
Computing intersections in a set of line
segments: the Bentley-Ottmann algorithm

Michiel Smid∗

October 14, 2003

1 Introduction

In these notes, we introduce a powerful technique for solving geometric prob-
lems. This technique, called the plane sweep technique, appears in Shamos’
Ph.D. thesis from 1978—which is considered the birthplace of computational
geometry—although the concept was known already to geometers. The plane
sweep technique gives efficient and reasonably simple algorithms for a large
variety of geometric problems. In many cases, the only data structures needed
are balanced binary search trees.

2 A general description of the plane sweep

technique

The basic idea of the plane sweep technique is as follows. Let S be a set of
planar objects for which we want to solve a given problem. We move (sweep)
a vertical line SL—the sweep line—from left to right over the elements of
S. During the sweep, we dynamically maintain (information based on) the
intersection SL ∩ S, which is a one-dimensional scene, and, simultaneously,
compute the desired information for parts of the set S. We maintain the
following invariant.

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

1

1. The output for those elements of S that are completely to the left of
the sweep line has been computed already.

2. There are data structures containing information needed to solve the
problem for the other elements of S, i.e., those elements that intersect
or are completely to the right of the sweep line.

If the sweep line is to the right of all elements of S, then the first part of the
invariant implies that we have solved our problem for the entire set S.

Let us consider this in some more detail. For any position of the sweep
line SL, let SSL be the set of elements of S that intersect SL. We maintain
these elements in a so-called Y -structure, which depends on the problem to
be solved. For many applications, the elements of SSL can be sorted with
respect to the y-coordinates of their intersections with the sweep line, and
the Y -structure is just a balanced binary search tree storing SSL according
to this order.

The Y -structure changes if

1. the sweep line encounters an element of S, in which case we have to
insert certain information into the Y -structure,

2. the sweep line encounters the rightmost part of an element of S, in
which case we have to delete certain information from the Y -structure,
or

3. the relative order of the elements of SSL on the sweep line changes,
in which case we have to interchange certain information in the Y -
structure.

The positions of the sweep line where the Y -structure changes are called
the transition points of the sweep. At the start of the sweep algorithm, certain
(sometimes even all) transition points are known already. The remaining
transition points are discovered during the sweep itself. In order to maintain
these transition points, we maintain a dynamic data structure, called the
X-structure. This structure must support the following operations.

1. Insertion of a new transition point.

2. Delete-min, i.e., find and delete the transition point with minimum x-
coordinate, which is the next transition point of the sweep algorithm.

2

3. In some applications, we also have to be able to delete an arbitrary
transition point.

In many applications, the X-structure is a balanced binary search tree or
just a linked list or array, containing the transition points sorted by their
x-coordinates.

The general description given above implies that the plane sweep tech-
nique reduces a static two-dimensional problem to a dynamic one-dimensional
problem. As we mentioned already, the latter dynamic problem can often
be solved using binary search trees. In the next section, we will apply this
technique to solve a basic geometric problem.

3 The line segment intersection problem

As a concrete (and classical) application of the plane sweep technique, we
consider the line segment intersection problem, which is defined as follows.

We are given a set S = {L1, L2, . . . , Ln} of n line segments in the plane.
Our task is to compute all pairs (Li, Lj), i 6= j, of segments that intersect.

A trivial solution to this problem considers all
(

n
2

)
pairs (Li, Lj), i 6= j,

and checks for each such pair if the two segments intersect. Clearly, this
algorithm has a running time of O(n2). This is worst-case optimal, because
there can be a quadratic number of intersecting pairs. We want, however, an
algorithm whose running time does not only depend on n, but also on the
number of intersections. That is, if there are few intersections, the algorithm
should be much faster than Θ(n2). As we will see, the plane sweep technique
gives us such an algorithm. This algorithm—which is probably the most fa-
mous algorithm in computational geometry—is due to Bentley and Ottmann
(1979). Its running time is O((n + k) log n), where k is the number of in-
tersecting pairs of segments. We say that this algorithm is output-sensitive,
because its running time does not only depend on n, but also on the size k
of the output.

Exercise 1 Let L and L′ be two line segments. Assume that each segment
is given by its two endpoints. How can we decide if L and L′ intersect and,
if they do, how can we compute their intersection?

3

3.1 The Bentley-Ottmann algorithm

We make the following simplifying assumptions about the input: (i) There are
no vertical segments, (ii) no two segments intersect at their endpoints, (iii)
no three (or more) segments have a common intersection, (iv) all endpoints
of the segments and all intersection points have different x-coordinates, and
(v) no two segments overlap. The algorithm that will be discussed in these
notes can be extended such that it also works if these assumptions are not
satisfied. (See the reference at the end of these notes.) The details, in
particular those that arise when implementing the algorithm, become more
complicated. Since these details do not give more insight into the plane sweep
technique, they are omitted here.

The figure below illustrates our assumptions. Assumption (ii) excludes
the left case, (iii) excludes a situation as in the middle, and (iv) excludes the
right case.

¡
¡

¡
¡

¡
¡

aaaaaaaa

³³³³³³³³³
@

@
@

@
@

@¢
¢
¢
¢
¢
¢

³³³³³³³³³
@

@
@

@
@

@

ÃÃÃÃÃÃÃÃ

In order to compute all intersecting pairs of segments, we move the ver-
tical sweep line SL from left to right, starting to the left of all segments, say
at position x = −∞. For any position of the sweep line, we partition the
segments into three groups.

1. Dead segments : these are the segments that are completely to the left
of SL.

2. Active segments : these are the segments that intersect SL.

3. Sleeping segments : these are the segments that are completely to the
right of SL.

First observe that the active segments can be sorted with respect to the y-
coordinates of their intersections with the sweep line. As we saw in Section 2,

4

the active segments will be maintained in a data structure called the Y -
structure. What are the transition points? In other words, when does the
order of the active segments on the sweep line change? This order changes if
the sweep line reaches the left or right endpoint of a segment, or if it reaches
the intersection of two segments. We want to maintain these transition points
in the X-structure. At the start of the algorithm, not all transition points
are known: at that moment, we only know the endpoints of the segments.
As we will see, the other transition points (the intersections of segments),
are discovered during the sweep, and will be inserted into the X-structure
(at some later stage, they will be deleted again).

Before we give the details, we need some definitions. Let L and L′ be two
active segments, and let p and p′ be their intersections with the sweep line
SL, respectively. Assume that p is below p′. Then we say that L and L′ are
neighbors on SL if there is no active segment L′′, different from L and L′,
whose intersection with SL is between p and p′. In this case, we say that L′

is the successor of L on SL, and L is the predecessor of L′ on SL.
During the sweep, we maintain the following three invariants.

Invariant 1: For any position of the sweep line SL, the Y -structure con-
tains all active segments, sorted with respect to the y-coordinates of their
intersections with SL.

Invariant 2: For any position of the sweep line SL, the X-structure contains
(i) all endpoints of sleeping segments, (ii) all endpoints to the right of SL
of active segments, and (iii) all intersections to the right of SL of active
segments that are neighbors on SL. The elements in the X-structure are
sorted by x-coordinate.

Invariant 3: For any position of the sweep line SL, all pairs of intersecting
dead segments have been reported.

In Section 3.3, we will see that we can take balanced binary search trees
for both the X-structure and the Y -structure.

As mentioned already, the sweep line starts at position x = −∞, and
then moves to the right, until it reaches position x = +∞. What happens if
the sweep line moves from one transition point to the next one? There are
three possible cases.

Case A: The sweep line encounters the left endpoint of a segment, say L.

5

©©©©©©©©©©©©

#
#

#
#

#
#

##HHHHHHHHHHHH

SL

LL′

L′′

A.1: Since L becomes active, we insert it into the Y -structure.

A.2: We search for the segment L′ in the Y -structure that is immediately
above L on SL (i.e., the successor of L). Similarly, we search for the
segment L′′ in the Y -structure that is immediately below L on SL (i.e.,
the predecessor of L). We assume for simplicity that both L′ and L′′

exist. Since L and L′ are neighbors on SL now, we test if they intersect.
If they do, we insert their intersection into the X-structure. Similarly,
we test if L and L′′ intersect and, if they do, insert their intersection
into the X-structure.

A.3: Since L′ and L′′ are not neighbors on SL any more, we test if they
intersect to the right of SL. If they do, we delete their intersection
from the X-structure.

Case B: The sweep line encounters the right endpoint of a segment, say L.

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

©©©©©©©©©©©©

@
@

@
@@

SL

L

L′

L′′

B.1: We search in the Y -structure for the successor L′ and the predecessor
L′′ of L. Again, we assume for simplicity that both L′ and L′′ exist.

6

B.2: We delete the segment L from the Y -structure.

B.3: We test if L′ and L′′ intersect to the right of SL. If they do, we insert
their intersection into the X-structure.

Case C: The sweep line encounters the intersection of two segments, say L1

and L2.

»»»»»»»»»»»»´
´

´
´

´
´

´
´

´
´

A
A
A
A
A
A
A
A
A
A
AA

SL

L1

L2

L′

L′′

Assume that immediately before the intersection, L2 is below L1 on the
sweep line.

C.1: We report the intersecting pair (L1, L2).

C.2: We search in the Y -structure for the successor L′ of L1 and the prede-
cessor L′′ of L2. We assume for simplicity that both L′ and L′′ exist.

C.3: We change the order of L1 and L2 in the Y -structure. In case L2 and
L′ intersect to the right of SL, we insert their intersection into the X-
structure. Similarly, in case L1 and L′′ intersect to the right of SL, we
insert their intersection into the X-structure.

C.4: If L1 and L′ (resp. L2 and L′′) intersect to the right of SL, then we
delete their intersection from the X-structure.

Remark 1 Steps A.3 and C.4, i.e., deleting intersections between segments
that are not neighbors on the sweep line any more, are not necessary for the
correctness of our algorithm. These steps guarantee that the X-structure
only contains intersections between segments that are neighbors on SL. As
a result, at any moment, the X-structure contains at most 3n − 1 points:
There are 2n endpoints of segments, and at most n − 1 neighboring active
segment pairs.

7

Algorithm Bentley Ottmann(S)
(∗ S is a set of n line segments in the plane ∗)
initialize an empty Y -structure;
sort the 2n endpoints of all segments by x-coordinate, and
store them in the X-structure;
(∗ the sweep line SL is at position x = −∞ ∗)
while X-structure 6= ∅
do let min be the minimum element in the X-structure;

delete min from the X-structure;
(∗ the sweep line SL moves to position x = min ∗)
if min is the left endpoint of a segment
then carry out the steps as specified in Case A
endif;
if min is the right endpoint of a segment
then carry out the steps as specified in Case B
endif;
if min is an intersection of two segments
then carry out the steps as specified in Case C
endif

endwhile
(∗ the sweep line SL is at position x = +∞ ∗)

Figure 1: The Bentley-Ottmann algorithm solving the line segment intersec-
tion problem.

The algorithm for computing all pairs of intersecting segments is given in
Figure 1. In the next sections, we will analyze this algorithm.

3.2 The correctness proof

Recall that the transition points of the sweep are (i) the endpoints of the
segments and (ii) the intersections between segments. It is clear that between
two transition points, the order of the active segments on the sweep line
does not change. Using this, it can be shown that during the while-loop,
Invariants 1 and 2 are correctly maintained. Intuitively, it should also be

8

clear that Invariant 3 is correctly maintained. We will prove this formally.

Lemma 1 During the while-loop, Invariant 3 is maintained.

Proof: Consider any position of the sweep line. We will show that each
intersection among the dead segments has appeared as minimum element in
the X-structure.

If this claim is true, then the third if-then statement in the algorithm
in Figure 1 implies that all intersections among the dead segments have
been reported. (Each such intersection is reported in an execution of this
statement.) Hence, it will prove that Invariant 3 holds.

The claim is proved by contradiction. Assume there is an intersection
among the dead segments that did not appear as minimum element in the X-
structure. Let p be the leftmost intersection with this property. Let L and L′

be the two dead segments that intersect in p. Let q be the rightmost transition
point to the left of p. Observe that q exists and that its x-coordinate is at
least equal to the x-coordinates of both endpoints of L and L′. Also, q
has appeared as minimum element in the X-structure. We consider what
happened at the moment when the sweep line just left q. At that moment,
L and L′ were both active and, hence, were both stored in the Y -structure.
We distinguish two cases.

Case 1: Immediately after the sweep line visited point q, the segments L
and L′ were neighbors on SL.

By Invariant 1, point p was contained in the X-structure at that moment.
Therefore, by our choice of q, point p was the next transition point. Hence,
immediately after we processed q, point p was the minimum element in the
X-structure. This is a contradiction.

Case 2: Immediately after the sweep line visited point q, the segments L
and L′ were not neighbors on SL.

In this case, there is an endpoint or intersection point r strictly between
p and q. Since r is a transition point, this is a contradiction to our choice
of q.

This proves the claim and, hence, the lemma.

Lemma 2 Algorithm Bentley Ottmann(S) computes all pairs of line seg-
ments of S that intersect.

9

Proof: At the end of the algorithm, the X-structure is empty, and the sweep
line is to the right of all segments. That is, at the end of the algorithm, all
segments are dead. The claim then follows from Invariant 3, which is correctly
maintained by the previous lemma.

Exercise 2 We have seen that our algorithm computes all pairs of intersect-
ing segments. Prove that each intersecting pair is reported exactly once. How
many times can an intersection be inserted and deleted in the X-structure?

3.3 Implementation of the X- and Y -trees and com-
plexity of the algorithm

Before we can analyze the running time of the algorithm, we have to give
some implementation details.

We take for the Y -structure a balanced binary search tree, in which we
store all active segments, sorted with respect to the y-coordinates of their
intersections with the sweep line. A segment L is given by its two endpoints
`L and rL. Each node of the tree stores the two endpoints of an active
segment.

Suppose the sweep line is at the position x = α. To search in the tree
with a y-coordinate β, we start in the root and walk down a path. At each
node (storing, say, the segment L), we use left/right turn tests, using the
three points `L, rL, and (α, β), to decide whether to proceed to the left or
right child.

Hence, we can search in the Y -structure in time that is proportional to
the logarithm of the number of segments stored in it. Since the Y -structure
contains at most n − 1 segments, the search time is O(log n). Similarly, we
can in O(log n) time find the successor and predecessor of a segment, and
insert and delete a segment. To change the order of two segments L1 and L2

in the Y -structure, we first search for the nodes u and v, respectively, that
contain these segments. Then we write the two endpoints of L1 in v, and the
two endpoints of L2 in u. Hence, changing the order of two segments can
also be done in O(log n) time.

The X-structure contains a subset of the endpoints and intersections
between segments. We have to able to insert and delete points, and to
find and delete the element with minimum x-coordinate. We again take a
balanced binary search tree to implement this data structure. Observe that

10

at any time, the X-structure contains at most 3n − 1 elements. Therefore,
each operation takes O(log n) time.

Now we can bound the running time of algorithm Bentley Ottmann(S).
In the initialization step, we sort the 2n endpoints of the segments by x-
coordinate, and store them in a binary search tree. This takes O(n log n)
time. Let k be the number of intersections among the segments. Then the
while-loop of the algorithm makes 2n + k iterations. In each iteration, a
constant number of operations are performed in the X- and Y -structures.
That is, each iteration takes O(log n) time. It follows that the total running
time of the algorithm is

O(n log n) + (2n + k) ·O(log n) = O((n + k) log n).

How much space does the algorithm use? The X- and Y -structures both have
size O(n). Clearly, it takes O(k) space to store all k intersections. Hence,
the algorithm uses O(n + k) space.

There are applications in which an intersection is sent to the output at
the moment when it is reported. In such applications, we do not count the
number of intersections in the space bound, because they are not actually
kept in memory. We only count the size of the data structures and speak
about the amount of working space used. In our case, the algorithm uses
O(n) working space. We have proved the following result.

Theorem 1 We can compute the k intersections in a set of n line segments
in the plane in O((n + k) log n) time, using O(n) working space.

4 Remarks

We have described the Bentley-Ottmann algorithm for line segments that
satisfy the assumptions mentioned at the beginning of Section 3.1. Unfor-
tunately, these assumptions are not realistic in real life and, as a result,
implementing the algorithm leads to non-trivial problems. Another source
of problems is the finite precision arithmetic of real computers.

Bartuschka, Mehlhorn and Näher have given a robust and exact imple-
mentation of the Bentley-Ottmann algorithm. This implementation is guar-
anteed to give the correct and exact solution for any set of line segments.
The paper can be found at

http://www.dsi.unive.it/~wae97/proceedings/

11

The Bentley-Ottmann algorithm has a running time of O((n + k) log n),
which is not optimal. In 1988, Chazelle and Edelsbrunner showed how to
solve the line segment intersection problem optimally, i.e., in O(n log n + k)
time. This algorithm, however, is much more complicated. Simpler, but
randomized, algorithms are known that solve the problem in O(n log n + k)
expected time. The reader is referred to the books by Mulmuley and by
Boissonnat and Yvinec.

12

