Algorithms for GIS:

Terrain simplification

Grid terrain models

thanks!!! to H. Haverkort

Motivation

- grid to TIN
 - uniform resolution means a lot of data redundancy
 - grids get very large very fast
- point cloud to grid
- point cloud to TIN

• Example:

- Area if approx. 800 km x 800 km
- Sampled at:
 - 100 resolution: 64 million points (128MB)
 - 30m resolution: 640 (1.2GB)
 - 10m resolution: 6400 = 6.4 billion (12GB)

(1.2TB)

• 1m resolution: 600.4 billion

Surface data: grid vs TIN

Raster

• Pros:

- implicit topology
- implicit geometry
- simple algorithms
- readily available in this form
- Cons:
 - uniform resolution ==> space waste

TIN

• Pros:

- variable resolution
- potentially space efficient
- Cons:
 - need to built and store topology
 - stored topology takes space
 - more complex programming (pointers..);

Terrain simplification

- P = { (x_1, y_1, z_1), (x_2, y_2, z_2),, (x_n, y_n, z_n) } a set of terrain elevation samples
 - For e.g. P could be a set of grid (aerial image) or in general a point cloud (from LIDAR)
 - sometimes called a "height field" (in graphics and vision)
- P + interpolation method ===> surface Surf(P) corresponding to P

Simplification:

find an approximation S(P') which approximates S(P) within the desired error threshold using as few points as possible

S(P) has n points ==> S(P') has m points (m << n)

Grid to TIN

Grid-to-TIN simplification

- We'll focus on grid-to-TIN simplification
 - The methods can be extended to deal with arbitrary (non-grid) data
- Methods
 - Multi-pass decimation methods
 - start with P and discard points (one by one)
 - E.g.: Lee's drop heuristic
 - Multi-pass refinement methods
 - start with an initial approximation and add points one by one
 - greedy insertion (e.g. Garland & Heckbert)
 - One-pass methods
 - pre-compute importance of points
 - select points that are considered important features and triangulate them
 - based on quad trees or kd-trees

Decimation: Lee's drop heuristic

Refinement: Greedy insertion

DONE() :: return (max error below given epsilon) ? TRUE; FALSE;

Greedy insertion

- Come up with a straightforward implementation of the generic greedy insertion and analyze its running time.
- Assume straightforward triangulation (not Delaunay)
 - when inserting a point in a triangle, split the triangle in 3

Greedy insertion

	P	P'
	n	4 => O(1)
iteration 1	n-1	1 + O(1)
iteration 2	n-2	2 + O(1)
	-	
iteration k	n-k	k
at the end	n-m	m

• Note:

• m = nb of vertices in the simplified TIN at the end (when error of P' falls below epsilon)

• usually m is a fraction of n (e.g. 5%)

Algorithm:

- P = {all grid points}, P' = {4 corner points}
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - for each point p in P, compute error(p)
 - select point p with largest error(p)
 - insert p in P', delete p from P and update TIN(P')
 - create 3 new triangles

find triangle that contains p and compute the vertical difference in height between p and its interpolation on the triangle

ANALYSIS: At iteration k: we have O(n-k) points in P, O(k) points in P'

- RE-CALCULATION
 - compute the error of a point: must search through all triangles to see which one contains it ==> worst case O(k)
 - compute errors of all points $=> O(n-k) \times O(k)$
- SELECTION: select point with largest error: O(n-k)
- INSERTION: insert p in P', update TIN => O(1)
 - unless each point stores the triangle that contains it, need to find the triangle that contains p
 - for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1) time

Analysis worst case:

• iteration k: $O((n-k) \times k) + O(n-k) + O(1)$

- overall: SUM { (n-k) × k } = ...= O(m²n)
- Note: dominant cost is re-calculation of errors (which includes point location)

• More on point location:

- to locate the triangle that contains a given point, we "walk" (traverse) the TIN from triangle to triangle, starting from a triangle on the boundary (aka DFS on the triangle graph).
- we must be very unlucky to always take O(k)
- simple trick: start walking the TIN from the triangle that contained the previous point.
 - because points in the grid are spatially adjacent, most of the time a point will fall in the same triangle as the previous point or in one adjacent to it
- average time for point location will be O(1)

Average case: O(mn)

- trick to seed up point location ==> average time for point location will be O(1)
- iteration k: O(n-k) × O(1) + O(n-k) + O(1)
 ▲ ▲
 ▲ ▲
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■<

• SUM
$$\{O(n-k)\} = O(mn)$$

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.

- Each point p in P stores its error, error(p)
- Each triangle stores a list of points inside it

Algorithm:

- P = {all grid points}, P' = {4 corner points}
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - for each point p in P, compute error(p)
 - select point p with largest error(p)
 - insert p in P', delete p from P and update TIN(P')
 - create 3 new triangles
 - for all points in triangle that contains p:
 - <u>find the new triangles where they belong, re-compute their errors</u>

Worst-case: O(mn) • iteration k: - + O(n-k) + O(1) + O(n-k) x O(1) • \mathbf{A} \mathbf{A} \mathbf{A} RE-CALC SELECT INSERT + re-calc • overall: SUM {O(n-k) } = O(mn)

Average case: O(mn)

 if points are uniformly distributed in the triangles ==> O((n-k)/k) points per triangle

• Version2, re-calculation goes down and selection becomes dominant

• store a heap of errors of all points in P

Algorithm:

- P = {all grid points}, P' = {4 corner points}
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - <u>use heap to select point p with largest error(p)</u>
 - insert p in P', delete p from P and update TIN(P')
 - for all points in the triangle that contains p:
 - find the new triangles where they belong, re-compute their errors
 - <u>update new errors in heap</u>

Worst-case: O(mn lg n) • iteration k: - + O(lg (n-k)) + O(1) + O(n-k) x O(lg (n-k)) • \mathbf{A} RE-CALC SELECT INSERT + re-calc • overall: SUM {(n-k) lg (n-k)} = O(mn lg n)

Average case: O((m+n) lg² n)

- if points are uniformly distributed in the triangles ==> O((n-k)/k) points per triangle
- iteration k: + O(lg (n-k)) + O(1) + O((n-k)/k) × O(lg (n-k)))
 RE-CALC
 SELECT
 INSERT + re-calc
 SUM {lg (n-k) + O((n-k)/k} = O((m+n) lg² n)
 heap updates will be dominant!

- Version 3: selection is down, but updating the heap is now dominant
- Version 4: store in heap only one point per triangle (point of largest error)

Algorithm:

- P = {all grid points}, P' = {4 corner points}
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - use heap to select point p with largest error(p)
 - insert p in P', delete p from P and update TIN(P')
 - for all points in the triangle that contains p:
 - find the new triangles where they belong, re-compute their errors
 - <u>find point with largest error per triangle</u>
 - add these points (one per triangle) to the heap

Average case: O((m+n) lg n)

- if points are uniformly distributed in the triangles ==> O((n-k)/k) points per triangle
- iteration k: + $O(\lg k) + O(1) + O((n-k)/k) \times O(1) + O(1) \times O(\lg k)$ A RE-CALC SELECT INSERT + re-calc
- SUM { $\lg k + O((n-k)/k$ } = O((m+n) $\lg n$)

Triangulation vs Delaunay triangulation