
Algorithms for GIS:!
!

Terrain simplification

Grid terrain models

thanks!!! to H. Haverkort

Motivation

• grid to TIN
• uniform resolution means a lot of data redundancy
• grids get very large very fast

• point cloud to grid
• point cloud to TIN

• Example:
• Area if approx. 800 km x 800 km
• Sampled at:

• 100 resolution: 64 million points (128MB)!
• 30m resolution: 640 (1.2GB)
• 10m resolution: 6400 = 6.4 billion (12GB)
• 1m resolution: 600.4 billion (1.2TB)

Surface data: grid vs TIN

Raster!
• Pros:

• implicit topology
• implicit geometry
• simple algorithms
• readily available in this form

• Cons:
• uniform resolution ==> space

waste

TIN!
• Pros:

• variable resolution
• potentially space efficient

• Cons:
• need to built and store topology
• stored topology takes space

!
• more complex programming

(pointers..);

Terrain simplification

• P = { (x_1, y_1, z_1), (x_2, y_2, z_2), ……, (x_n, y_n, z_n) } a set of terrain elevation samples
• For e.g. P could be a set of grid (aerial image) or in general a point cloud (from LIDAR)
• sometimes called a “height field” (in graphics and vision)

• P + interpolation method ===> surface Surf(P) corresponding to P

Simplification:
!
find an approximation S(P’) which approximates S(P) within the desired error
threshold using as few points as possible
!

S(P) has n points ==> S(P’) has m points (m << n)

P
Surf(P)

P’
Surf(P’)

n points m points

dist(S(P}, S(P’)) < epsilon

 epsilon=given error threshold

Grid to TIN

Grid-to-TIN simplification

• We’ll focus on grid-to-TIN simplification
• The methods can be extended to deal with arbitrary (non-grid) data

• Methods
• Multi-pass decimation methods

• start with P and discard points (one by one)
• E.g.: Lee’s drop heuristic

• Multi-pass refinement methods
• start with an initial approximation and add points one by one
• greedy insertion (e.g. Garland & Heckbert)

• One-pass methods
• pre-compute importance of points
• select points that are considered important features and triangulate them
• based on quad trees or kd-trees

Decimation: Lee’s drop heuristic

Refinement: Greedy insertion
• Notation:

• P = set of grid points
• P’ = set of points in the TIN
• TIN(P’): the TIN on P’

Algorithm:
• P = {all grid points}, P’ = {4 corner points}
• Initialize TIN to two triangles with corners as vertices
• while not DONE() do

• for each point p in P, compute error(p)
• select point p with largest error(p)
• insert p in P’ , delete p from P, and update TIN(P’)

DONE() :: return (max error below given epsilon) ? TRUE; FALSE;

Greedy insertion

• Come up with a straightforward implementation of the generic greedy
insertion and analyze its running time.

!
• Assume straightforward triangulation (not Delaunay)

• when inserting a point in a triangle, split the triangle in 3

Greedy insertion
 | P | | P’ |

 n 4 => O(1)

iteration 1 n-1 1 + O(1)

iteration 2 n-2 2 + O(1)

 . .

 . .

iteration k n-k k

at the end n-m m

• Note:
• m = nb of vertices in the simplified TIN at the end (when error of P’ falls below epsilon)
• usually m is a fraction of n (e.g. 5%)

Greedy insertion— VERSION 1

Algorithm:
• P = {all grid points}, P’ = {4 corner points}
• Initialize TIN to two triangles with 4 corners as vertices
• while not DONE() do

• for each point p in P, compute error(p)
• select point p with largest error(p)
• insert p in P’, delete p from P and update TIN(P’)

• create 3 new triangles

find triangle that contains p and compute the vertical difference in height
between p and its interpolation on the triangle

Greedy insertion— VERSION 1

ANALYSIS: At iteration k: we have O(n-k) points in P, O(k) points in P’
• RE-CALCULATION

• compute the error of a point: must search through all triangles to see which one contains it
==> worst case O(k)

• compute errors of all points ==> O(n-k) x O(k)

!
• SELECTION: select point with largest error: O(n-k)

!
• INSERTION: insert p in P’, update TIN ==> O(1)

• unless each point stores the triangle that contains it, need to find the triangle that contains p
• for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1)

time

Algorithm:

• P = {all grid points}, P’ = {4 corner points}

• Initialize TIN to two triangles with 4 corners as vertices

• while not DONE() do

• for each point p in P, compute error(p)

• select point p with largest error(p)

• insert p in P’, delete p from P and update TIN(P’)

• create 3 new triangles

RE-CALCULATION
SELECTION
INSERTION

Greedy insertion— VERSION 1

Analysis worst case:
• iteration k: O((n-k) x k) + O(n-k) + O(1)

!
!

• overall: SUM { (n-k) x k } = …= O(m2n)

!
• Note: dominant cost is re-calculation of errors (which includes point location)

!
• More on point location:

• to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle
to triangle, starting from a triangle on the boundary (aka DFS on the triangle graph).

• we must be very unlucky to always take O(k)
• simple trick: start walking the TIN from the triangle that contained the previous point.

• because points in the grid are spatially adjacent, most of the time a point will fall in the
same triangle as the previous point or in one adjacent to it

• average time for point location will be O(1)

RE-CALC SELECT INSERT

Greedy insertion— VERSION 1

Worst-case: O(m2n)
• iteration k: O(n-k) x O(k) + O(n-k) + O(1)

!
!

• overall: SUM {O(n-k) x k} = O(m2n)

!
Average case: O(mn)

• trick to seed up point location ==> average time for point location will be O(1)
• iteration k: O(n-k) x O(1) + O(n-k) + O(1)

!
!

• SUM {O(n-k)} = O(mn)

RE-CALC

RE-CALC

SELECT

SELECT

INSERT

INSERT

Greedy insertion— VERSION 2

Algorithm:

• P = {all grid points}, P’ = {4 corner points}

• Initialize TIN to two triangles with 4 corners as vertices

• while not DONE() do

• for each point p in P, compute error(p)

• select point p with largest error(p)

• insert p in P’, delete p from P and update TIN(P’)

• create 3 new triangles

• for all points in triangle that contains p:

• find the new triangles where they belong, re-compute their errors

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.

!
!

• Re-compute errors ONLY for points whose errors have changed
• Each point p in P stores its error, error(p)
• Each triangle stores a list of points inside it

Greedy insertion— VERSION 2

Worst-case: O(mn)
• iteration k: - + O(n-k) + O(1) + O(n-k) x O(1)

!
!

• overall: SUM {O(n-k) } = O(mn)

!
Average case: O(mn)

• if points are uniformly distributed in the triangles ==> O((n-k)/k) points per
triangle

• iteration k: - + O(n-k) + O(1) + O((n-k)/k) x O(1)

!
!

• SUM {O(n-k) + O((n-k)/k} = O(mn)

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

SELECTION will be dominant!

Greedy insertion— VERSION3

Algorithm:

• P = {all grid points}, P’ = {4 corner points}

• Initialize TIN to two triangles with 4 corners as vertices

• while not DONE() do

• use heap to select point p with largest error(p)

• insert p in P’, delete p from P and update TIN(P’)

• for all points in the triangle that contains p:

• find the new triangles where they belong, re-compute their errors

• update new errors in heap

• Version2, re-calculation goes down and selection becomes dominant

!
• Version 3: improve selection

• store a heap of errors of all points in P

Greedy insertion— VERSION 3

Worst-case: O(mn lg n)
• iteration k: - + O(lg (n-k)) + O(1) + O(n-k) x O(lg (n-k))

!
!

• overall: SUM {(n-k) lg (n-k)} = O(mn lg n)

!
Average case: O((m+n) lg2 n)

• if points are uniformly distributed in the triangles ==> O((n-k)/k) points per
triangle

• iteration k: - + O(lg (n-k)) + O(1) + O((n-k)/k) x O(lg (n-k))

!
!

• SUM {lg (n-k) + O((n-k)/k} = O((m+n) lg2 n)

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

heap updates will be dominant!

Greedy insertion— VERSION 4

• Version 3: selection is down, but updating the heap is now dominant

!
• Version 4: store in heap only one point per triangle (point of largest error)

Algorithm:

• P = {all grid points}, P’ = {4 corner points}

• Initialize TIN to two triangles with 4 corners as vertices

• while not DONE() do

• use heap to select point p with largest error(p)

• insert p in P’, delete p from P and update TIN(P’)

• for all points in the triangle that contains p:

• find the new triangles where they belong, re-compute their errors

• find point with largest error per triangle

• add these points (one per triangle) to the heap

Greedy insertion— VERSION 4

Worst-case: O(mn)
• iteration k: - + O(lg k) + O(1) + O(n-k)xO(1) + O(1) x O(lg k)

!
!

• overall: SUM {lg k + O(n-k) } = O(mn)

!
Average case: O((m+n) lg n)

• if points are uniformly distributed in the triangles ==> O((n-k)/k) points per
triangle

• iteration k: - + O(lg k) + O(1) + O((n-k)/k)x O(1) + O(1) x O(lg k)

!
!

• SUM {lg k + O((n-k)/k} = O((m+n) lg n)

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

Triangulation vs Delaunay triangulation

