Sea Level Rise

Maddie Baird, Adam Gordon, Walker Kennedy, and Gina Stalica GIS Algorithms and Data Structures December 11, 2014

Background refresher

- Sea level is RISING!
- We read many papers, finally came down to two algorithms
 - Watershed
 - Coastline
- Decided to implement coastline

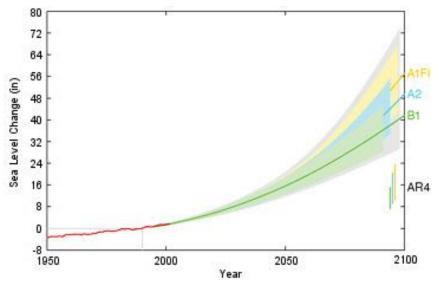
Goals

- Implement algorithm for modelling sea level rising using coastline identification method
- Visualize change in sea level
- Add on as much as time permits!
 - Model hazard zones (hurricane, tidal waves, etc.)
 - Add transparency rendering code so as to model "before" and "after" ocean graphics
 - Take year as input
 - Any speed-ups

Challenges

- Stack overflow
- Working with a render code that was previously written
 Having to both understand and advance it
- Handling weird ASCII data inputs
 - Some of the data sets we used had "-1.#IND" at certain points instead of NODATA or floats...what is dis?
 - Caused weird render bugs

Computational Run time


- Parameters: Rise of 5 meters
- Tested on North Carolina Coastal DEM (<u>http://geodata.</u> <u>lib.ncsu.edu/NCElev/</u>)
 - On grid of 36 million cells: 21.3 seconds
 - On grid of 80 million cells: 49.2 seconds
 - On grid of over 161 million cells: 69.344 seconds

Results

Real world applications

 Similar models could be used to predict and plan for the inevitable climate change of the future

