Algorithms for GIS:

Computing visibility on terrains

Visibility on terrains

- Are two points (on a terrain) visible to each other?
- What can one see from a given point (on a terrain)?
- How much does the visible area increase if we stand on a 10 ft ladder?
- What is the point with largest visibility?
- What is the point with lowest visibility?
- How to place an ugly pipe in a scenic area?
- How to place a scenic highway?
- What is the cumulative visible area from these set of cell towers?
- Find a set of tower locations to cover the terrain

Visibility on terrains

Problem:

- Terrain T + viewpoint v
- Compute the viewshed of v : the set of points in T visible from v

Visibility on terrains

Input: terrain model (DEM = digital elevation model)

- grid
- TIN (triangulation)

Output: viewshed model

- grid elevation model ==> grid viewshed
- TIN elevation model ==> TIN viewshed

Visibility on grid terrains

Visibility

Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

- For each p in grid
- compute intersections between vp and grid lines
- if all these points are below $v p$ then p is visible

Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

- For each p in grid
- compute intersections between vp and grid lines
- if all these points are below $v p$ then p is visible

Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

- For each p in grid
- compute intersections between vp and grid lines
- if all these points are below $v p$ then p is visible
Assume grid of n points
$(\sqrt{n} \times \sqrt{n})$
Running time: $O(n \sqrt{n})$

Viewshed on grids

- The straightforward O (n sqrt n) algorithm
- uses linear interpolation
- "exact" as much as data allows
- Better?
- Van Kreveld, using different model
- nearest neighbor interpolation
- O ($\mathrm{n} \lg \mathrm{n}$)

Grids with linear interpolation

Grids with nearest neiahbor interpolation

20	23	25	26	32	46
21	20	24	28	41	46
24	21	23	31	36	36
23	22	24	27	33	34
32	22	29	30	35	34
29	30	33	34	36	37
2					

20	23	25	26	32	46
21	20	24	28	41	46
24	21	23.	31	36	
23	22	24		33	34
32			30	35	34
	30	33	34	36	37

20	23	25	26	32	46
21	20	24	28	41	46
24	21.	23	31.	36	
23	22	24		33	34
32	22		30	35	34
	30	33	34	36	37

vertical slope(p,a) = (h_p - h_a) / d(a,p)

20	23	25	26	32	46
21	20	24	28	41	46
24	21.	23	31.	36	
23	22	24		33	34
32	22		30	35	34
	30	33	34	36	37

20	23	25	26	32	46
21	20	24	28	41	46
24	21	23	31		
23	22	24		33	34
32			30	35	34
	30	33	34	36	37

future

Van Kreveld's radial sweep algorithm

Van Kreveld's radial sweep algorithm

Van Kreveld's radial sweep algorithm

Van Kreveld's radial sweep algorithm

Accuracy!!

