed vertex back to the TIN.
Store error(v) for each vertex v sorted in a balanced binary tree 7. At

each node of 7 storing some error(v), store a pointer to the vertex v in
the TIN. At v, we store a pointer back to the corresponding node in 7.

2. Consider the node with smallest error(v) in 7. If it is greater than the
prespecified maximum error, the algorithm stops. Otherwise it proceeds
with the next step.

3. Remove the node storing the smallest error(v) from 7. Remove the corre-
sponding vertex v from the TIN structure. Let wy,...,w; be the vertices
adjacent to v. Retriangulate the polygon defined by wy,...,w; using the
Delaunay triangulation.

4. For every vertex w; € {w1,...,w;}:

e Remove the node that stores error(w;) from 7.

e Recompute the vertical distance to the terrain if w; were removed as
we did in the first step.

e Insert the new error(w;) in 7.

Continue at step 2.
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Figure 1.7: The right TIN shows the situation if the square grid point on the
left is the one with maximum error.

If all vertices in the TIN have constant degree, then each iteration requires
only O(log n) time. The polygon to be retriangulated only has a constant number
of vertices, and only for these a new vertical distance need be computed. The
insert and delete operations on the tree 7 take O(logn) time each. So the
algorithm takes only O(nlogn) time in typical cases.

Incremental refinement

The algorithm to be descibed next takes a grid and a maximum allowed error
€ as the input. Unlike the drop heuristic, the algorithm to be described really
does guarantee that the final TIN has error at most €. The approach is to start
with a coarse TIN with only a few vertices, and keep adding more points from
the grid to the TIN to obtain less error.

1. Let P be the set of midpoints of grid cells, with their elevation value. Take
the four corner points and remove them from P, and put them in a set S
under construction.

2. Compute the Delaunay triangulation DT(S) of S.

3. Determine for all points in P in which triangle of DT(S) they fall. For
points on edges we can choose either one. Store with each triangle of
DT(S) a list of the points of P that lie in it.

4. If all points of P are approximated with error at most € by the current
TIN then the TIN is accepted and the algorithm stops. Otherwise, take
the point with maximum approximation error, remove it from P and add
it to S. Continue at step 2.

If we assume a simple and slow implementation of the algorithm, we observe
that at most n times a Delaunay triangulation is computed. For each one, the
points in P are distibuted among the triangles of DT(S). This requires ©(n?)
tests of the type point in triangle, if a linear number of points are added to S.
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Figure 1.8: The situation for a TIN with vertices shown as small squares (top
right), and the corresponding structure with a few of the pointers between tri-
angle records, list elements, and tree nodes.

A much faster implementation has a worst case performance of O(n?logn)
time, and in typical situations even better: typically O(nlogn) time. The algo-
rithm resembles incremental construction of the Delaunay triangulation to some
extent [14, 52, 11]. Our algorithm, however, must also distribute the points of
P and find the one with maximum approximation error. We’ll show that these
steps can be done efficiently.

Assume that p € P has been determined as the point with maximum error,
and p must be removed from P and added to S. Then we locate the triangle ¢
of DT(S) that contains p, and we find the vertices that will become neighbors
of pin DT(SU{p}). This update step of the Delaunay triangulation is the same
as in the incremental construction algorithm. To distribute the points of P\{p}
over the triangles of DT(S U {p}), observe that only the triangles of which p is
a vertex in DT(S U {p}) have changed. So for all triangles of DT(S) that don’t
exist in DT(S U {p}), we collect the associated lists of points. These points are
distibuted among the new triangles and stored in new lists.
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The problem that remains is locating the point with maximum error. It
is solved as follows. For each triangle of the TIN we determine the point of P
inside it with maximum error. These points are stored in the nodes of a balanced
binary tree 7 sorted on error. This allows us to locate the point p with maximum
error efficiently; it is in the rightmost leaf of 7. Before p is moved from P to S,
the Delaunay triangulation must be changed accordingly. To find the triangle
in DT(S) that contains p we’ll use a pointer from the node in 7 to the triangle
record in the TIN structure; such pointers are shown as dashed lines with arrows
in Figure 1.8. The triangle records are shown as grey triangles. After updating
the TIN to be DT(S U {p}) we move p from P to S.

Then we reorganize the lists that were stored with the triangles. When p
was added to the Delaunay triangulation, some triangles were destroyed. The
point of P inside each one that had maximum error is deleted from 7. The
lists of points of the destroyed triangles contain p and the points that must
be distributed among the new triangles, and stored in new lists. For each of
the new lists we must find the point that realizes the maximum error in the
cooresponding triangle, and store it in 7. For efficiency reasons it is a good
idea to use a cross-pointer from any list element that stores a point of P to the
corresponding node in 7. Otherwise we may not be able to locate the points of
which the error has changed efficiently in 7. These pointers are shown as solid
lines with arrows in Figure 1.8. The pointers from the triangle records to the
lists are shown dotted.

If k£ is the number of neighbors of p in DT(S U {p}), then k& — 2 triangles
were destroyed and k new ones were made. Let m be the number of points in
the triangles incident to p in DT(S U {p}). Then the iteration that added p
as a vertex of the TIN requires O(k + logn) time for updating the Delaunay
triangulation, O(km) time to redistribute the m points over the k triangles, and
O(klogn) time to update the balanced binary tree 7. In the worst case, m
and k are both linear in n, giving an worst case performance of O(n®). But
redistribution of the points can also be done in O(k + mlogm) time by sorting
the m points by angle around p. Since all new triangles in the TIN are incident
to p, we can distribute the m points over the k triangles by using the sorted
order. The modification improves the worst case running time to O(n?logn).

One can expect that & is usually constant, and after a couple of iterations of
the algorithm, m will probably be much smaller than n. The more iterations,
the smaller m tends to be. One can expect that the algorithm behaves more
like the best case than like the worst case, for typical inputs. In the best case,
k will be constant, and every list of points stored with a triangle reduces in
length considerably each time it is involved in a redistribution. This means that
later iterations in the algorithm go faster and faster, since m decreases from
linear in n to a constant. If k is assumed to be a constant, we needn’t use the
modification to distribute the points, but simply spend O(km) = O(m) time.
Using an amortized analysis technique, one can show that the whole algorithm
will take O(nlogn) time under the assumptions given.
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1.4.3 From contour line to TIN

Contour line to TIN conversion algorithms are useful because elevation data is
often obtained by digitizing contour line maps. A contour line map is already
a vector data structure, in fact, a planar subdivision where the vertices and
lines are assigned the elevation of the contour line they are on. To convert the
contour lines to a TIN, the obvious thing to do is triangulate all regions, that is,
triangulate between the contour lines. Each region can be seen as a polygon with
holes, and there are standard triangulation algorithms known for this problem
in computational geometry [14, 83, 90].

Instead of using any triangulation it is a good idea to use one that gives
nicely shaped triangles, like the Delaunay triangulation. However, the input
to the triangulation algorithm is a polygon, not a point set. There exists a
triangulation that follows the Delaunay triangulation as closely as possible, given
some given set of edges must be present. It is called the constrained Delaunay
triangulation [8, 19].

In the GIS literature, a couple of approaches to triangulate between con-
tour lines have been described [9, 25, 43, 94]. One of the problems with the
constrained Delaunay triangulation and some of the other methods is that they
may create horizontal triangles. This side effect of the triangulation is known as
the wedding cake effect. It is especially undesirable when visualizing the terrain
with the use of hill shading. Several of the known methods avoid such horizon-
tal triangles. Of course the choice of a suitable triangulation comes down to
choosing a particular type of interpolation function between the contour lines.

1.5 Mathematical computations on terrains

In many applications it is useful to do things like adding or subtracting the
elevation data in two terrains, or squaring the elevation data of a terrain. For
example, suppose the data of two terrains represent the height above sea level,
and the depth from the surface to the groundwater. Then the subtraction of the
latter data set from the former one yields the height of the groundwater above
sea level. Similarly, if the depths from the surface to two types of soil data is
stored in terrains, then the thickness of the soil in between can be obtained by
subtraction.

As an example where it is useful to square and cube terrain data, consider
wind erosion [78]. Particles of a certain size can be lifted from the earth’s
surface by the wind, transported, and deposited again. It has been shown that
the detachment capacity of wind varies with the square of the wind velocity,
and the transporting capacity with its cube. To model erosion by wind, we need
data on wind velocity at the surface, which can be seen as elevation data and
modelled by a grid or TIN. Squaring this elevation data gives a model for the
detachment capacity of the wind that can be used in further computations and
simulations.
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1.5.1 Adding and subtracting terrains

Assume that two TINs 77 and T3 are given, and we wish to add the elevation
data. Subtracting would be the same after placing a minus sign before the
elevation data of the terrain to be subtracted. The addition of two TINs can be
determined exactly and stored into a new TIN, because the addition of piecewise
linear functions (which TINs represent) again yields a piecewise linear function.
The addition is done by performing an overlay of 77 and T5. There are several
algorithms known for computing the overlay [27, 53, 74, 81]. After computing
the overlay—the refinement of each of the TINs—we obtain a subdivision where
all faces have three, four, five, or six edges. It is trivial to triangulate and obtain
a proper TIN again. We now must fill in the height information for the vertices of

T T overlay triangulation

Figure 1.9: The overlay of two TINs and its triangulation.

the overlay. Every vertex originally in T3 receives its height plus the interpolated
height in 75, and the analogous thing holds for the vertices of 75. The vertices in
the overlay that come from the intersection of two edges are assigned the height
that is the sum of the interpolated heights on those two edges.

Note that the overlay of two TINs is a special case of the general subdivision
overlay problem. Therefore, simpler algorithms are possible than in the general
case. We describe such a simple algorithm.

1. Initialize an empty stack.

2. Take any vertex v of the TIN Tj. Locate its position on T» in any way.
Unless v coincides with a vertex of vy, create a vertex record for v in the
structure for T5.

3. Mark v. For each edge e incident to v that is unmarked, do the following.

e Mark e.

e Traverse T» by following that edge to the other endpoint w in T7.
The edge e is added to T by creating new vertex records for every
intersection point with edges of T5, new edge records for all pieces
into which e is partitioned by these intersection points, and new face
records for all faces that are split.

o If the other endpoint w of e is unmarked, create a vertex record for
w in T, and push w on the stack. Store with the stack element a
pointer to the vertex record of w to have fast access into T5.
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4. If the stack is not empty, pop a vertex and call it v. Then proceed at
Step 3.

5. Triangulate all faces of T5.

In the algorithm above, it is assumed that the topological structure of the
TINs includes in the vertex records a pointer to the edge record of some incident
edge. As we noted, the algorithm creates an overlay with faces that can have
up to six incident edges. The topological structure needs an adaptation to
incorporate this. The overlay of the two TINs is computed in O(n + k) time,
where n is the number of vertices of 77 and 75, and k is the number of vertices
in the overlay. In theory, k can be as large as £2(n?), but in practice k can be
expected to be close to linear in n.

1.5.2 Squaring a terrain

Suppose we want to compute and represent a function in two variables x and ¥y
that is the square of another function, represented by a terrain 7T'. The square of
T will obviously be a piecewise quadratic function, so a TIN can never represent
the square of T' without introducing error. The problem we’ll discuss is repre-
senting the square of a TIN in another TIN but with a guaranteed maximum
allowed error € at any point. What would happen if the square of T' were com-
puted simply by squaring the elevation of each vertex, and represented by a TIN
T with the same topological structure? The TIN T will always overestimate the
true square T of T. The error of T as a representation of T2 is max(T — T?),
maximized over all points (z,y) on the two terrains.

Let’s consider one edge of T', where the lower vertex has elevation a and the
higher vertex has elevation b. Then T' will represent this edge as the linear inter-
polation from a? to b?, whereas the true square of the edge will be a quadratic
function from a? to b?>. The maximum error over the edge always occurs exactly
in the middle of the edge, and the error itself has the value %(b—a)? So the error
is not dependent on the position or length of the edge, only on the difference
in elevation of the incident vertices. We conclude that the maximum error of T’
always occurs on an edge, and never interior to a triangle.

b Tz

a4+ 44/€
a+ 24/e

Figure 1.10: Refining a triangle.
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Suppose that the maximum allowed error € is given. To compute a TIN T
that represents the square of T' with error at most €, we’ll refine the edges of T
so that none of them has an elevation difference more than 2,/e. For any edge
spanning the elevations from a to b, the number of points needed to refine that
edge is [3(b—a)/+/€]. We place these points at a + 2v/€, a + 44/€, a + 64/¢, and
so on, until the last one is at elevation b — 24/€ or higher. We do so for every
edge of the TIN, and then triangulate every triangle with the additional points
as flat as possible. This can be done without introducing any edges that span
an elevation more than 2,/e. Then we square the refined TIN to obtain 7. From
the discussion in the previous paragraph, the error of T is at most e.

1.6 Computation of contour lines

One of the most useful structures that can be obtained from a digital elevation
model are the contour lines. Contour lines are probably the most common and
natural way to visualize elevation data. Other applications lie in site planning.
When a new construction site must be determined, one of the requirements may
be that the site lie on an elevation below 1000 meters. Or a spatial query done by
a user of a GIS may request all geographic objects of a certain type that have at
least a certain elevation. For example, the parliament of a country may consider
to partially fund an irrigation system for all crop fields that receive less than
250 mm percipitation annually. To estimate how much this will cost, the total
area of these crop fields must be determined. This in turn requires the contour
lines of 250 mm on an elevation model representing the annual percipitation.

In this section we use the term contour line for one connected set of line
segments with a given elevation. We use the plural term contour lines for all
connected sets of line segments with the given elevation. We next consider two
methods for determining contour lines on a TIN. The first method simply scans
the TIN to determine the contour lines, while the second method uses prepro-
cessing to be able to find the contour lines more efficiently. This is particularly
useful in interactive situations. The last issue treated in this section is the choice
of elevations for which the contour lines are selected for display. It is a form of
classification.

1.6.1 Direct computation of contour lines

When considering the contour lines on a TIN, observe that all vertices of the
contour line lie on edges or vertices of the TIN, and all segments of the contour
line lie on triangles or horizontal edges of the TIN. We assume that there are no
horizontal triangles on the elevation of which we want the contour line. This can
be enforced as follows. Suppose the contour lines of elevation Z are needed, and
at some moment a horizontal triangle ¢t with elevation Z is located. Then we only
take the edges of ¢ for which the other incident triangles have a vertex higher
than Z. This basically comes down to tracing a contour line a very small amount
higher than Z. With this enforcement we can from now on forget about whole
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triangles on the contour line. In a similar way we can forget about complications
introduced by saddle points at elevation Z on the TIN (saddle points are vertices
that have four or more incident segments of a contour line). If a contour line
doesn’t contain saddle points, it must be a simple polygon (closed) or a simple
polygonal line between two points on the boundary of the TIN.

Given a TIN and an elevation value Z, there is a very simple way to find
the contour lines of elevation Z: Traverse the whole TIN and for every triangle,
determine if it contains a segment of the contour lines. If so, report it. This
algorithm requires O(n) time for a TIN with n triangles. One shortcoming of
this algorithm is that it gives the segments on the contour lines in an arbitrary
order. Sometimes it is necessary that each contour line be returned as a separate
sequence of segments, for instance when smoothing should be performed.

There are two ways to obtain the contour lines in a structured form, as
sequences of segments. The first way is by postprocessing the segments that
were found by the trivial algorithm. Sort all endpoints of the segments lexico-
graphically on the coordinates. Then all endpoints that are shared among two
segments become adjacent in the order. This allows us to structure the separate
segments to sequences, each of which is one contour line. If the contour lines
together contain k segments, then the postprocessing step takes O(klog k) time.
So in total, the method takes O(n+klog k) time. Since k is expected to be much
smaller than n on real data, proportional to /n is often argued, the overhead of
O(klog k) time is no big deal.

The second way to obtain the contour lines in structured form is by tracing
each contour line directly on the TIN. If the TIN is stored in a topological
structure like the one described in Subsection 1.2.3, the traversal of one contour
line from a starting point can easily be done in time linear in the number of
segments of the contour line (there is a small catch if the contour line passes
through a vertex of high degree; a possible solution [108] won’t be discussed here
since it won’t be worthwhile in practice). It remains to find all starting points
from which to start tracing. If the TIN structure has mark bits stored with the
edge records or the triangle records, the following method can be used. Initially
all mark bits are reset. For each triangle of the TIN, determine if its mark bit
is reset and it contains a segment of the contour lines. If so, start tracing the
contour line and set the mark of all triangles that are traversed. The tracing can
stop if the boundary of the TIN is reached or a cycle has been completed. After
the tracing has stopped, we continue with the next triangle. After all triangles
have been tested, all mark bits must be reset again to allow a next request for
contour lines. The whole algorithm clearly takes O(n) time. A disadvantage is
that mark bits are required in the structure.

1.6.2 Preprocessing for contour lines

The brute-force contour line extraction approach described above is unsatisfac-
tory especially when the number of triangles that cross the elevation Z is much
smaller than the total number of triangles in the TIN. A more efficient solution
can be obtained in situations where preprocessing is allowed. Then we can build
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Figure 1.11: An example of a TIN and the corresponding interval tree. The split
value and the two lists are shown with each node, where L is the upper list and
R the lower list.

a data structure and query with the elevation of which the contour lines are
requested. This idea has been the basis of two different approaches, described
by De Floriani et al. [34] and by the author of this survey [108]. The method is
also used in the visualization of isosurfaces, the higher-dimensional counterpart
of contour lines [1, 73].

We describe the interval tree, a geometric data structure that stores a set of
intervals of the real line. It was developed by Edelsbrunner [22] and McCreight
[76] independently. Here we give a brief description—see Figure 1.11.

Let I be a set of open intervals of the form (a,b), where a,b € IR and a < b.
The interval tree for I has a root node § that stores a split value s. Let ;.5 be
the subset of intervals (a, b) for which b < s, let I.;4n: be the subset of intervals
(a,b) for which a > s and let I5 be the subset of intervals for which a < s < b.
The subsets Ijeft, Irignt, Is form a partition of I. The subset I5 is stored in two
linear lists that are associated with node 4. One list Ls stores I on increasing
value of the left endpoint, and the other list Rs stores I5 on decreasing value
of the right endpoint. If I, is not empty, then the left subtree of ¢ is defined
recursively as an interval tree on the subset I;.. The right subtree of ¢ is defined
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in a similar way for Ir;gn:. It follows that any interval of I is stored exactly twice
(namely, at one node in two lists). An interval tree for n intervals uses O(n)
storage, it can be constructed in O(nlogn) time and if the split values s split
roughly balanced, the interval tree has depth O(logn).

The query algorithm follows one path from the root to a leaf of the tree. Let
q be the query value, thus, we want to report all intervals that contain ¢. At each
node J that is visited, it is determined by comparing ¢ to the split value s stored
at 0 whether Ls or R; is searched, and in which subtree the query continues.
If ¢ < s, then we search in the list Ls and report all intervals that contain the
query value. These intervals appear at the start of the list. Therefore, we can
traverse Ly and report intervals until one is reached that doesn’t contain q. After
searching in Lg, the query proceeds in the left subtree. If ¢ > s, then the list
Rs is searched and the query proceeds in the right subtree. All intervals that
contain a query value are reported in O(logn + k) time, where k is the number
of intervals that is reported.

To use an interval tree for our purposes of retrieving the contour lines, note
that every triangle of the TIN has a z-span, given by the open interval bounded
by the elevation of the vertices of the triangle with lowest and highest elevation.
For any query elevation Z between this lowest and highest elevation, the triangle
contributes to the contour lines with a line segment on that triangle. The set
of z-spans defined by the triangles of the TIN are stored in an interval tree,
and with each z-span a pointer to the corresponding triangle record in the TIN
structure.

Not only triangles, but also horizontal edges of the TIN can contribute to
the contour lines with a line segment. The z-span of a horizontal edge is the
closed interval containing a single elevation, the elevation of that edge. The
interval tree can easily be adapted to store these closed intervals. Given the
query elevation Z, the search in the interval tree retrieves all triangles that lie
partially below and partially above Z, and all edges with elevation Z. The line
segments of elevation Z on these triangles and edges together form the contour
lines for elevation Z. The query time is O(logn + k), where k is the number of
segments in the contour lines.

We conclude that the contour lines of any elevation on a TIN can be found
in only O(logn + k) time, if we are allowed to do preprocessing and use linear
additional storage.

The method that was just described computes the contour lines in unstruc-
tured format. We continue by considering how the contour lines can be found
as sequences of segments, and still use the interval tree to have fast query time.
We can combine the methods of the previous subsection with the interval tree
just described. By postprocessing the segments of the contour lines, we can get
them in structured form in additional O(klogk) time. This makes the total
query time O(logn + klog k). This time, the additional term may be significant,
because in practical cases the klogk term is likely to be significantly larger than
logn + k.

The method with mark bits can also be combined with the interval tree.
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Since we stored with each interval a pointer to the corresponding triangle record
in the TIN structure, we have immediate access to start tracing. One subtlety
is the following. We cannot reset all mark bits after a query by traversing the
whole TIN; that would blow up the query time to linear in n again. Instead, we
repeat the query interval tree with the only objective to reset the mark bits. So
we trace each contour line on the TIN structure again and reset all mark bits.
This will double the query time but no more than that. So, to conclude we have
seen that the contour lines of a query elevation Z can be obtained in structured
form in O(logn + k) time, where k is the number of segments in the contour
lines.

1.6.3 Classification

Classification is the operation of determining the elevation values of contours
that are appropriate for mapping. These elevations that bound regions of the
terrain in different classes can be chosen in several different ways. To mention a
few, the elevations can be chosen at fixed intervals, such as 0, 500, 1000, 1500,
and 2000. The classes induced are: up to 0, from 0 to 500, from 500 to 1000,
and so on. One could also classify elevation data by choosing class boundaries
using statistical measures, for instance at u — 1.60, u — 0.80, p, u + 0.80, and
1+ 1.60, where p is the mean elevation and o is the standard deviation. A third
way of classification is to compute class boundaries such that each class receives
an equal amount of area on the map, given the number classes that can be used.
Evans gives a good overview of types of classification [3, 24].

Several types of classification make use of the density function. It is well-
known that a finite population of interval data can be described by a histogram.
For continuous interval data, the density function—or frequency distribution—
is the corresponding descriptive statistic. It shows how frequent each elevation
occurs in the data. We study the computation of the density function of a TIN.
Note that it is more appropriate to compute class intervals based on the den-
sity function than on the elevations of the vertices of the TIN. These vertices
are generally not spread randomly, because large and nearly level regions are
represented by only a few vertices. The elevations of these regions would be un-
derrepresented by the set of elevations of all vertices, and an unfair classification
would result (see e.g. [24, 56]). The following algorithm to compute the density
function and the equal area clasification is by the author of this survey [109].

We begin with a useful observation and a straightforward algorithm. Con-
sider just one triangle A in 3-space with vertices u, v, w. Assume for simplicity
that h(u) > h(v) > h(w), where h(..) denotes the elevation of a vertex. Then
the density on the triangle for a given elevation ¢ is [ - cos(a), where [ is the
length of the intersection of the triangle A with the plane z = ¢, and « is the
angle between the normal of A and any horizontal plane. The density is zero
for all elevations ¢ with ¢ > h(u) or t < h(w). It is given by a function f,
depending linearly on ¢ if h(u) >t > h(v), and it is given by a different function
fuow depending linearly on ¢ if h(v) > ¢t > h(w). So we have f,,(t) = a-t+b,
where a and b depend only on the coordinates of u, v, w and thus are fixed. The
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same holds for f,,, but with different a and b.

density

elevation

Figure 1.12: Density function of a TIN.

For simplicity of exposition we assume that all vertices have different eleva-
tions. This restriction can be overcome without problems, but some care must
be taken. Let vy,...,v, be the vertices of the TIN, and assume that they are
sorted on decreasing elevation. This holds without loss of generality because we
can simply relabel the vertices to enforce h(vi) > h(va) > --- > h(vn). Con-
sider the density for an elevation ¢, where ¢t € (h(v;), h(vj4+1)). In such an open
interval, the density is the sum of a set of linear functions, which is again a
function linear in t. We denote the linear function that gives the density over
the whole TIN in the interval (h(v;), h(vj4+1)) by F;(t). So the linear functions
Fy, Fy, ..., F, form the density function, where each function is only valid in its
interval. By default we set Fy(t) = 0 and F,(t) = 0 for the intervals (h(vy), 00)
and (—o0, h(v,)), because for these elevations the density is zero. One can show
that the density function based on a TIN with n vertices is a piecewise linear
continuous function with at most n + 1 pieces. The density function need not
be continuous when there are vertices with the same elevation.

The straighforward algorithm to construct the density function on the TIN is
the following. Sort the vertices by elevation, and for each interval (h(v;), h(vjt1)),
determine the set of linear functions contributing to it. Then add up these linear
functions to get one linear piece F; of the density function. Since we have O(n)
vertices, we have O(n) intervals and for each we can easily determine in O(n)
time which linear functions contribute. The total time taken by this algorithm
is O(n?).

The efficient computation of the density function is based on the sweeping
approach. We will exploit the fact that the linear function F; can be obtained
easily from the linear function F;_; since the contributing f are for the larger
part the same ones. We compute the summed linear functions F' from top to
bottom, which comes down to a sweep with a horizontal plane through the TIN.
Throughout the sweep we maintain the density function of the current elevation.
Using sweeping terminology, every vertex of the TIN gives rise to one event. The
event list is a priority queue storing all these O(n) events in order of decreasing
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elevation. With each event we store a pointer to the vertex of the TIN that will
cause the event. The status structure is trivial: it is simply the summed linear
function F for the current position of the sweep plane, and is stored in two reals.

Figure 1.13: Passing a vertex with the sweep plane.

The final ingredient to the sweep algorithm is handling the events. When con-
sidering how F};_; should be changed to get F; when the sweep plane passes the
vertex with elevation h(v;), we must examine how the density function changes.
The vertex v; is incident to some triangles, for which it can be the highest ver-
tex, the lowest vertex or the vertex with middle elevation. We update F;_; to
get F; according to the following rules:

e For all triangles for which v; is the lowest vertex (lightly shaded in Fig-
ure 1.13), we subtract from F' the appropriate linear function (f; in Fig-
ure 1.13).

e For all triangles for which v; is the highest vertex (darkly shaded), we add
to F the appropriate linear function (fs and f7).

e For all triangles for which v; is the middle vertex (white in the figure), we
subtract the one linear function (f2 and f;) and add the other (f3 and f5).

We don’t need to precompute or store the linear functions f on each triangle
to update F'; the f can be obtained from the coordinates of the vertices on the
TIN when the event at vertex v; is handled. We have fast access to vertex v; in
the TIN; recall that an extra pointer was stored in the event list.

We also evaluate the function F}; at the event. The sequence of evaluations
gives the breakpoints of the (piecewise linear) density function. These break-
points are computed from right to left in Figure 1.12 since the sweep goes from
high to low elevations.

Considering the efficiency of the algorithm, the initial sorting of the events
takes O(nlogn) time for a TIN with n vertices. Extraction of an event takes
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O(logn) time; for all events this adds up to O(nlogn) time. Updating the status
structure at an event v; requires time linear in the number of triangles incident
to v;. Summed over all vertices this is linear in n by Euler’s formula. The
evaluation to determine the breakpoints requires constant time per event. So in
total the sweep algorithm requires O(nlogn) time.

Once the density function is computed, the class intervals may be determined.
Suppose as an example that the objective is to determine seven classes such that
each class occupies an equivalent amount of area on an contour line map. We
assume that the contour line map and the TIN have the same domain, otherwise
we can clip the TIN with the domain of the contour line map before doing the
sweep. The total area of the contour line map is the same as the total area under
the density function and is denoted A. The area under the density function in
the elevation interval [a, b] is denoted A(a,b). If F(t) denotes the (piecewise
linear) density function, then

A(a,b) = / " Pty

The value of A(a,b) is exactly the area for the class [a, b] on the contour line
map. We know the total area A and compute A/7, the desired area for each class.
We then determine the lowest elevation such that A/7 of the area is below that
elevation. This operation is easy by scanning over the known density function
F(t) from left to right and maintaining the area under F(t) (this is also a kind of
sweep). This gives the lowest class boundary. Continuing the scan gives all six
boundaries of the seven classes in O(n) time. In a similar way one can compute
a non-fixed number of classes with the property that the within-class variance
is less than or equal to a certain threshold, for each class. Finally, the density
function can be used class interval selection by natural breaks in the data: They
are the local minima of F'(t). We refer to Burrough [3] and Evans [24] for other
classification schemes.

The sweep algorithm that was described for the density function requires
linear working storage to store all the events. For most realistic terrains, the
working storage can be reduced considerably. We make the following simple
observation. Every vertex except the local maxima—the peaks—have a higher
neighbor in the TIN. So we can initialize the event list with the local maxima
only. When the event at a vertex v is handled, we insert all lower neighbors
of v in the event list. This guarantees that every event is present in the event
list when the sweep plane reaches it. The storage required by the algorithm is
linear in the sum of the number of local maxima and the number of edges in the
largest complexity cross-section.

1.7 Topographic features

Geomorphologists study the shape of the land, and what processes influence it [?,
?]. The quantification of the shape of the land is necessary in order automatically
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recognize certain features of shape. This on its turn may lead to a partition of the
land into regions where for instance erosional processes have the same behavior.

Terrain features can be zero-, one-, or two-dimensional. We discuss the most
important ones in the next subsections. Then we treat slope and aspect defined
on a terrain.

1.7.1 Points on terrains

Any point on a terrain has a certain elevation. When we also consider the
neighborhood of a point, the slope and aspect at it can be defined. The slope
(also called gradient) at a point is the maximum ratio of change in elevation
and change of position in the zy-plane at that point. Mathematically, it is the
maximum value of the directional derivative at that point (maximized over the
direction). Note that the slope of an elevation model is an elevation model
itself. Therefore it can be visualized, for example, as a contour line map by
classification of the slopes.

The aspect or exposure of a point in an elevation model is the compass
direction in which the directional derivative is maximum. With an aspect map
it is easy to see which hill sides face to the south, for instance. The aspect of
an elevation model is not an elevation model. Instead, it is a bivariate function
that maps IR x IR to the circular scale (—m,7]. It is undefined at points that
lie on a horizontal part of the terrain. The combination of slope and aspect is
needed to produce hill shading on maps.

On a terrain there are certain special points that are more important or
characteristic than others. These are the peaks, the pits, and the passes. The
latter are also called saddles. A peak is a point such that in some neighborhood
of it, there is no higher point. Similarly, in some neighborhood of a pit there is
no lower point. A pass is a point where locally, four (or more) different parts
of the contour lines meet. These definitions don’t specify what neighborhood
should be taken, and what should be considered a peak when there is a whole
region of equal elevation points. Choices of this type have to be taken depending
on the application.

Peaks, pits, and passes are elements that are used to describe terrain form.
They are the basis of so-called surface networks and their relatives [88, 111, 116].
One such relative, the Warntz network, can be obtained by first identifying
all passes, and from there, traverse the terrain in the directions of steepest
ascent and steepest descent until peaks or pits are reached. The paths traversed
together define a partition of the terrain into regions, of which one can hope that
they have similar geomorphological features. What should be considered a pass
for this idea to work well has considerable influence on the output [115].

1.7.2 Valleys and ridges

Valleys on a TIN are 1-dimensional features. They are usually defined as the
edges for which the two incident triangles each have an outward normal vector
whose vertical projection on the xy-plane is directed towards the valley edge,
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when it is also projected vertically [39, 105]. There are potential problems with

EAR ~ |7 o -

valley ridge neither

Figure 1.14: Three times two adjacent triangles and their outward normal vec-
tors.

this definition if the outward normal vectors are parallel to the edge, in the
projection. We could define an edge to be a valley edge if at least one incident
triangle has its outward normal towards the edge, and the other one has its
outward normal towards the edge or parallel to it. A similar definition can be
made for ridge edges, where the outward normals lead away from the edge.

All of these definitions have the disadvantage that valley lines may be inter-
rupted, even though the valley itself seems to be just one feature on the terrain.
When we discuss drainage networks and basins, we’ll see an alternative defini-
tion that can be used for valleys and ridges and avoids interruption as much as
possible.

1.7.3 Curvature

The two-dimensional terrain specific features are obtained by considering plan
curvature and profile curvature, being the curvature in a horizontal and vertical
cross-section of the terrain. These curvatures specify whether the terrain is
convex, flat, or concave in the cross-section. For smooth surfaces the convexity
depends on the sign of the second derivative in the cross-section. One could
partition the terrain into regions where the two curvatures are within certain
boundaries, a type of classification [26, 44, 84, 102]. For instance, for profile
convexity the bounds —0.1°/m and +0.1°/m are used. The terrain elements as
in Figure 1.15 are the ones that can be obtained in such a classification. Profile
curvature is related to the position on a hillside. Most hillsides are profile convex
near the top and profile concave near the foot.

On gridded elevation models the curvature of a pixel can be determined by
considering the 3 x 3 window of pixels, choosing a suitable interpolator for the
nine pixels, and computing the plan and profile curvature of the interpolated
surface at the center [44, 84].

On TINs a simple approach has been suggested: every edge of the TIN can
be seen as flat, convex, or concave. Then triangles can be classified according to
the type of incident edges. A convex region is one consisting only of triangles of
which all incident edges are convex. A similar statement can be made for concave
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Figure 1.15: Nine landform elements classified by plan and profile curvature.

and flat regions. The triangles that are incident to triangles of different types
are defined as saddle triangles. These definitions allow the regions of uniform
curvature to be traced out on the TIN by straightforward graph traversal, in
linear time [26].

A disadvantage of the TIN approach above is that it doesn’t distinguish
between plan and profile curvature. A region that is profile convex and plan
concave is defined saddle, and so is a region that is profile concave and plan
convex. It is possible to obtain a TIN curvature classification that includes plan
and profile curvature. We define the plan curvature at a vertex v as follows. If
v is a peak, the plan curvature is convex. If v is a pit, the plan curvature is
concave. If v is a saddle, the plan curvature is undefined. In all other cases,
the plan curvature of v is determined by the contour line through v. Vertex v
is incident to two line segments s and s’ on that contour line (usually across
TIN triangles). When traversing the contour line with the higher terrain to the
left and the lower terrain to the right, then v is plan convex if the contour line
makes a left turn at v. If it makes a right turn, v is plan concave, and if it makes
no turn (or a turn below some threshold), then it is plan flat. Note that saddle
vertices have to be excluded because four line segments of the contour line meet
at a saddle vertex.

We define the profile curvature at a vertex v as follows. If v is a peak, the
profile curvature is convex. If v is a pit, the profile curvature is concave. If v is
a saddle, the profile curvature is undefined. To define the profile curvature at
another vertex v we must select a suitable vertical plane through v. Consider
again the line segments s and s’ on the contour line through v. We take the
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Figure 1.16: Vertices labelled with their plan and profile curvature, where v is
used for convex, ¢ is used for concave and f is used for flat. The Voronoi diagram
is shown in the middle, and boundaries of similar regions are erased to obtain a
terrain partition.

vertical plane through v that separates s and s’, and makes an equivalent angle
with them. This plane is in a sense perpendicular to the tangent of the contour
line at v, and therefore a reasonable choice. Next we consider the intersection
of the vertical plane with the terrain at v, which is the profile. We can define
concexity, concavity, and flatness in the profile in the obvious way.

Now we know for most of the TIN vertices their plan and profile curvature, see
Figure 1.16. To obtain regions from this information we can use interpolation.
For any point on a triangle or edge, we define its plan and profile curvature to
be the same as the curvature of the nearest vertex (not a saddle). This nearest-
neighbor interpolation approach induces a Voronoi diagram on the TIN vertices,
excluding the saddle vertices. Adjacent regions that have the same curvature
labels can be merged by erasing their common boundary. The result is a terrain
partition into regions of uniform curvature both in plan and profile. Since the
Voronoi diagram of n points can be computed in O(nlogn) time [14, 83, 90],
the terrain partition requires O(nlogn) time to compute as well.

The approach can be supplemented with a scale-dependent parameter. For
example, consider the plan curvature at a vertex v again. Instead of looking at
the angle of the line segments on the contour line incident to v, we may locate
two points p and p’ on this contour line at a certain distance from v. This
distance is the scale-dependent parameter. Then we determine the angle Zpuvp’,
and decide upon the plan curvature. This refined approach may for instance
cause small concavities in a convex region to be eliminated.

1.7.4 Drainage information

Any terrain induces a more or less natural flow of water on it. For instance, water
always flows downward, following the direction of gravity, and water collects into
streams. These streams join and form rivers. The more downstream, the bigger
a river becomes. It is possible to predict from an elevation model where the
streams will be. The collection of all streams and rivers is called the drainage
network. In this section we only consider how the form of the terrain influences
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Figure 1.17: Left, the drainage network as a forest of trees rooted at the pits.
Right, the basins of each river system.

the flow of water, and review a few possible definitions of the drainage network
and related concepts. To find a definition that corresponds to the drainage
network in reality is a problem that requires various types of data of the terrain.
The area of hydrology also includes issues like surface permeability, subsurface
flow, evaporation, and more [?, 78].

Generally, the drainage network can be seen as a group of connected acyclic
networks (a forest of trees on the graph sense) of which the links are directed to
the pits of the terrain, see Figure 1.17. Each connected network is also called a
river system, and the part of the terrain that drains into some river system is
called a drainage basin (or basin) of that system.

The drainage network on a grid

One of the first attempts to compute the drainage network on a terrain was by
Peucker and Douglas [86]. Their algorithm works on a grid is extremely simple:
slide a 2 x 2 window over the grid and flag the highest pixel in the window.
After all subwindows have been treated, the unflagged pixels together form the
drainage network. The maps produced by this method suffer from isolated dots
and interrupted channels.

A more advanced approach was taken by O’Callaghan and Mark [82] and
Mark [75], who also modelled the accumulation of water flowing in the terrain
(they credit Speight [102] for this idea). Define for every pixel the drain neighbor
to be one of the eight neighboring pixels to which the steepest descent is greatest.
This drain neighbor is assumed to be unique. A pit doesn’t have a descent
direction and therefore no drain neighbor. Then assign every pixel one unit of
water, and trace all units on the grid downward to the drain neighbors until
they end in the pits. By maintaining counters to determine for every pixel
how many units of water flow through it, the drainage network can be defined.
It consists of all pixels for which the counter is higher than some well-chosen
threshold. By treating the pixels in order of decreasing elevation, the method
requires O(n? logn) time on an n X n grid (needed for the sorting). The method
also requires quadratic additional storage.
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Figure 1.18: Left, a TIN with elevations of the vertices. Middle, the drainage
network by the definition of Frank et al. Right, the drainage network by the
definition of Yu et al.

The accumulation idea solves the problem of interrupted channels. If some
pixel belongs to the drainage network because its counter exceeds the threshold,
then the whole path along drain neighbors to a pit must also be part of the
drainage network. The accumulation idea also helps to define drainage basins.
Since the path from any pixel can be traced to a pit, it is possible to determine
what pixels drain into any pit. So it is possible to outline the basins, the parts
of the terrain drain into one single pit.

The drainage network on a TIN

On TINs, a definition of the drainage network has been suggested by Frank et
al. [39]. They define the drainage network to consist of all valley edges of the
TIN. This definition suffers from the possible interruption of streams, which can
end in points other than pits, as observed by Theobald and Goodchild [105].
See for instance Figure 1.18. Furthermore, there is no concept of flow, so basins
cannot be defined as an extension of the model for the drainage network.

Yu et al. [118] showed recently that the idea of accumulation can be applied
to TINs as well. On a TIN, there are no pixels to assign units of water to, and it
isn’t a good idea either to assign water to complete triangles. But the direction
of flow can still be defined conveniently of a point on a TIN as the direction of
steepest descent. In the interior of the triangles this direction is unique, but on
edges and vertices we may need to choose a direction if there is more than one
direction of steepest descent. Once the direction of flow is defined, flow paths
can be traced and one can discover where flow paths join. It is natural to define
for each point on the terrain the area of the region from which the flow paths go
through that point. For many points on the TIN, this area is zero because there
is no 2-dimensional region. But there are also points that receive water from a
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region with positive area. Define the drainage network to be those points on the
terrain that receive water from a region whose area exceeds a certain threshold
area. We'll study the case where the threshold is set to 0. It is clear that the
drainge network we obtain will include all drainage networks for larger threshold
values.

One can show a number of properties of the drainage network defined this
way. Most importantly, the drainage network consists of all valley edges, and
furthermore, exactly of all flow paths from their lower vertices. This follows from
the fact that water can only start accumulating at valley edges. The drainage
network will have merge points where two or more streams join and continue
together. These merge points are either vertices of the TIN, or points on valley
edges. Since we assumed that at every point of the TIN the direction of flow is
unique, streams cannot split.

When comparing the definitions of Frank et al. and Yu et al. we can easily
observe that under the former definition, the drainage network has complexity
at most linear in the number of edges of the TIN. It is considerably less obvious
what the size of the drainage network is under the second definition. De Berg
et al. [13] have shown that it is at most cubic in the number of edges of the
TIN, and that the cubic bound is tight for some artificially constructed TINs.
Whether the cubic worst case bound has any relevance in practice is doubtful.
An emperical study on this issue has been done and the actual size on real terrain
data appears to be roughly 20% more than under the definition by Frank et al.
The tests were done on six different terrains represented by TINs with up to
12,000 vertices [106].

To compute the drainage network by the definition of Yu et al., we first
identify all valley edges, and then follow the flow paths of their lower vertices to
the pits. Since flow paths can merge, we can stop tracing any flow path from a
point where another flow path has already gone through. So, whenever a flow
path is traced, it is marked on the terrain itself to make sure that the same
flow path isn’t traced again and again. The resulting algorithm requires time
O(n + k), where k is the complexity of the drainage network.

Drainage basins, catchment areas, generalization, and spurious pits

The study of drainage on a terrain using the definition of Yu et al. [118] can
be extended in various ways. Since it incorporates the notion of flow and ac-
cumulation, it becomes possible to determine the basins of the different river
systems, and also the area of the terrain that drains into each river system. For
any point on the terrain, we define the catchment area to be the part of the
terrain that drains through that point, eventually. The definition above of the
drainage network includes exactly the points that have a catchment area that
is 2-dimensional, no matter how small the area. As a consequence, many small
streams will be included in the drainage network.

We can also define a generalized drainage network by selecting the points of
which the catchment area has at least a certain size. Since it is possible to deter-
mine the size of the catchment area for each point on the terrain—in particular,

34



on the original drainage network—we can also compute the generalized drainage
network. Other methods to compute the generalized drainage network include
using stream orders to decide which streams can be omitted, or generalizing the
terrain and then computing the drainage network [?, 113].

Terrains that don’t cover a large area of land usually don’t have many pits
on them. When a drainage network algorithm detects a number of pits, some of
them will actually be the result of imprecision in the data acquisition, or errors.
Other pits that occur often are not the end of a river system, but lakes may start
to form that overflow into another river system, making the two connected.
Avoiding pits on a terrain is also called drainage enforcement or spurious pit
removal [57, 58, 75]. For every pit, there is one pass where water will overflow
first when the pit is filled. The overflowing water may start a new stream that
joins some other river system. Which pits should be removed can be based
on the pit perimeter, the elevation difference between pit and pass, or the lake
capacity. The pit perimeter is the length of the polygon that lies on the contour
line through the pass and containing the pit.

1.8 Miscellaneous applications

In this section we’ll mention some other applications and algorithms on terrains
with references. It is meant rather as an annotated bibliography than as a survey.

1.8.1 Paths in terrains

Planning routes or networks in mountainous regions is of interest to civil en-
gineers. Problems like determining the best road to connect two places on a
terrain, best location of a bridge over a valley, and the like are sometimes ad-
dressed in a geographic information system. There can be several optimization
criteria, like minimizing the length of a route, finding a route that stays as low
as possible, with minimum cost for construction, and optimizing the resulting
travel time. Algorithms for abstract versions of these problems have been given
mostly in the computational geometry literature [6, 17, 79, 80, 107, ?].

1.8.2 Viewshed analysis

Viewshed analysis is the general name for visibility problems on terrains. The
standard viewshed analysis problem is simply the question: “What parts of the
terrain are visible from a specific point?” Optimization problems of visibility
are minimization of visibility (horizon pollution of planned buildings, routes not
visible from enemies) and maximization of visibility (observation posts for fire
detection, scenic routes). Viewshed problems have been studied in a theoretical
setting, but also in more practical situations [32, 69, 7, 97, 101, 119).

As a measure for the area of visible regions on a terrain, the wvisibility index
can be used on grid models. The visibility index of a given pixel is the number
of other pixels that are visible from the given pixel [41, 104, 109].
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The computation of horizons is related to viewshed analysis. One can make a
distinction between visibility above the last horizon (against the sky), visibility
agains a local horizon, and visibility against a hillside, and one can also compute
values for non-visible points that represent the elevation increase needed to make
the point visible [29, 30].

Some other issues of visibility on terrains include moving points of view,
networks of interconnected sites, and the error present in visibility analyses
2, 12, 28, 36].

1.8.3 Temporal aspects of terrains

Modelling time in a geographic information system is a topic that has received
a lot of attention recently [66]. The mapping of time can be one of the themes
on a static map, but it is also possible to use dynamic or animated maps for the
visualization. Here a sequence of maps of the same area and the same theme is
used, where each map represents the situation at a fixed moment in time. The
sequence as a whole can be used to animate the changes in the mapped themes
over time [21, 61, 62, 64]. An example is moving pressure fronts in weather
reports. This example shows that temporal aspects and animation can be issues
for elevation data as well.

Suppose that a sequence of terrains is given, each representing the terrain at
a fixed moment in time. To animate the change of the terrain one could show
the terrain in perspective view or by contour lines. Since the data usually is
available only at a discrete set of moments, interpolation between two terrains
at consecutive moments becomes necessary. If the terrains are represented by
TINs, the problem comes in different forms. Firstly, it can be the case that
the sequence of TINs has the same underlying set of vertices and triangulation.
The only differences are the elevations of the vertices. The second—and more
difficult—version of the problem has different vertex sets or triangulations for
the terrains in the sequence. It can be important to use a dynamic terrain model
that allows for the addition and removal of vertices and edges on the TIN [48, 55].

One more use of TINs in geographic processing is the simulation of physical
processes the influence certain terrain features. For example, one can study
drainage on a terrain after storms and rain showers, and analyze how long it will
take before the default drainage situation is restored [99].

1.8.4 Statistical analysis of elevation data

Statistical analysis of elevation data obtained at point samples is common in the
earth sciences. The field is also called geostatistics [?, ?, 56, 112]. Important
concepts include spatial interpolation, summarizing the data by mean, standard
deviation, skewness, auto-correlation, and so on. One of the most important pur-
poses of the analysis is the prediction of data at places where no measurements
were made.
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1.9 Conclusions

This survey has explained a number of concepts on terrains, and some algo-
rithms for various computations. The emphasis has been on TIN algorithms,
because the TIN model for terrains is more elegant than the grid and contour
line models. A common argument to use grids is the simplicity of the algorithms.
However, the current trends in GIS research and in the field of computational
geometry have shown that algorithms on TINs need not be difficult either. More
programming effort is required, but this need not outweigh the advantages that
TINs have to offer. We won’t repeat arguments in the raster-vector debate; a
summary of algorithmic methods and specific algorithms for TINs is useful in
any case. The search for efficient algorithms on terrains is an interesting area
of research where the GIS developers, GIS researchers, and computational ge-
ometers can work together to develop a variety of elegant and efficient solutions
to practical problems on terrains. The analysis of efficiency of these solutions
should be based on realistic assumptions on terrains.
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