
Algorithms for GIS:!
!

Terrain simplification



Grid terrain models

thanks!!! to H. Haverkort



Motivation

• grid to TIN  
• uniform resolution means a lot of data redundancy  
• grids get very large very fast  

• point cloud to grid  
• point cloud to TIN

• Example:    
• Area if approx. 800 km x 800 km 
• Sampled at: 

• 100 resolution:  64 million points   (128MB)!
• 30m resolution:  640                       (1.2GB) 
• 10m resolution:  6400 = 6.4 billion (12GB) 
• 1m resolution:  600.4 billion            (1.2TB)



Surface data: grid vs TIN

Raster!
• Pros:  

• implicit topology 
• implicit geometry 
• simple algorithms 
• readily available in this form  

• Cons:  
• uniform resolution ==> space 

waste

TIN!
• Pros:  

• variable resolution 
• potentially space efficient 

• Cons:  
• need to built and store topology 
• stored topology takes space 

!
• more complex programming 

(pointers..);  



Terrain simplification

•  P = { (x_1, y_1, z_1), (x_2, y_2, z_2), ……, (x_n, y_n, z_n) } a set of terrain elevation samples 
• For e.g. P could be a set of grid (aerial image) or in general a point cloud (from LIDAR) 
• sometimes called a “height field” (in graphics and vision) 

• P  + interpolation method  ===>  surface Surf(P) corresponding to P

Simplification:  
!
find an approximation  S(P’) which approximates S(P) within the desired error 
threshold using as few points as possible 
!

S(P) has n points   ==> S(P’) has m points  (m << n)

P
Surf(P)

P’
Surf(P’)

n points m points

dist(S(P}, S(P’)) < epsilon

 epsilon=given error threshold



Grid to TIN



Grid-to-TIN simplification 

• We’ll focus on grid-to-TIN simplification  
• The methods can be extended to deal with arbitrary (non-grid) data  

• Methods 
• Multi-pass decimation methods 

• start with P and discard points (one by one) 
• E.g.: Lee’s drop heuristic 

• Multi-pass refinement methods 
• start with an initial approximation  and add points one by one  
•  greedy insertion  (e.g. Garland & Heckbert) 

• One-pass methods  
• pre-compute importance of points  
• select points that are considered important features and triangulate them 
• based on quad trees or kd-trees



Decimation: Lee’s drop heuristic



Refinement: Greedy insertion
• Notation:  

• P = set of grid points 
• P’ = set of points in the TIN   
• TIN(P’): the TIN on P’

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’ , delete p from P, and  update TIN(P’) 

DONE() :: return  (max error below given epsilon) ? TRUE; FALSE; 



Greedy insertion

• Come up with a straightforward implementation of the generic greedy 
insertion and analyze its running time.  

!
• Assume straightforward triangulation (not Delaunay) 

• when inserting a point in a triangle,  split the triangle in 3



Greedy insertion
     | P |                      | P’ | 

     n                     4 => O(1) 

iteration 1   n-1    1 + O(1)  

iteration 2   n-2                       2 + O(1)  

     .                           . 

     .                           . 

iteration k    n-k                       k

    

at the end    n-m                       m

• Note:  
• m = nb of vertices in the simplified TIN at the end  (when error of P’ falls below epsilon) 
• usually m is a fraction of n (e.g. 5%)



Greedy insertion— VERSION 1

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with 4 corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p)  
• select point p with largest error(p) 
• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

find triangle that contains p and compute the vertical difference in height 
between p and its interpolation on the triangle



Greedy insertion— VERSION 1

ANALYSIS:   At iteration k:  we have O(n-k) points in P, O(k) points in P’ 
• RE-CALCULATION  

• compute the error of a point:     must search through all triangles to see which one contains it  
==> worst case O(k) 

• compute errors of all points ==> O(n-k) x O(k) 

!
• SELECTION:  select point with largest error: O(n-k)  

!
• INSERTION: insert p in P’, update TIN  ==> O(1)  

• unless each point stores the triangle that contains it, need to find the triangle that contains p 
• for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1) 

time

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

RE-CALCULATION
SELECTION
INSERTION



Greedy insertion— VERSION 1

Analysis worst case:   
• iteration k:   O((n-k) x k)  + O(n-k) + O(1) 

!
!

• overall: SUM { (n-k) x k } = …= O(m2n) 

!
• Note: dominant cost is re-calculation of errors  (which includes point location)  

!
• More on point location:  

• to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle  
to triangle, starting from a triangle on the boundary  (aka DFS on the triangle graph).  

• we must be very unlucky to always take O(k)  
• simple trick:  start walking the TIN from the triangle that contained the previous point.  

• because points in the grid are spatially adjacent, most of the time a point will fall in the 
same triangle as the previous point or in one adjacent to it 

• average time for point location will be O(1) 

RE-CALC SELECT INSERT



Greedy insertion— VERSION 1

Worst-case:  O(m2n) 
• iteration k:   O(n-k) x O(k)  +  O(n-k)   +    O(1) 

!
!

• overall: SUM  {O(n-k) x k} = O(m2n)  

!
Average case:  O(mn) 

• trick to seed up point location ==> average time for point location will be O(1)  
• iteration k:  O(n-k) x O(1)  + O(n-k)      + O(1) 

!
!

• SUM  {O(n-k)} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT

INSERT



Greedy insertion— VERSION 2

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles 

• for all points in triangle that contains p: 

•  find the new triangles where they belong, re-compute their errors  

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.  

!
!

• Re-compute errors ONLY for points whose errors have changed 
• Each point p in P stores its error, error(p) 
• Each triangle stores a list of points inside it 



Greedy insertion— VERSION 2

Worst-case:  O(mn) 
• iteration k:             -        +  O(n-k)  +  O(1)  + O(n-k) x O(1) 

!
!

• overall: SUM  {O(n-k) } = O(mn)  

!
Average case:  O(mn) 

• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 
triangle 

• iteration k:           -       +    O(n-k) + O(1) + O((n-k)/k) x O(1) 

!
!

• SUM  {O(n-k)  + O((n-k)/k} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

SELECTION will be dominant!



Greedy insertion— VERSION3

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors  

• update new errors in heap

• Version2, re-calculation goes down and selection becomes dominant  

!
• Version 3:  improve selection  

• store a heap of errors of all points in P



Greedy insertion— VERSION 3

Worst-case:  O(mn lg n) 
• iteration k:             -       + O(lg (n-k))  +  O(1)  + O(n-k) x O(lg (n-k)) 

!
!

• overall: SUM  {(n-k) lg (n-k)} = O(mn lg n)  

!
Average case:  O((m+n) lg2 n) 

• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 
triangle 

• iteration k:           -       +   O(lg (n-k)) + O(1) + O((n-k)/k) x O(lg (n-k)) 

!
!

• SUM  {lg (n-k)  + O((n-k)/k} = O((m+n) lg2 n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

heap updates will be  dominant!



Greedy insertion— VERSION 4

• Version 3:   selection is down, but updating the heap is now dominant  

!
• Version 4:  store in heap only one point per triangle (point of largest error) 

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors 

• find point with largest error per triangle   

• add these points (one per triangle) to the heap



Greedy insertion— VERSION 4

Worst-case:  O(mn) 
• iteration k:             -       + O(lg k)  +  O(1)  + O(n-k)xO(1) + O(1) x O(lg k) 

!
!

• overall: SUM  {lg k + O(n-k) } = O(mn)  

!
Average case:  O((m+n) lg n) 

• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 
triangle 

• iteration k:      -       +   O(lg k) +   O(1) + O((n-k)/k)x O(1) + O(1) x O(lg k) 

!
!

• SUM  {lg k  + O((n-k)/k} = O((m+n) lg n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc



Triangulation vs Delaunay triangulation


