
Flooding

Flooding is the process of raising the terrain by uniformly pouring water onto it until
all sinks are filled and a steady-state (where there is a non-increasing flow path from each
cell to the edge of the terrain) is reached. After flooding, we say that a watershed u has
been raised to height h if every cell in u lower than h is raised to height h. Let GT be the
watershed graph of a terrain T and let the height of a path p in GT be the maximum weight
of the edges along p. We can formally define flooding as follows.

Definition 1 ((Flooding)) Flooding of a terrain T is the process of raising each watershed
u 6= ζ in T to the height hu of the lowest-height path in GT from u to the outside watershed
ζ.

We define the spill-elevation Su of a watershed u 6= ζ in T to be the weight of the lightest
edge in GT incident to u. In order to compute the height hu of the lowest-height path of
each watershed u, we introduce the flow graph.

Definition 2 ((Flow graph)) The flow graph FT of a terrain T is a directed weighted
graph with a vertex for each watershed (including the outside watershed ζ) of T . FT contains
an edge from u to v with weight Su if the weight of edge (u, v) in GT is the spill elevation Su

of u.

Note that each vertex u (except ζ) in FT has at least one outgoing edge, and may
have more than one if u has several incident edges in GT with the same (lightest) weight.
Intuitively, for each watershed u the flow graph FT contains an edge to the (first) watershed
water will flow into from u as the water-level is raised. The flow graph FT can easily be
computed in a single scan of the watershed graph GT . Before describing an algorithm for
flooding T using FT , we prove a few simple results about the structure of FT .

Lemma 1 If the flow graph FT of a terrain T is acyclic then there is a directed path from
each vertex in FT to ζ.

Proof 1 We first prove by induction that a directed graph where each vertex has at least one
outgoing edge contains a cycle; this is obviously true for a graph with 2 vertices. Assume it
is true for any graph of n ≥ 2 vertices and consider a graph of n + 1 vertices. The graph
must contain three distinct vertices u1, u2, u3 such that u1 → u2 → u3 is a path (otherwise it
contains a cycle). Consider the graph obtained by contracting the edge u1 → u2. This graph
has n vertices and each vertex has at least one outgoing edge, so by the induction hypothesis
it contains a cycle. Therefore the uncontracted graph must also contain a cycle.

1



We can now prove the lemma by contradiction; assume that there is at least one vertex
u in FT that does not have a path to the outside watershed ζ. Let X be the set of vertices in
FT that do not have a path to ζ. Since each vertex in FT (except ζ) has an outgoing edge, u

has an outgoing edge (u, v). Vertex v cannot have a path to ζ, so v ∈ X. Thus X contains
at least two vertices. Since all vertices in X have at least one outgoing edge, X must contain
a cycle. This contradicts the assumption that FT is acyclic.

Lemma 2 The weights of the edges along a directed path in FT form a non-increasing se-
quence. The weights of the edges along a directed cycle in FT are equal, and all other edges
incident to the cycle have weights larger than or equal to the weight of the cycle.

Proof 2 Consider a path u1 → u2 → u3 → . . . uk in FT . By definition, the weight wu1u2

is the spill-elevation Su1
of watershed u1 and wu2u3

is the spill-elevation Su2
of u2, that is,

wu1u2
= min{wu1v|(u1, v) ∈ GT} and wu2u3

= min{wu2v|(u2, v) ∈ GT}. Since GT must
contain an edge (u2, u1) with weight equal to wu1u2

, it follows that wu2u3
≤ wu1u2

. Similarly
we can prove that wuiui+1

≤ wui−1ui
for any i ∈ {2, ..., k − 1}.

If the path is a cycle we have uk = u1 and thus wu1u2
= wu2u3

= . . . = wuku1
. By

definition, (ui, ui+1) is the lightest edge in GT incident to ui. Thus any edge incident to ui

has at least the same weight as the weight of the cycle.

Lemma 3 If there is a directed path from vertex u to ζ in FT , the corresponding path exists
and is the lowest-height path from u to ζ in GT .

Proof 3 Let p1 = u → u1 . . . → ζ be a path from u to ζ in FT . By definition of FT the
corresponding (undirected) path also exists in GT . Assume, by contradiction, that there is a
lower path p2 = u → v1 . . . → ζ from u to ζ in GT . By Lemma 2 the maximum weight along
a path in FT is the weight of its first edge, so the height of p1 is wuu1

. The height of p2 is at
least wuv1

, and by construction of FT , wuu1
≤ wuv1

. Thus it follows that the height of p2 is
at least the same as the height of p1, contradicting the assumption.

1 Flooding with cycle contraction

We are now ready to discuss how to flood a terrain T , that is, how to find the height of the
lowest path from each vertex in GT to ζ . If FT is acyclic we have found these heights: every
vertex u in FT has a path to ζ (Lemma 1), this path is the lowest path from u to ζ in GT

(Lemma 3), and the height of the path is the weight of the first edge on it (Lemma 2), i.e.,
the spill-elevation Su of u. If FT is not acyclic, we may have computed the height of the
lowest-height path for some vertices in GT (the ones with a path to ζ in FT ). The following
lemma shows that the remaining paths can be computed using cycle contractions; a cycle-
contraction is the process of replacing a cycle u1 → u2... → uk = u1 in a graph with a vertex
u, and replacing all edges (ui, v) and (v, ui) with edges (u, v) and (v, u), respectively.

Lemma 4 The height of the lowest-height path from any vertex u to ζ in GT is invariant
under contraction of cycles present in both GT and FT .

2



Proof 4 Let u be an arbitrary vertex in GT and p the lowest-height path from u to ζ. Con-
sider contracting a cycle C in FT (and thus also in GT ). If C and p are disjoint, the path is
obviously not affected by the contraction. Consider the case where C and p are not disjoint;
since ζ is not on C, p must contain an edge leaving the cycle. Moreover, since C is in FT

the edges incident to C all have at least the same weight as the edges on C (Lemma 2).
Therefore contraction of C does not change the height of the lowest-height path from u to ζ.

It follows from Lemma 4 (and Lemma 1 through 3) that we can flood a terrain T by
repeatedly finding a cycle in FT , contracting the corresponding cycle in GT , and recom-
puting/updating FT (contracting the cycle and computing the new outgoing edge(s) of the
contracted vertex using GT ). When FT becomes acyclic all we then need to do to finish the
computation is to raise each watershed u in GT (and all watersheds merged into u by cycle
contractions) to the spill-elevation Su of u, that is, the height of u’s outgoing edge in FT .
The algorithm is sketched in Figure 1. A similar approach has been employed in a number
of algorithms [?, ?].

1. Initialize: Compute GT and FT from terrain T .

2. Contract: While FT is not acyclic do

• Find a cycle C in FT .

• Contract cycle corresponding to C in GT and compute the new spill-elevation
edge of the contracted vertex.

• Contract C in FT and insert the new spill-elevation edge in FT .

3. Find raise elevations: Raise each watershed u to Su, that is, to the weight of the
lightest edge incident to u in the final contracted graph G′

T .

Figure 1: Flooding with cycle contraction.

Intuitively, the above algorithm corresponds to repeatedly identifying two or more wa-
tersheds (a cycle in FT ) that will spill into each other when the terrain is flooded, and merge
(contract) them into one watershed. The problem with this approach is that it seems difficult
to predict the order in which the watersheds are merged, and therefore difficult to store FT

and GT such that cycle detection and contraction can be performed I/O-efficiently. If we are
not careful it may take O(W ) I/Os (and time) to identify and contract a cycle, where W is
the number of watersheds in the terrain. The contracted vertex and its outgoing edge may
create a new cycle which, in turn, requires O(W ) I/Os (and time) to identify and contract. A
straightforward implementation of these ideas thus leads to an algorithm having complexity
O(W 2) = O(N2).

3



2 Flooding with plane sweeping

The main idea of the improved flooding algorithm is to merge the watersheds in an order that
avoids the expensive computation of cycles and spill-elevations of the merged watersheds.
Intuitively, this order corresponds to simulating a process of uniform rise of a (subsurface)
water table; conceptually, the algorithm is a bottom-up sweep of the terrain with a hori-
zontal plane, simulating how water gradually fills watersheds as it rises uniformly across the
terrain. We imagine the level of water rising with the sweep plane, and when the water
level in a watershed u reaches a spill-point, it causes u to merge with an adjacent watershed
(Figure ??). If water can flow from this watershed to the outside watershed ζ , the water
level in u will not increase further (and we have found the lowest-height path from u to ζ).
Otherwise the level keeps rising with the sweep plane.

To perform the sweep, we process the edges in the watershed graph GT in increasing order
of weight (height). We say that a watershed is done when we have found the lowest-height
path from it to the outside watershed ζ . Initially only ζ is done. When processing edge
(u, v) with weight wuv (meaning that water can flow between watersheds u and v at height
wuv), we are in one of three situations:

1. Neither u nor v is done: We contract the edge (u, v) in GT .

This corresponds to merging the two watersheds u and v. Neither of them are marked
done since water still cannot flow from either of them to ζ .

2. Precisely one of u and v, say v, is done: We mark u as done.

Since water can flow from u to v at height wuv and then from v to ζ (v is done), it
means that water can flow from u to ζ . We will show that since edges are processed
in increasing order of weight (height), this path must be the lowest-height path from
u to ζ and has height wuv.

3. Both u and v are done: We ignore the edge.

We have already found the lowest-height path from u and v to ζ .

Below we prove (through a series of lemmas) that when we are done with the sweep,
all vertices in the final contracted graph G′

T are done and, as previously, all we need to
do to finish the flooding is to raise each watershed u (and all watersheds merged into u by
edge contractions) to the spill-elevation Su of u in G′

T , that is, to the weight of the minimal
weight edge incident to u in G′

T . The flooding algorithm is outlined in Figure 2. Note that
during the sweep all we really need to keep track of is what watersheds (vertices) have been
merged together and what watersheds are done. Unlike in the previous algorithm, we do not
need to explicitly detect cycles or find the lowest weight edge incident to a vertex after a
contraction. Even though we do not explicitly construct the flow graph FT , and even though
we contract edges instead of cycles, the final result of the algorithm is intuitively the same
as of the previous algorithm; by Lemma 2, all edges of a contracted cycle have the same
height. Therefore they are all hit by the sweep plane at the same time and processed after
each other, resulting in the whole cycle eventually being contracted.

4



1. Initialize: Mark ζ as done and all other vertices as not done.

2. Sweep: Construct a list with all edges in the watershed graph GT sorted by weight
(elevation). Scan through this list and for edge (u, v) do:

(a) If neither of u and v are done then contract edge (u, v).

(b) If precisely one of u and v is done then mark the other one as done.

(c) If u and v are both done then (ignore this edge and) continue with the next edge.

3. Find raise elevation: Raise each watershed u in the contracted watershed graph G′

T

to Su.

Figure 2: Outline of the flooding algorithm.

Lemma 5 If a watershed u in T has a path p to ζ in GT of height hp, then u is done when
the sweep has reached a height h ≥ hp.

Proof 5 Let p = (u = u0 → u1 → u2 . . . → uk−1 → uk = ζ) be a path from u to ζ. When the
sweep plane has reached height h > hp, every edge (ui, ui+1) of p has been processed. After
processing edge (ui, ui+1), ui and ui+1 are either merged together (case 1) or are both marked
done (case 2 or 3). Since uk = ζ is done, it follows by induction that ui is done for all i.

Lemma 6 If u gets marked done when the sweep reaches edge (u, v) of weight wuv, then the
lowest-height path p from u to ζ has height hp = wuv.

Proof 6 We first prove by induction on height (weight) that when u gets marked done there
is a path p from u to ζ of height wuv. This holds initially for ζ. Assume that it holds for
any height lower than wuv. If u gets marked done when the sweep reaches edge (u, v), then v

must already be marked done. It must have been marked done when the sweep plane reached
some height h′ < wuv. By induction hypothesis, this means that there is a path p′ from v to
ζ of height h′. Thus we have identified a path from u to ζ through v of height max{wuv, hp′}
= wuv.

Now assume by contradiction that wuv is not the height hp of the lowest path p from u to
ζ, i.e., that there is a lower path of height hp < wuv. Consider h such that hp ≤ h < wuv.
By Lemma 5, u is done when the sweep reaches height h, contradicting that u gets marked
done when reaching wuv.

That the last step of the algorithm (Step 3 in Figure 2) correctly floods the terrain T

now follows almost immediately.

Lemma 7 The height of the minimal-height path from a watershed u to ζ in GT is equal to
the minimal weight edge incident to u (or the vertex representing the watershed u has been
merged into) in the contracted watershed graph G′

T .

5



Proof 7 Assume that u was marked done when the sweep reached edge (u, v). By Lemma 6,
wuv is the height hp of the lowest path p from u to ζ. Since (u, v) is not contracted it must
exist in G′

T . Assume now that there exists a smaller weight edge (u, w) incident to u in G′

T .
Since (u, w) was not contracted, this leads to the contradiction that u must have been marked
done at a height h < wuw.

What is left to describe are the details of how we implement the algorithm efficiently.
More precisely, how we implement edge contraction. The natural way to contract an edge
(u, v) is to keep, say, vertex u and replace all edges (v, w) incident to v with edges (u, w)
incident to u. Unfortunately, this leads to an O(W 2) I/O algorithm, where W is the number
of watersheds in the terrain. We improve this to O(W ) by not actually contracting edges but
instead keeping track of what watersheds have merged. We represent the merged watersheds
as the connected components of a graph CT containing the same vertices as GT . Initially
CT has no edges and thus initially each watershed is a separate connected component. To
contract an edge (u, v) in GT , we add this edge to CT such that u and v are in the same
connected component. Note that if u and v were already in the same connected component,
the addition of the edge (u, v) does not change the connectivity of CT (we simply add the edge
without checking if u and v are in the same component since such a check could require several
I/Os). When a watershed u in GT is marked done, we traverse the connected component
in CT containing u and mark all the vertices (watersheds) done. Since we have computed
the height of the minimal-height path to ζ for vertices being marked done (Lemma 6), we
also store this height with each such vertex. After the vertices in a component are marked
done they are never traversed again. Since a component can be traversed using a in time
proportional with its size and since the size of CT is O(W ) (GT is planar), it follows that the
sweep uses O(W ) time in total. After the sweep, the connected components in CT represents
the vertices in G′

T . The detailed algorithm is given in Figure 3.

Theorem 1 Given the watershed graph GT of a terrain T , flooding can be computed in
O(sort(W ) + W ) time.

6



1. Initialize:

• Construct CT with a vertex for each vertex of GT and no edges.

• Mark ζ as done and all other vertices as not done.

2. Sweep: Construct a list with all the edges in the watershed graph GT sorted by weight
(height). Scan through this list and for each edge (u, v) do:

(a) If neither of u and v done then add edge (u, v) to CT .

(b) If v done and u not done then

• Compute connected component Cu containing u in CT .

• For every vertex w ∈ Cu, mark w as done and set its raise-value to wuv.

(c) If u done and v not done then

• Compute connected component Cv containing v in CT .

• For every vertex w ∈ Cv, mark w as done and set its raise-value to wuv.

(d) If both and v done then (ignore this edge and) continue with next edge.

Figure 3: Details of the flooding algorithm.

7


