Algorithms for GIS:

Terrain simplification

Grid terrain models

Motivation

- grid to TIN
- uniform resolution means a lot of data redundancy
- grids get very large very fast
- point cloud to grid
- point cloud to TIN
- Example:
- Area if approx. $800 \mathrm{~km} \times 800 \mathrm{~km}$
- Sampled at:
- 100 resolution: 64 million points (128MB)
- 30m resolution: 640
(1.2GB)
- 10 m resolution: $6400=6.4$ billion (12GB)
- 1m resolution: 600.4 billion

Surface data: grid vs TIN

Raster

- Pros:
- implicit topology
- implicit geometry
- simple algorithms
- readily available in this form
- Cons:
- uniform resolution ==> space waste

TIN

- Pros:
- variable resolution
- potentially space efficient
- Cons:
- need to built and store topology
- stored topology takes space
- more complex programming (pointers..);

Terrain simplification

- $P=\left\{\left(x _1, y _1, z_{-} 1\right),\left(x _2, y _2, z _2\right), \ldots . .\right.$. , (x_n, y_n, z_n) $\}$ a set of terrain elevation samples
- For e.g. P could be a set of grid (aerial image) or in general a point cloud (from LIDAR)
- sometimes called a "height field" (in graphics and vision)
- $P+$ interpolation method $===>$ surface $\operatorname{Surf}(P)$ corresponding to P

Simplification:
find an approximation $S\left(P^{\prime}\right)$ which approximates $S(P)$ within the desired error threshold using as few points as possible

$$
S(P) \text { has } n \text { points }==>S\left(P^{\prime}\right) \text { has } m \text { points }(m \ll n)
$$

Grid to TIN

Grid-to-TIN simplification

- We'll focus on grid-to-TIN simplification
- The methods can be extended to deal with arbitrary (non-grid) data
- Methods
- Multi-pass decimation methods
- start with P and discard points (one by one)
- E.g.: Lee's drop heuristic
- Multi-pass refinement methods
- start with an initial approximation and add points one by one
- greedy insertion (e.g. Garland \& Heckbert)
- One-pass methods
- pre-compute importance of points
- select points that are considered important features and triangulate them
- based on quad trees or kd-trees

Decimation: Lee's drop heuristic

Refinement: Greedy insertion

Algorithm:

- Notation:
- $P=$ set of grid points
- $P^{\prime}=$ set of points in the TIN
- TIN(P'): the TIN on P^{\prime}
- $P=\{$ all grid points $\}, P^{\prime}=\{4$ corner points $\}$
- Initialize TIN to two triangles with corners as vertices
- while not DONE() do
- for each point p in P , compute $\operatorname{error}(\mathrm{p})$
- select point p with largest error(p)
- insert p in P^{\prime}, delete p from P, and update TIN(P')

Greedy insertion

- Come up with a straightforward implementation of the generic greedy insertion and analyze its running time.
- Assume straightforward triangulation (not Delaunay)
- when inserting a point in a triangle, split the triangle in 3

Greedy insertion

	$\|P\|$	$\left\|P^{\prime}\right\|$
	n	$4=>\mathrm{O}(1)$
iteration 1	$\mathrm{n}-1$	$1+\mathrm{O}(1)$
iteration 2	$\mathrm{n}-2$	$2+\mathrm{O}(1)$
	\cdot	\cdot
iteration k	$\mathrm{n}-\mathrm{k}$	\cdot
	k	
at the end	$\mathrm{n}-\mathrm{m}$	m

- Note:
- $m=n b$ of vertices in the simplified TIN at the end (when error of P^{\prime} falls below epsilon)
- usually m is a fraction of n (e.g. 5%)

Greedy insertion— VERSION 1

Algorithm:

- $P=\{$ all grid points $\}, P^{\prime}=\{4$ corner points $\}$
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
- for each point p in P , compute $\operatorname{error}(\mathrm{p})$
- select point p with largest error(p)
- insert p in P^{\prime}, delete p from P and update TIN($\left.P^{\prime}\right)$
- create 3 new triangles
find triangle that contains pand compute the vertical difference in height between p and its interpolation on the triangle

ANALYSIS: At iteration k : we have $O(n-k)$ points in $P, O(k)$ points in P^{\prime}

- RE-CALCULATION
- compute the error of a point: must search through all triangles to see which one contains it ==> worst case O(k)
- compute errors of all points $==>O(n-k) \times O(k)$
- SELECTION: select point with largest error: O(n-k)
- INSERTION: insert p in P', update TIN ==> O(1)
- unless each point stores the triangle that contains it, need to find the triangle that contains p
- for a straightforward triangulation: split the triangle that contains p into 3 triangles $==>O(1)$ time

Greedy insertion— VERSION 1

Analysis worst case:

- iteration $k: O((n-k) \times k)+O(n-k)+O 61)$

- overall: $\operatorname{SUM}\{(n-k) \times k\}=\ldots=O\left(m^{2} n\right)$
- Note: dominant cost is re-calculation of errors (which includes point location)
- More on point location:
- to locate the triangle that contains a given point, we "walk" (traverse) the TIN from triangle to triangle, starting from a triangle on the boundary (aka DFS on the triangle graph).
- we must be very unlucky to always take $O(k)$
- simple trick: start walking the TIN from the triangle that contained the previous point.
- because points in the grid are spatially adjacent, most of the time a point will fall in the same triangle as the previous point or in one adjacent to it
- average time for point location will be $\mathrm{O}(1)$

Greedy insertion— VERSION 1

Worst-case: O(m²n)

- iteration $k: O(n-k) \times O(k)+O(n-k)+O(1)$

- overall: SUM $\{O(n-k) \times k\}=O\left(m^{2} n\right)$

Average case: O(mn)

- trick to seed up point location ==> average time for point location will be $\mathrm{O}(1)$
- iteration $k: O(n-k) \times O(1)+O(n-k)+O(1)$

- $\operatorname{SUM}\{O(n-k)\}=O(m n)$

Greedy insertion— VERSION 2

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.

- Re-compute errors ONLY for points whose errors have changed
- Each point p in P stores its error, error(p)
- Each triangle stores a list of points inside it

Algorithm:

- $\quad P=\{$ all grid points $\}, P^{\prime}=\{4$ corner points $\}$
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
- for each point pin P, compute orror(p)
- select point p with largest error(p)
- insert p in P^{\prime}, delete p from P and update $\operatorname{TIN}\left(P^{\prime}\right)$
- create 3 new triangles
- for all points in triangle that contains p :
- find the new triangles where they belong, re-compute their errors

Greedy insertion— VERSION 2

Worst-case: $\mathrm{O}(\mathrm{mn})$

- iteration k:

- overall: SUM $\{O(n-k)\}=O(m n)$

Average case: O(mn)

- if points are uniformly distributed in the triangles $==>\mathrm{O}((n-k) / k)$ points per triangle
- iteration k :

- SUM $\{O(n-k)+O((n-k) / k\}=O(m n)$

Greedy insertion— VERSION3

- Version2, re-calculation goes down and selection becomes dominant \downarrow
- Version 3: improve selection
- store a heap of errors of all points in P

Algorithm:

- $P=\{$ all grid points $\}, P^{\prime}=\{4$ corner points $\}$
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
- use heap to select point p with largest error(p)
- insert p in P^{\prime}, delete p from P and update $\operatorname{TIN}\left(P^{\prime}\right)$
- for all points in the triangle that contains p :
- find the new triangles where they belong, re-compute their errors
- update new errors in heap

Greedy insertion— VERSION 3

Worst-case: $O(m n \lg n)$
$\begin{array}{cc}\text { - iteration } k: & -\quad+\mathrm{O}(\lg (n-k))+O(1)+O(n-k) \times O(\lg (n-k)) \\ & \text { RE-CALC SELECT }\end{array}$

- overall: SUM $\{(n-k) \lg (n-k)\}=O(m n \lg n)$

Average case: $O\left((m+n) \lg ^{2} n\right)$

- if points are uniformly distributed in the triangles $==>\mathrm{O}((n-k) / k)$ points per triangle
- iteration k :

Greedy insertion— VERSION 4

- Version 3: selection is down, but updating the heap is now dominant \downarrow
- Version 4: store in heap only one point per triangle (point of largest error)

Algorithm:

- $P=\{$ all grid points $\}, P^{\prime}=\{4$ corner points $\}$
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
- use heap to select point p with largest error(p)
- insert p in P^{\prime}, delete p from P and update $\operatorname{TIN}\left(P^{\prime}\right)$
- for all points in the triangle that contains p :
- find the new triangles where they belong, re-compute their errors
- find point with largest error per triangle
- add these points (one per triangle) to the heap

Greedy insertion— VERSION 4

Worst-case: O(mn)

- iteration k :

- overall: SUM $\{\lg \mathrm{k}+\mathrm{O}(\mathrm{n}-\mathrm{k})\}=\mathrm{O}(\mathrm{mn})$

Average case: $O((m+n) \lg n)$

- if points are uniformly distributed in the triangles $==>\mathrm{O}((n-k) / k)$ points per triangle

- SUM $\{\lg k+O((n-k) / k\}=O((m+n) \lg n)$

Triangulation vs Delaunay triangulation

