Efficient Methods for Isoline Extraction
from a Digital Elevation Model

based on Triangulated Irregular Networks

M. van Kreveld

UU-CS-1994-21
May 1994

Utrecht University

O
§ (,2 Department of Computer Science
@
% 3 Padualaan 14, P.O. Box 80.089,

X
KSR 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454

Efficient Methods for Isoline Extraction

from a Digital Elevation Model

based on Triangulated Irregular Networks

M. van Kreveld

Technical Report UU-CS-1994-21
May 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

Efficient Methods for Isoline Extraction
from a Digital Elevation Model
based on Triangulated Irregular Networks™

Marc van Kreveld!

Abstract

A data structure is presented to store a triangulated irregular network dig-
ital elevation model, from which isolines (contour lines) can be extracted very
efficiently. If the network is based on n points, then for any elevation, the iso-
lines can be obtained in O(logn + k) query time, where & is the number of line
segments that form the isolines. This compares favorably with O(n) time by
straightforward computation. When a structured representation of the isolines
is needed, the same query time applies. For a fully topological representation
(with adjacency), the query requires additional O(clog c) or O(cloglogn) time,
where c is the number of connected components of isolines. In all three cases,
the required data structure has only linear size.

1 Introduction

A digital elevation model is a means of modeling any real-valued function defined over
the plane. Besides modeling elevations in a mountain landscape, other applications
include modeling levels of pollution, air pressure, and density of a mineral or any
other feature. An important concept for elevation models is that of the isoline. For
an elevation value Z, the isoline map contains all points of the plane for which the
elevation is exactly Z. Isoline maps in general contain the isolines for several different
elevations, see Figure 1. The derivation of isoline maps is called contouring [10, 17, 21].

Some digital elevation models are based on storing isoline maps explicitly. How-
ever, these models are unsatisfactory for several reasons. One reason is that they are
not suitable for computing slopes or making shaded relief models. A second reason is

*This research is partially supported by the ESPRIT Basic Research Action 7141 (project AL-
COM 1II: Algorithms and Complezity).

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the
Netherlands. E-mail: marc@cs.ruu.nl.

Figure 1: Perspective view of an elevation model and an isoline map of it.

that the elevation of points between isolines need still be determined. Therefore, it is
a difficult and time-consuming process to obtain isolines of elevations that don’t occur
in the isoline map. Isolines can also be created using another digital elevation model,
the triangulated irregular network (TIN), as an intermediate structure. See Figure 2
for a TIN and isolines on it. This approach has the advantage that isolines can be
extracted for any elevation without any additional interpolation, and thus without
extra error. Also, often a GIS already stores a TIN for other purposes, namely, to be
able to show a perspective view of a digital elevation model. Therefore, using only a
TIN and efficient algorithms for the extraction of isolines for any elevation provides
a flexible and storage efficient solution.

A TIN (see Peucker et al. [22]) arises from any set of data points in the plane
for which an elevation is given. The elevation of any intermediate point is given by
linear interpolation on the elevations of three original points that form a triangle that
contains the intermediate point. Often, the triangulation of choice is the Delaunay
triangulation because of its natural properties [15, 23, 26]. For any set of n points, the
Delaunay triangulation can be computed in O(nlogn) time [23]. Other triangulations
are constrained Delaunay triangulations that include ridges and valley lines as edges
in the TIN [5, 25] or regular triangulations. Methods to obtain a TIN from data points
have been considered extensively [9, 13, 17], as well as methods to obtain a TIN from
digitized isolines [2, 4, 14]. These methods have been developed to obtain an internal
representation in a GIS. In this paper we will be dealing with the efficient extraction
of isolines from the internal representation. This is necessary when the user of a GIS
requests for isolines. Since the user has to wait for the computation, it is important

184

Figure 2: A TIN and the isolines of elevation 24.

that isoline extraction from the TIN is very efficient. The methods presented in this
paper apply to any TIN representation of a digital elevation model regardless of how
it was obtained. Therefore it is simply assumed that a TIN is given.

We will not consider raster based elevation models such as altitude matrices. An
algorithm exists that retrieves contour lines from a grid [6]. The algorithm scans the
whole grid, and is therefore too inefficient for large data sets and a waiting GIS user.

Given a TIN on n points, the isolines for any elevation can be extracted with a
simple algorithm in O(n) time, namely, by considering every triangle and testing if
the given elevation occurs on that triangle. This is unsatisfactory especially when
there are only few isolines for the given elevation. In Section 2 we show that by
preprocessing, this can be improved considerably. By using an interval tree [7, 16],
the isolines for any query elevation Z can be extracted in O(logn + k) time, where k
is the number of line segments in the isoline map (the set of line segments of elevation
7).

When the connectedness of these line segments is relevant a slightly more com-
plicated method is needed, which will be presented in Section 3. The connected
components of line segments in the isoline map, the isoline components, can also be
obtained with a query time O(logn+ k). The sequence of line segments are output in
order along the isoline component, which is necessary if smoothing is done. The map
that is obtained is the structured isoline map. The method makes use of a network
structure for the TIN, which can be a doubly connected edge list [20, 23], a quad edge
structure [12], or a topological polygon network structure [3]. We will describe an
easier variant that makes use of the fact that a TIN is already quite structured, see
also Peucker [21] for similar data structures. For our purposes, an extension is needed
which will also be described.

In some applications not only the connectedness, but
also the adjacency among isoline components is rele-
vant, for example for coloring of the regions and for
geographical analysis. The topological information can
be represented in a contour tree {11, 18, 19, 24], see Fig-
ure 3. We call the map with this additional information
Figure 3: The adjacency the (fully) topological isoline map. Using an additional
structure of the isoline com- data structure based on the contour tree, we can obtain
ponents of Figure 2. Cir- it with O(logn + k + clogc) or O(logn + k + cloglogn)
cles represent isoline com- query time, whichever is smaller. Here, c is the number
ponents and square nodes of isoline components and k is the total number of line
represent regions. segments in them. Section 4 presents this result.

The algorithms and data structures can be extended
to the case where the isoline map of more than one elevation is required. This extension
is straightforward. When the isoline map (unstructured, structured or topological) is
needed for e elevation values, the query time becomes O(elogn + k) for the unstruc-
tured and structured cases, and O(elogn + k + clogc) or O(elogn + k + cloglogn)
for the topological case.

In Section 5 we conclude the paper by presenting some quantitative results which
indicate that the methods of this paper are more efficient that straightforward meth-
ods. Throughout the paper, we give some ideas for more efficient implementations,
leading to data structures that use less storage in practice (some evidence is given in
the conclusions section).

From now on, a data point of a TIN is called a vertex and a line segment between
two vertices of the TIN is called an edge. To distinguish the pieces of isolines from
edges, we refer to them as the line segments of the isolines. When considering isolines
on a TIN, one can observe that any line segment of an isoline lies completely on a
triangle or it is a horizontal edge of the TIN. An isoline component could also be a
single point—a vertex of the TIN—when it is a local extremum. Let a TIN with n
vertices be given, where every vertex is assigned an elevation.

2 Isoline map extraction

One obvious way of extracting all line segments of the isoline map from a TIN without
any additional preprocessing is the following. Given the query elevation Z, consider
all triangles in turn, and if the triangle contains a line segment of elevation Z, report
it. This approach has a query time of O(n), since all O(n) triangles of the TIN are
treated in constant time each. This brute-force approach is unsatisfactory especially
when the number of triangles that cross the elevation Z is much smaller than the total
number of triangles in the TIN. To obtain a more efficient solution, we describe the
interval tree, a geometric data structure that stores a set of intervals of the real line.
It was developed by Edelsbrunner [7] and by McCreight [16]. Here we give a brief

2 4 10 ' { daeaga ha"/
e .
a .

8 J co
b\ 5 d p11 : ,
) ‘ : .
¢ l ! . l’j7k
F\ P 9 :\Us. : :
g 12 : : :
6 7 L /o : :
a L : :
b E 5 : :
d——— j :
S — |
9 : :
thT T :
. . 17 — n
L ¥ s
: : Tk :
— o o oo o' o o o .o e

2 3 4 5 6 7 8 9 10 11 12

Figure 4: An example of a TIN and the corresponding interval tree. The split value
and the two lists are shown with each node, where L is the upper list and R the lower
list.

description (see Figure 4).

Let I be a set of open intervals of the form (a,b), where a,b € IR and a < b.
The interval tree for I has a root node that stores a split value s. Let Ijs be the
subset of intervals (a,b) for which b < s, let I, be the subset of intervals (a,b) for
which @ > s and let I; be the subset of intervals for which a < s < b. The subsets
Liegt, Iigns, Is form a partition of I. The subset I is stored in two linear lists that are
associated with node é. One list Ls stores I5 on increasing value of the left endpoint,
and the other list R; stores I5 on decreasing value of the right endpoint. If I is not
empty, then the left subtree of ¢ is defined recursively as an interval tree on the subset
Iiepr. The right subtree of § is defined in a similar way for I ;. It follows that any
interval of I is stored exactly twice (namely, at one node in two lists). An interval
tree for n intervals uses O(n) storage, it can be constructed in O(nlogn) time and if
the split values s split roughly balanced, the interval tree has depth O(logn).

The query algorithm follows one path from the root to a leaf of the tree. Let
g be the query value, thus, we want to report all intervals that contain ¢. At each
node ¢ that is visited, it is determined by comparing ¢ to the split value s stored at
0 whether L; or Rj is searched, and in which subtree the query continues. If ¢ < s,

5

then we search in the list Ls and report all intervals that contain the query value.
These intervals appear at the start of the list by the sortedness. After searching in
Ls, the query proceeds in the left subtree. If ¢ > s, then the list R, is searched and
the query proceeds in the right subtree. All intervals that contain a query value are
reported in O(log n+k) time, where k is the number of intervals that is reported. The
preprocessing and query algorithms are summarized using pseudo-code in Appendix A.

To use an interval tree for our purposes of retrieving the isoline map, note that
every triangle of the TIN has a z-span, given by the open interval bounded by the
elevation of the vertices of the triangle with lowest and highest elevation. For any
query elevation Z between this lowest and highest elevation, the triangle contributes
to the isoline map with a line segment on that triangle. The set of z-spans defined
by the triangles of the TIN are stored in an interval tree, and with each z-span the
corresponding triangle. Not only triangles, but also horizontal edges of the TIN can
contribute to the isoline map with a line segment. The z-span of a horizontal edge
is the closed interval containing a single elevation, the elevation of that edge. The
interval tree can easily be adapted to store these closed intervals as well. Given the
query elevation Z, the search in the interval tree retrieves all triangles that lie partially
below and partially above Z, and all edges with elevation Z. The line segments of
elevation Z on these triangles and edges together form the isoline map for elevation
Z. The query time is O(logn + k), where k is the number of segments in the isoline
map.

Theorem 1 A TIN with n vertices can be stored in O(n) space such that for any
query elevation Z, all line segments of the isoline map of elevation Z can be extracted
in O(logn+ k) time, where k is the total number of line segments retrieved. The data
structure can be built in O(nlogn) time.

It can be observed that the method just described does not find local maxima
and local minima of the query elevation, which are vertices of the TIN. If necessary,
this can easily be corrected by finding all local maxima and minima of the TIN, and
storing them in the interval tree as well. From the storage standpoint, it is better to
store these vertices separately in a balanced binary tree. In this tree the horizontal
edges of the TIN can be stored as well. A binary tree stores a value only once, whereas
an interval tree stores it in two lists. Hence the savings in storage (a query requires
more time, though, because two trees are queried instead of one).

3 Structured isoline map extraction

The solution of the previous section does not reveal the connectedness of the line
segments in the isoline map. This is fine if the isoline map was only retrieved to be
shown directly on a computer screen. But if further processing of the information
is required, one generally needs the cycles and paths of line segments that form the
connected components of the isoline map. For instance, if smoothing is applied to

6

Figure 5: A TIN and the network structure for it. The three values and the list of
each vertex are not shown.

isolines before they are displayed. We continue with an adaptation of the described
method to obtain the cycles and paths. The adaptation is based on locating the
isolines directly on a network structure of the TIN. The interval tree is still needed to
have fast access to the network structure.

The network structure that we will use to store a TIN should allow of traversal
operations. That is, it should be possible to get from one triangle to each of the
adjacent triangles fast.

A simple data structure to store a TIN which allows of the necessary traversal
operations is the following, see also Figure 5. For every triangle ¢, edge e, and vertex
v, there is a record for that feature. The record of a triangle ¢ has three fields with
pointers. These pointers are directed to the records of each of the three edges incident
to t. The record of an edge e has four fields with pointers. Two of the pointers are
directed to the records of the two incident triangles, and the other two pointers are

directed to the records of the incident vertices. The record of a vertex v has four fields
of which three are values and one is a pointer to a list. The list contains one element
for each edge incident to v, and the element stores a pointer that is directed to the
record of that edge. The three values are the z- and y-coordinates and the elevation
of the vertex.

The network structure just described allows of finding—for every triangle—the
elevations of its vertices in constant time, finding the adjacent triangles for a given
triangle in constant time, and more. Suppose that we have discovered that triangle
t; in Figure 5 contains a line segment of the isoline with elevation 17. By checking
the adjacent triangles, we can find out on which triangles this isoline continues. In
particular, we must examine the elevations of the incident vertices of these triangles.
We can determine the exact location of the line segment on the isoline easily once we
have the triangle. We use a mark bit in each triangle record which indicates whether
this triangle has already been traversed. This allows us to determine when we have
completed a cycle of an isoline component. Mark bits are also needed in the edge
records of all horizontal edges of the TIN.

With this network structure, we can find the whole isoline component once we have
a single triangle that contains a line segment of that component. Since the next line
segment can be discovered in constant time unless that isoline component contains
vertices, we can find the whole isoline component in O(k) time when it contains k&
line segments. Appendix B contains pseudo-code that describes in more detail how
to find the isolone component.

When an isoline component contains a vertex of the TIN, then the isoline com-
ponent may contain several line segments incident to that vertex. In Figure 5, the
vertex vz is incident to two triangles (#; and ¢;) and one edge (e7) that contribute
to the isoline component of elevation 10 with a line segment. If we know in advance
that every vertex in the TIN has constant degree, then we can still find the whole
isoline component in O(k) time if it contains k line segments. But otherwise, a vertex
in a TIN can be incident to any number of edges and triangles, and we cannot find
the ones that contribute with a line segment efficiently. The data structure described
would require time linear in the degree of the vertex to find them.

To overcome this deficiency, we extend the record of each vertex v with a pointer to
a second list. If v has elevation Z,, then for every triangle incident to v that contains
a line segment of elevation Z,, the list has an element with a pointer to the record
of that triangle. Also, for every edge incident to v that is horizontal, the list has an
element with a pointer to the record of that edge. Figure 6 shows the record and lists
of the vertex v; corresponding to the previous figure.

We have obtained the following result, using the extended network structure:
Theorem 2 A TIN with n vertices can be stored in a data structure of size O(n) such
that for any elevation Z, the isoline component of that elevation can be computed in

O(k) time, where k is the number of line segments in the isoline component, once any
triangle record of a triangle that contributes to that isoline component is given.

8

Figure 6: The pointers leaving the record of v and the lists of it in the extended
structure. The added list is the top one.

We will use the interval tree, defined on the z-spans of the triangles and horizontal
edges as before, to obtain fast access to the network structure. With every occurrence
of a z-span in the interval tree, we store a pointer to the corresponding triangle or
horizontal edge in the network structure. Before each query, all records (of triangles
and horizontal edges) in the network structure are unmarked. The mark bits have the
following meaning. Setting the mark of a triangle or edge means that of the requested
isoline, the line segment on that triangle or edge need still be reported. An unmarked
triangle or edge either does not cross the query elevation, or the line segment on it
has already been reported.

A query with elevation Z is performed as follows. We first search with elevation
Z in the interval tree and push on a stack the triangles and edges of which the z-
span contains Z. We also mark them in the network structure. Then, the triangles
and edges are popped one by one. When a triangle or edge is popped, we first test
whether it is marked or unmarked in the network structure. If it is unmarked, then
we discard it and pop the next triangle or edge. Otherwise, we report the line segment
of elevation Z on the triangle or edge and start a traversal in the network structure.
The traversal traces one isoline component of elevation Z as described above. Every
triangle or horizontal edge that is traversed is unmarked; it also appears somewhere
on the stack and resetting the mark makes sure that it will not be traversed a second
time. The traversal causes the fact that with this algorithm, the connectedness of the
line segments in an isoline map is retrieved. Note that after the query, all triangles are
again unmarked so that a next query can be done immediately. Appendix B summa-
rizes the algorithm using a pseudo-code description (including a storage improvement
based on left-extreme edges described below).

Every triangle and horizontal edge that gives a line segment in the structured
isoline map is pushed, popped, traversed, marked and unmarked only once, and all of
these operations take constant time. Therefore, the query time is O(logn + k).

It is true that the storage used by this method is somewhat larger than by the

previous one, but it is still linear in n. Also, the stack is only needed temporarily
during the query, and the storage used by it comes free immediately after. The extra
bits stored in the network structure form a small permanent overhead in storage.

Theorem 3 A TIN with n vertices can be stored in O(n) space such that for any query
elevation Z, the structured isoline map for elevation Z can be extracted in O(logn+k)
time, where k 1s the total number of line segments retrieved. The structure can be built
in O(nlogn) time.

To reduce the storage of the interval tree, observe that only one starting tri-
angle of every isoline component need be found in it. The other line segments
will be found automatically during the traversal. Define an edge of the TIN to
be left-extreme if an isoline component that crosses it causes a local minimum in
z-coordinate in the isoline map. This can be tested for any edge in constant time
by considering the elevations and coordinates of the four vertices incident to the
two triangles that are incident to the edge. In Figure 2, the left-extreme edges
are (8,18), (8,27), (18,26), (18,9), (13,30), (30,6), (20,25), (9,7), and (18,28). This
can best be verified in Figure 7. Every isoline component must contain a left-extreme
edge. Hence, for the triangles of which the z-span is stored in the interval tree, one
need only use one of the triangles incident to any of the left-extreme edges. In prac-
tice, the number of left-extreme edges of a TIN is considerably smaller than the total
number of edges. For random terrains, roughly one third of the edges is left-extreme,
which means that roughly one half of the triangles are stored in the interval tree
(by Euler’s formula). For TINs with little variation the savings will be considerably
better, see Table 1 in the conclusions section.

To obtain the isolines for several query elevations, we simply repeat the query for
every elevation. This is straightforward, so we omit further description.

4 Topological isoline map extraction

The solution of the previous section solves the problem of finding the connected cy-
cles and paths in an isoline map eficiently, but one aspect has not been solved:
adjacency of isoline components. This is necessary when the region between two
isolines should be colored, or when geographical analysis is performed on the iso-
line map. To discover which isoline components are adjacent to which other isoline
components, a post-processing method based on plane sweep can be used. The idea
is to sweep an imaginary line £ over the TIN from left to right, and retrieving the
adjacency during this process. A dynamic balanced search tree is used during the
sweep to maintain the intersection of the sweep line ¢ and the TIN. It can be shown
that the adjacency relation of the k line segments can be determined in O(klogk)
time with this method. Hence, the topological isoline map can be retrieved with
O(logn + klogk) query time. More details on plane sweep methods can be found in
the book of Preparata and Shamos [23]. We will not go into details, since an improved

10

O(log n+k+min{clogec, cloglogn}) query time method will be presented next, where
¢ denotes the number of isoline components in the isoline map for the query elevation.
It uses one more data structure of linear size, namely, a rooted tree in which ancestor
relations can be determined efficiently. The nodes of the tree represent the vertices
of the TIN. Before going into details of the data structure and query algorithm, we
define a new conceptual map.

30 6
27 P
8 25
17
22
32
20 .
26 9 12

Figure 7: The TIN of Figure 2 and the corresponding vertex isoline map.

Let the verter isoline map be the subdivision of a map obtained by taking all
isoline components that contain vertices of the TIN, see Figure 7. Each vertex gives
rise to an isoline component, although one isoline component may contain more than
one vertex. Isoline components are simple polygons interior to the map, simple chains
between two points on the boundary of the map, or more complicated connected sets
of line segments. Two isoline components are adjacent in a map if they bound the
same region of the map.

For any TIN, define G as the undirected graph with one node for every isoline
component in the vertex isoline map, and an arc between two nodes representing
components C; and C; if they are adjacent in the vertex isoline map. The graph G is
closely related to the contour tree examined extensively by Morse [18, 19] and others
[11, 24]. But it is defined on a special isoline map arising from the TIN, which includes
the isolines through saddle vertices and local extrema. Therefore, it has additional
properties. It can be shown that any region of the vertex isoline map is bounded by
exactly two isoline components [1]. Therefore, the regions of the vertex isoline map
correspond in a unique way to the arcs in G (this can be verified in Figures 7 and 8).

Lemma 1 The graph G for any TIN is a tree (a connected acyclic graph).

The graph G will be used to determine adjacency for any set of isoline components,
not only those in the vertex isoline map.

11

98
21——-013 7

ol7 9
26 18 15 12
=g

2028 %

0 125 32

“6

Figure 8: The graph G of the vertex isoline map of Figure 7 and a rooted tree version
of it.

Lemma 2 Any isoline component on a TIN either coincides with an isoline compo-
nent of the vertex isoline map, or it is a simple path or simple polygon that lies in
one region of the verter isoline map. If it lies in a region, then it separates the two
isoline components that bound that region of the vertezx isoline map.

For any isoline component of elevation Z that does not contain any vertex of the
TIN, let ey,...,e; be the set of edges intersecting the isoline component. Then the
region of the vertex isoline map in which it lies is bounded by isoline component of
the lowest endpoint above Z of the edges ey, ...,e; and by the isoline component of
the highest endpoint below Z of the edges ey,...,e€;.

1,1

Using the observations about the geometry of
isoline components given above, we define the fol-
lowing data structure. The graph G is stored as a

14,3 rooted tree 7 with one node chosen arbitrarily as
the root. Every node has pointers to its children.
15,4 Let any parent order its children in an arbitrary
manner from left to right. The nodes of 7 store
two integers defined as follows, see Figure 9. The
first integer is obtained using a depth-first-search
tree traversal from left to right and numbering the
Figure 9: The two integers of the 1nodes pre-order with 1 up to n. The second inte-
nodes of T . ger is obtained similarly, but the nodes are visited
from right to left. The property of the integers is
that any node 4 is an ancestor of any node + if and only if each integer of ¢ is smaller
than the corresponding integer of 4. Summarizing, given two nodes in 7 one can
determine in constant time whether one is an ancestor of the other.

16,5
8,14 g 13 10,12 15 19

17,6

12

The data structure that we use to retrieve the topological isoline map consists of
the network structure and interval tree as described in the previous section, and the
tree 7. Every record for a vertex v in the network structure is augmented with an
extra pointer to the node in 7 which represents the isoline component that contains
vertex v.

A query with elevation Z is performed as follows. First, using the interval tree
and the network structure, we retrieve the isoline components in O(logn + k) time
as before. Let C7,...,C’ be the isoline components of elevation Z. For every isoline
component C!, we determine where it lies on the vertex isoline map. This is done
by checking for each isoline component C; all endpoints of the edges of the TIN that
intersect it. Let vgown be the highest vertex below Z among these endpoints, and let
vyp be the lowest vertex above Z among these endpoints. The vertices Vdaown and vyp
both lie on an isoline component of the vertex isoline map, and these components
Caown and Cy, bound the same region of the vertex isoline map.

17 17

27 26

28

Figure 10: A tree T of Figure 8, the subtree that is obtained for the query with 24,
and the adjacency structure of the isoline components. Compare it with Figure 3.

By an observation made earlier, the isoline component C; lies in the region that
corresponds to the edge in the tree 7 between the nodes corresponding to Cy, and
Caown- Let u; be the node corresponding to either Cyp 0r Caown, Whichever is the child
of the other. We obtain a node u; for every isoline component C; that was returned
by the query. It is easy to see that the nodes uy,. .., u. are distinct. The problem that
remains is to determine the relation among the nodes u;, ..., u. in T, or the ‘subtree’
they define (see Figure 10). To obtain one subtree and not a forest of subtrees, we add
the root node of 7 to the set of selected nodes. Let it be uy. We show that the subtree
can be computed in O(clogc) time or O(cloglogn) time by sorting algorithms.

Recall that every node in 7 stores two integers. First we sort the nodes uo,.. ., u.
from left to right on increasing first integer. Next we scan this ordered sequence of
nodes from right to left as follows. Assume without loss of generality that uo, ..., u.

is the ordered sequence obtained from the sorting step. This sequence is given in a list

13

initially with u. at the tail (it has the largest first integer). Suppose we have scanned
and treated from wu. back to u;4;. To treat u;, take the list element right of u;, thus
the first element closer to the tail. Test whether u; is an ancestor of this element by
checking the second integer: u; is an ancestor if and only if the second integer of u;
is smaller (since the sequence is sorted on first integer, we already know that the first
integer is smaller). If u; is ancestor, we establish the adjacency in the subtree under
construction, and remove the list element right of u; from the list. Then we continue
to compare u; with the new neighbor to its right in the list in the same way. If the
list element to the right of u; was not a descendant of u;, or if u; is the rightmost list
element, we have treated u; and continue immediately with u;_;. This completes the
description of the computation of the subtree that contains the necessary topological
information.

The topological isoline map for elevation Z can be extracted from this subtree
with a simple transformation. If a node u; is parent of nodes u;,,...,u,,., then the
topological isoline map has a region that is bounded by the components corresponding
to these nodes. Figure 10 shows a tree 7 with a subset of nodes that could arise from
a query elevation, the corresponding subtree and the adjacency information of the
topological isoline map for that query elevation.

The correctness of the above method is based on the following fact for the sequence
Ug, . - ., Ue sorted on the first integer: all descendants of any node w; form a (possibly
empty) sublist u;y1,...,u; of the list uy,...,u.. The efficiency of the algorithm is
determined by the time to sort and the time to scan. Sorting can be done by heapsort
or quicksort in O(clogc) time or in O(cloglogn) time by a method of van Emde
Boas et al. [8] (the latter method uses the fact that the integers to be sorted are in
a ‘bounded universe’ consisting of the integers from 1 up to n). Scanning the list
requires O(c) time by the described algorithm.

To construct the tree 7, we rely on an algorithm described by de Berg and myself
[1]. We showed that for any TIN, an O(nlogn) time algorithm exists that computes
for every vertex in the TIN the lowest vertex above it which can be reached with a
monotonously increasing elevation path. If we link every vertex with this next higher
vertex, the graph G is obtained. Choose a root node in G arbitrarily and establish
parent-child pointers to obtain the tree 7. The assignment of the two integers to

each node is done in linear time using a simple depth-first-search algorithm. We have
established:

Theorem 4 A TIN with n vertices can be stored in O(n) space such that for any query
elevation Z, the topological isoline map for elevation Z can be extracted in O(logn +
k + min{clogn, cloglogn}) time, where c is the number of isoline components with
elevation Z and k 1is the total number of line segments retrieved. The data structure
can be built in O(nlogn) time.

To reduce storage requirements in practice, observe that the tree 7 can be dis-
carded after the determination of the two integers stored at the nodes. This is because

14

the tree is not traversed at query-time, and none of the pointers are used after prepro-
cessing. Thus we can simply store the two integers at the corresponding vertices in
the network structure. Clearly, the extra pointer of a vertex in the network structure
to the corresponding node in 7 can also be discarded. Savings add up to roughly 2n
pointers.

To obtain the topological isoline map for several query elevations, we do the fol-
lowing. First, we perform the queries in the interval tree and the network structure to
obtain the isoline components for all query elevations, which together form the struc-
tured isoline map as in the previous section. But this time, we also get a collection
of ¢ nodes in the tree 7, where c is the number of isoline components for all query
elevations. These can then be sorted in O(clogc) time or O(cloglogn) time as we
described. The sorting did not make use of the fact that before, the isoline compo-
nents had the same elevation. So the topological information of the isoline map is
computed after all isoline components have been obtained.

5 Conclusions

This paper proposed an approach to obtain isolines efficiently from a TIN-based dig-
ital elevation model. Instead of a straightforward computation of the isolines which
requires O(n) time, one can use one or two additional data structures that allow re-
trieval of the isolines in O(logn + k) time, where k is the number of line segments
in the isolines. Thus the savings are considerable, especially when the isolines cross
only a small number of triangles of the TIN, that is, when the output is small. It is
also possible to obtain the isolines as a fully topological isoline map, in which case an
extra post-processing phase requires additional O(clogc) or O(cloglogn) time, where
c is the number of isoline components in the isoline map. The data structures use
only linear storage, they can be constructed in O(nlogn) time, and they are simple
to implement. The isolines can be shown in a more attractive way by smoothing if
we have the structured or topological isoline map (some care must be taken, however,
to avoid intersections of isoline components by smoothing).

Table 1 shows the values of n, k and c for some terrains. (A simplification of the
San Bernardino terrain is also shown in Figure 1 with the isolines of the elevations
in the table.) The straightforward computation of the isoline map requires testing
all 2,880,000 triangles. Using the data structures proposed in this paper, we find
up to 35,000 triangles and horizontal edges (except in some cases and for random
data). The overhead in query time is low: if the interval tree is well-balanced, its
depth is at most 1 + log,n, and at each node two comparisons and following one
pointer are necessary as the overhead. This amounts to only 44 comparisons and 22
times following a pointer as the overhead. The large values of k in the Lake Charles
terrain are caused by plateaus of constant elevation. On the TIN based on a grid,
such plateaus may contain many triangles, but for TINs that are not based on grids
the plateaus will be covered by few large triangles instead, leading to much smaller

15

Source: Random data
Elevation range: 0-63
Left-extreme edges: 1,351,578

Source: Denver (West)
Elevation range: 1557-4350
Left-extreme edges: 1,152,346

Source: San Bernardino (East)
Elevation range: 274-3474
Left-extreme edges: 1,206,434

elevation | edges (= k) | comp. (=c¢) elevation | edges (= k) | comp. (=¢)
8 968,046 124,042 400 1444 4

16 1,620,899 113,005 800 20,503 41

24 1,823,455 68,045 1200 18,764 78

32 2,093,573 1,069 1600 8455 20

40 | 1,958,665 101,880 2000 6913 15

48 1,710,995 180,523 2400 5655 13

56 833,033 112,781 2800 1979 8

Source: Grand Canyon (West)

Elevation range: 278-2513

Left-extreme edges: 1,255,938

elevation | edges (= k) | comp. (=¢) elevation | edges (= k) | comp. (=¢)
1800 3127 1 300 519 26
2200 16,815 22 650 9883 64
2600 22,246 71 1000 18,896 69
3000 29,003 66 1350 34,920 228
3400 26,403 54 1700 34,835 353
3800 7615 48 2050 7138 82
4200 287 8 2400 165 3
Source: Montreal (East) Source: Manhattan (West)
Elevation range: 6-944 Elevation range: 340-549
Left-extreme edges: 827,071 Left-extreme edges: 774,661
elevation | edges (= k) | comp. (=¢) elevation | edges (= k) | comp. (= ¢)
50 5891 3 350 1436 3
150 13,874 27 380 18,308 25
250 24,820 68 410 38,751 52
350 12,615 61 440 44,852 82
450 5589 31 470 31,532 70
550 3041 20 500 7027 64
650 1371 10 530 214 4

Source: Austin (West)
Elevation range: 80-383
Left-extreme edges: 862,755

Source: Lake Charles (West)
Elevation range: 0-152
Left-extreme edges: 363,961

elevation | edges (= k) | comp. (= ¢) elevation | edges (= k) | comp. (=¢)
100 6014 56 0 129,640 8
140 35,457 124 20 23,545 7
180 22,087 57 40 22,820 22
220 17,572 28 60 123,818 78
260 22,454 52 80 9165 17
300 16,523 64 100 2292 38
340 4622 28 120 797 4

Table 1: Some quantitative results for elevation models. All eight TINs are based on
a regular grid of 1201 x 1201 with 1,442,401 vertices, 4,322,400 edges and 2,880,000
triangles.

16

values of k. Further experiments are needed to examine these situations.

The table also shows the number of left-extreme edges, which are the ones for
which an incident triangle must be stored in the interval tree. The savings in storage
space for the interval tree are 50% up to 87%. Other experiments show that the ratio
of the maximum value of k and the total number of triangles of the TIN decreases
if the total number of triangles increases. For a square grid with 151, 301, 601 and
1201 vertices on each side, the ratios are 0.022, 0.020, 0.010 and 0.007, respectively,
on the San Bernardino terrain. This indicates that the maximum value of k may be
sublinear in the total number of triangles for this terrain. Again, further experiments
are necessary to check this observation for other terrains and TINs.

Finally, the table indicates that—since c is small compared to k—a query time of
O(logn+k+clogc) (the presented algorithm to obtain the topological isoline map) is
considerably better than a query time of O(logn+k log k) (the presented algorithm to
obtain the structured isoline map, combined with plane sweep to obtain the topology).

An interesting extension of the presented results would be to obtain the isoline
map in a rectangular submap of the whole map. An approach solve this problem is
by using a data structure that combines the ones presented in this paper with a k-d
tree or an orthogonal range tree [23, 27]. This method requires more storage and it
is difficult to analyze the worst-case behavior. However, the method should be fast in
practice.

Acknowledgements: The author thanks Han La Poutré for helpful discussions.

References

[1] de Berg, M., and M. van Kreveld, Trekking in the Alps Without Freezing or
Getting Tired. Proc. 1st European Symposium on Algorithms (1993), Lect. Notes
in Comp. Science 726, Springer-Verlag, pp. 121-132.

[2] Brindli, M., A triangulation-based method for geomorphical surface interpolation
from contour lines. Proc. EGIS’92, pp. 691-700.

[3] Burrough, P., Principles of Geographic Information Systems for Land Resources
Assessment. Oxford Science Publications, 1986.

[4] Christensen, A.H.J., Fitting a triangulation to contours. Proc. AUTO-CARTO 7
(1985), pp. 57-67.

[5] De Floriani, L., and E. Puppo, Constrained Delaunay triangulation for multires-
olution surface description. Proc. 9th IEEE Conf. on Pattern Recognition (1988),
pp. 566—569. '

17

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

[20]

[21]

Downing, II, J.A, and S. Zoraster, An adaptive grid contouring algorithm. Proc.
AUTO-CARTO 5 (1982), pp. 249-256.

Edelsbrunner, H., Dynamic data structures for orthogonal intersection queries.
Tech. Rep. F59, Tech. Univ. Graz, 1980.

van Emde Boas, P., R. Kaas, and E. Zijlstra, Design and implementation of an
efficient priority queue. Math. Systems Theory 10 (1977), pp. 99-127.

Fowler, R.J., and J.J. Little, Automatic extraction of irregular network digital
terrain models. Computer Graphics 13 (1979), pp. 199-207.

Gold, C., Common sense automated contouring—some generalizations. Carto-
graphica 21 (1984), pp. 121-129.

Gold, C., and S. Cormack, Spatially ordered networks and topographic recon-
structions. Proc. 3th Int. Symp. on Spatial Data Handling (1988), pp. 74-85.

Guibas, L.J., and J. Stolfi, Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Trans. Graph. 4 (1985), pp. 74—
123.

Heller, M., Triangulation algorithms for adaptive terrain modelling. Proc. 4th
Int. Symp. on Spatial Data Handling (1990), pp. 163-174.

Keppel, E., Approximating complex surfaces by triangulation of contour lines.
IBM J. of Research and Development 19 (1975), pp. 2-11.

Laurini, R., and D. Thompson, Fundamentals of Spatial Information Systems.
Academic Press, London, 1992.

McCreight, E.M., Priority search trees. STAM J. Comput. 14 (1985), pp. 257-276.

Mark, D.M., Topological properties of geographic surfaces: applications in com-
puter cartography, Harvard Papers on Geographic Information Systems 5 (1978).

Morse, S.P., A mathematical model for the analysis of contour-line data. J. ACM
15 (1968), pp. 205-220.

Morse, S.P., Concepts of use in computer map processing. Comm. ACM 12
(1969), pp. 145-152.

Muller, D.E., and F.P. Preparata, Finding the intersection of two convex poly-
hedra. Theoretical Computer Science 7 (1978), pp. 217-236.

Peucker, T.K., Data structures for digital terrain modules: discussion and com-
parison. Harvard Papers on Geographic Information Systems 5 (1978).

18

[22] Peucker, T.K., R.J. Fowler, J.J. Little, and D.M. Mark, The triangulated irreg-
ular network. Proc. DTM Symp. Am. Soc. of Photogrammetry-Am. Congress on
Survey and Mapping (1978), pp. 24-31.

[23] Preparata, F.P., and M.L. Shamos, Computational Geometry—an introduction.
Springer-Verlag, New York, 1985.

(24] Roubal, J., and T.K. Peucker, Automated contour labelling and the contour tree.
Proc. AUTO-CARTO 7 (1985), pp. 472-481.

[25] Scarlatos, L., A compact terrain model based on critical topographical features.
Proc. AUTO-CARTO 9 (1989), pp. 146-155.

[26] Watson, D.F., and G.M. Philip, Survey: systematic triangulations. Computer
Vision, Graphics, and Image Processing 26 (1984), pp. 217-223.

[27] Willard, D.E., and G.S. Lueker, Adding range restriction capability to dynamic
data structures. J. ACM 32 (1985), pp. 597-617.

Appe‘ndix A: Interval tree algorithms

Two recursive pseudo-code procedures are listed for the basic algorithms on an interval
tree, namely, the construction and searching in it. The pseudo-code can be seen as
a summary of the sequence of steps one can distinguish in an implementation. The
algorithms are not meant to be complete; further refinement of some steps is necessary.
For example, the algorithms assume that all intervals are open (it is straightforward
to extend them to the case of open and closed intervals). Interval trees also support
insertions and deletions [7, 16, 23]. Since those operations are not directly relevant to
efficient isoline extraction, their description is omitted.

Algorithm Construct-Interval-Tree(I)

Input: A set I of n open intervals on the real line, presorted on the left endpoint and on
the right endpoint.

Output: The root node § of an interval tree that stores I.

1. if|I]=0

2 then return an empty leaf node 4

3. else make a root node ¢

4 Determine a value s such that < n/2 intervals of I have both endpoints < s,

and < n/2 intervals of I have both endpoints > s. Store s as the split value in
d.
Iiesy + the intervals (a,b) with b <'s

5.
6. I ight < the intervals (a,b) with a > s
7. I; « I- Ile_ft - Ir'ight

19

8. Store I sorted on increasing value of the left endpoint in a list L;. Store a
pointer to Ls with 4.

9. Store I; sorted on decreasing value of the right endpoint in a list Rs. Store a
pointer to R; with 4.

10. Left-Child(8) «+ Construct-Interval- Tree(Ijes)

11. Right-Child(8) « Construct-Interval- Tree(Ipight)

12. return §

One can store I sorted on the left and the right endpoint by using two arrays, one
for each order. In each array, the occurrence of an interval in the other array should
also be stored so that determination of Ijep and I, can be done in a way that they
are again presorted on left endpoint and right endpoint. The determination of the
split value s in the above algorithm can be done easily when I is presorted on the left
and the right endpoint. The algorithm takes O(nlogn) time.

The easiest implementation is probably not keeping I sorted in any way, choosing
the value s by taking a random endpoint of all endpoints in I, and sorting I and
I ight, once they are determined, by quicksort. Some extra measures must be taken to
assure that s splits well, which is a problem when there are many equivalent intervals.
This randomized version requires expected O(nlogn) time.

Algorithm Query-Interval-Tree(q,d)

Input: A query value ¢ and the root node ¢ of an interval tree.

Output: All intervals (a,b) in the interval tree for which a < ¢ < b.

1. if § is an empty leaf node

2 then return

3. else if q < s, the split value stored with §

4 then scan the list L; from the front, testing for each interval (a,b) whether
q > a. If so, report it and continue. Otherwise, stop scanning L;.

5. Query-Interval- Tree(q, Left-Child(4))

6. else scan the list R; from the front, testing for each interval (a, b) whether
g < b. If so, report it and continue. Otherwise, stop scanning R;.

7. Query-Interval- Tree(q, Right-Child(9))

Appendix B: Structured isoline extraction algorithm

The following algorithm summarizes the steps needed to find the isolines of a TIN for
a given query elevation Z. It is assumed that the triangles and horizontal edges of
the TIN incident to left-extreme edges have been preprocessed into an interval tree,
and that there are pointers from the intervals (z-spans) in the interval tree to the
corresponding triangles and horizontal edges in the network structure representing
the TIN. Contrary to the description in Section 3, the following algorithm uses a list
instead of a stack during the query. Also, the mark bits are used in a slightly different
way. This is more convenient when the idea of left-extreme edges is used.

20

It is assumed that initially, all triangles and edges in the network structure are
unmarked. The algorithm itself resets all mark bits so that the structure is ready for
the next query immediately. We ignore the issue of dealing with the efficiency loss
when vertices have high degree. Some exception cases are also ignored.

Algorithm Find-Isolines(Z, TIN, §)

Input: A query elevation Z, a network structure and the root node d of an interval tree
on the z-spans of the triangles and horizontal edges of the TIN that are incident to
left-extreme edges.

Output: The isolines of elevation Z of the TIN as a linked collection of records for the
vertices and edges of the isolines.

1. Query-Interval-Tree(Z,$) and put all answers in a list L.

2. for every triangle t in L

3 do if ¢ is marked in the network structure

4. then remove ¢ from L

5. else markt

6 Create an edge record and store the edge (z = Z) N ¢ in it.

7 if a vertex v and an edge e incident to ¢ span elevation Z

8 then create a vertex record for v and link it to the edge record for

t just created.

9. Find-Component-From-Vertez(t,v)

10. Create a vertex record for (z = Z) N e and link it to the edge
record for (z = Z) N t just created.

11. Find-Component-From-Edge(t, e)

12. else let e and €' be the edges incident to ¢ and which span Z.

13. Create vertex records for (z = Z) N e and (z = Z) N €' and
link them to the edge record for (z = Z) N t just created.

14. Find-Component-From-Edge(t,)

15. Find-Component-From-Edge(t, ')

16. for every horizontal edge e in L

17. do if e is marked in the network structure

18. then remove e from L

19. else mark e

20. Create an edge record for the edge e.

21. Let v and v’ be the vertices incident to e.

22. Create vertex records for v and v' and link them to the edge record of

e.
23. Find-Component-From- Vertez(e,v)
24. Find-Component-From- Vertez (e, v')

25. for every triangle and horizontal edge in L which has not yet been deleted (* one for
each isoline component x)
26. do delete it from L
27. Traverse the whole isoline component again in a similar way to unmark all
triangles and horizontal edges.

21

Algorithm Find-Component-From-Edge(t, e)
1. if e is incident to a triangle t' # ¢
2. then (* t' doesn’t exist at the boundary of the TIN)

3. Create an edge record for the edge (z = Z) N t' and link it to the vertex record
created for (z=2) Ne.

4. if ¢ has a vertex v with elevation Z

5. then create a vertex record for v and link it to the edge record for (z =
Z) Nt just created.

6. Find-Component-From-Vertez(t',v)

7. else let ¢’ # e be the edge incident to ¢’ and which spans Z.

8. Create a vertex record for (2 = Z) N €’ and link it to the edge record
for (2 = Z) N t' just created.

9. Find-Component-From-Edge(t',¢e')

Algorithm Find-Component-From-Vertex(f,v)
1. for all horizontal edges and triangles f’' # f incident to v which span Z
2. do create an edge record for the edge (2 = Z) N f’ and link it to the vertex record
just created for v.
if f' is a triangle
then let e be the edge incident to f' which spans Z.
5. Create a vertex record for (z = Z) N e and link it to the edge record
for (z=Z) N f’ just created.

- w

6. Find-Component-From-Edge(f', e)

7. else let v’ be the other endpoint of the horizontal edge f’.

8. Create a vertex record for v’ and link it to the edge record for (2 =
Z) N f’ just created.

9. Find-Component-From-Vertez(f',v')

22

