
Algorithms for GIS:!
!

Quadtrees



Quadtree

• A data structure that corresponds to a hierarchical subdivision of the plane  
• Start with a square (containing inside input data) 

• Divide into 4 equal squares (quadrants) 
• Continue subdividing each quadrant recursively 
• Subdivide a square until it satisfies a stopping condition:  

• a quadrant is “small” enough, for e.g. contains at most 1 point















Quadtrees

• Simple and versatile data structure 
• Lots of applications 
• Quadtree can be built for  

• points 
• edges 
• polygons 
• images 

• Generalizes to d dimensions 
• d=3: octree 

• Many variants of quadtrees have been proposed 
• Hundreds of papers



Point-quadtree

• Input: P 
• Problem: Store P in a quadtree 

• such that every square has <= 1 point  

!
!

• Questions:  

1. Size?  

2. How to build it and how fast?  

3. What can we do with it? 

Let P = set of n points in the plane 



Exercises 

• Draw the quadtree corresponding to a regular grid  
• how many nodes does it have?  
• how many leaves?  
• height?  

!
!

• Pick a set of points with a non-uniform distribution and draw the quadtree  
• how many nodes does it have?  
• how many leaves?  
• height? 

Let P = set of n points in the plane 



Exercises

• Let n=2 ==> we’ll look at sets of 2 points in the plane.  

!
• Sketch the smallest possible quad tree for two points in the plane. 

!
• Sketch the largest possible quad tree  for two points in the plane.   

• Give an upper bound for the height of a quadtree for 2 points. 



Size

Theorem: The height of a quadtree storing P is at most   lg (s/d) + 3/2 ,  where  s 
is the side of the original  square  and d is the distance between the closest pair 
of points in P.  

Proof:  Each level divides the side of the quadrant into two. After i levels, the side 
of the quadrant is s/2^i. … 

!
!

This means that… 
• The distance between points can be arbitrarily small, so the height of a quad     

tree can be arbitrarily large in the worst case. 

Let P = set of n points in the plane 



Building a quad tree

!
Node buildQuadtree(set of points P, square S) 

• if P has at most one point:  
• build a leaf node , store P in it, and return  node  

• else  
• partition  S into 4 quadrants S1, S2, S3, S4 
• partition P into P1, P2, P3, P4 
• create a node  
• node ->child1 = buildQuadtree(P1, S1) 
• node ->child2 = buildQuadtree(P2, S2) 
• node ->child3 = buildQuadtree(P3, S3) 
• node ->child4 = buildQuadtree(P4, S4) 
• return node 

Let P = set of n points in the plane 



Building a quadtree

• How long does it take?  
• Let the height of the quadtree be h.  

!
• Analysis:  

• Total time = total time in partitioning + total time in recursion  
• Partitioning  

• Partitioning P into P1, P2, P3, P4 runs in time O(|P|).   
• We cannot bound precisely each P1, P2, P3, P4 (each can have anywhere between 0 

points and n points);  
• But if we look at all  nodes at same level in the quadtree: together they partition the 

input square and all  their sets add up to precisely n  
• The time to partition, summed over the entire quadtree, will be O(n) per level, or O(h x 

n) in total  
• Recursion:  

• Every recursive call creates a node   
• How many nodes? 

Let P = set of n points in the plane 



Building a quad tree

Question: What is the total size (number of nodes) in a quadtree if height h, storing n points?  

!
• Quadtree consists of leaves and internal nodes 

• Let L_i = number of leaves 
• Let N_i = number of internal nodes 

• Counting leaves:  each node has 0 or 4 children.   
• Claim: The number of leaves is 1 + 3 N_i 

• Counting the internal nodes:  
• Each internal node has at least two point inside it (otherwise it would satisfy the 

stopping criterion and would be a leaf)  
• At each level of the quadtree:  the internal nodes define a partition of the input square 

==> O(n)  nodes  per level  
• Total N_i = h x O(n)  

• Total:  
• L_i+N_i = (1+3N_i) + N_i = O(N_i) = O(h x n)  

Let P = set of n points in the plane 



Building a quad tree

!
Theorem: A quadtree for P can be built in O(hxn) time, where h is the depth 
(height) of the quad tree.  

!
!
!

Let P = set of n points in the plane 



Building a quad tree

!
Theorem: A quadtree for P can be built in O(hxn) time, where h is the depth 
(height) of the quad tree.  

!
!
!

Let P = set of n points in the plane 



Point quadtree: Summary

• A quadtree for P has height  O(lg (1/d)). 
• A point quadtree  of n points can be built in O(h x n)  time.  

!
!

• Theoretical worst case:  
• height is unbounded  in the worst case 

• In practice:   
• often h=O(n) and build time is O(n2) Note:  
• For sets of points that are approximately uniformly distributed, we have 

that h = O(lg n) and the running time becomes O( n lg n).  
• In many practical situations quad trees have logarithmic height and can 

be built in O(n lg n) time 

Let P = set of n points in the plane 



Point quadtree: Summary

• A quadtree for P has height  O(lg (1/d)). 
• A point quadtree  of n points can be built in O(h x n)  time. 

Let P = set of n points in the plane 

!
• Extensions: 

• compressed quadtrees:  height is h=O(n)  
in the worst-case !
• idea: compress paths of nodes with 3 

empty children into one node, called a 
donut 

      ==> a node may have 5 children, an 
empty donut + 4 regular quadrants







Applications of quadtrees

• Hundreds of papers.. 
• Specialized quadtrees for storing edges (edge quad trees) , polygons, etc 
• Used to answer queries on spatial data such as:  

• find the nearest neighbor (NN) of this point  
• find the k-NNs of this point 
• find all points in this rectangle (range searching) 
• find all segments intersecting a given segment  
• etc  



Applications of quadtrees

• Used for fast rendering (LOD) 
• Level i in the qdt —> scene at  a certain resolution 
• bottom level has full resolution  
• render scene at a resolution dependent on its distance from the viewpoint 





Applications of quadtrees

• Image analysis/compression


