
Algorithms for GIS:!
!

Quadtrees

Quadtree

• A data structure that corresponds to a hierarchical subdivision of the plane
• Start with a square (containing inside input data)

• Divide into 4 equal squares (quadrants)
• Continue subdividing each quadrant recursively
• Subdivide a square until it satisfies a stopping condition:

• a quadrant is “small” enough, for e.g. contains at most 1 point

Quadtrees

• Simple and versatile data structure
• Lots of applications
• Quadtree can be built for

• points
• edges
• polygons
• images

• Generalizes to d dimensions
• d=3: octree

• Many variants of quadtrees have been proposed
• Hundreds of papers

Point-quadtree

• Input: P
• Problem: Store P in a quadtree

• such that every square has <= 1 point

!
!

• Questions:

1. Size?

2. How to build it and how fast?

3. What can we do with it?

Let P = set of n points in the plane

Exercises

• Draw the quadtree corresponding to a regular grid
• how many nodes does it have?
• how many leaves?
• height?

!
!

• Pick a set of points with a non-uniform distribution and draw the quadtree
• how many nodes does it have?
• how many leaves?
• height?

Let P = set of n points in the plane

Exercises

• Let n=2 ==> we’ll look at sets of 2 points in the plane.

!
• Sketch the smallest possible quad tree for two points in the plane.

!
• Sketch the largest possible quad tree for two points in the plane.  

• Give an upper bound for the height of a quadtree for 2 points.

Size

Theorem: The height of a quadtree storing P is at most lg (s/d) + 3/2 , where s
is the side of the original square and d is the distance between the closest pair
of points in P.  

Proof: Each level divides the side of the quadrant into two. After i levels, the side
of the quadrant is s/2^i. …

!
!

This means that…
• The distance between points can be arbitrarily small, so the height of a quad

tree can be arbitrarily large in the worst case.

Let P = set of n points in the plane

Building a quad tree

!
Node buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return node

• else
• partition S into 4 quadrants S1, S2, S3, S4
• partition P into P1, P2, P3, P4
• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)
• node ->child3 = buildQuadtree(P3, S3)
• node ->child4 = buildQuadtree(P4, S4)
• return node

Let P = set of n points in the plane

Building a quadtree

• How long does it take?
• Let the height of the quadtree be h.

!
• Analysis:

• Total time = total time in partitioning + total time in recursion
• Partitioning

• Partitioning P into P1, P2, P3, P4 runs in time O(|P|).
• We cannot bound precisely each P1, P2, P3, P4 (each can have anywhere between 0

points and n points);
• But if we look at all nodes at same level in the quadtree: together they partition the

input square and all their sets add up to precisely n
• The time to partition, summed over the entire quadtree, will be O(n) per level, or O(h x

n) in total
• Recursion:

• Every recursive call creates a node
• How many nodes?

Let P = set of n points in the plane

Building a quad tree

Question: What is the total size (number of nodes) in a quadtree if height h, storing n points?

!
• Quadtree consists of leaves and internal nodes

• Let L_i = number of leaves
• Let N_i = number of internal nodes

• Counting leaves: each node has 0 or 4 children.
• Claim: The number of leaves is 1 + 3 N_i

• Counting the internal nodes:
• Each internal node has at least two point inside it (otherwise it would satisfy the

stopping criterion and would be a leaf)
• At each level of the quadtree: the internal nodes define a partition of the input square

==> O(n) nodes per level
• Total N_i = h x O(n)

• Total:
• L_i+N_i = (1+3N_i) + N_i = O(N_i) = O(h x n)

Let P = set of n points in the plane

Building a quad tree

!
Theorem: A quadtree for P can be built in O(hxn) time, where h is the depth
(height) of the quad tree.

!
!
!

Let P = set of n points in the plane

Building a quad tree

!
Theorem: A quadtree for P can be built in O(hxn) time, where h is the depth
(height) of the quad tree.

!
!
!

Let P = set of n points in the plane

Point quadtree: Summary

• A quadtree for P has height O(lg (1/d)).
• A point quadtree of n points can be built in O(h x n) time.

!
!

• Theoretical worst case:
• height is unbounded in the worst case

• In practice:
• often h=O(n) and build time is O(n2) Note:
• For sets of points that are approximately uniformly distributed, we have

that h = O(lg n) and the running time becomes O(n lg n).
• In many practical situations quad trees have logarithmic height and can

be built in O(n lg n) time

Let P = set of n points in the plane

Point quadtree: Summary

• A quadtree for P has height O(lg (1/d)).
• A point quadtree of n points can be built in O(h x n) time.

Let P = set of n points in the plane

!
• Extensions:

• compressed quadtrees: height is h=O(n)
in the worst-case !
• idea: compress paths of nodes with 3

empty children into one node, called a
donut

 ==> a node may have 5 children, an
empty donut + 4 regular quadrants

Applications of quadtrees

• Hundreds of papers..
• Specialized quadtrees for storing edges (edge quad trees) , polygons, etc
• Used to answer queries on spatial data such as:

• find the nearest neighbor (NN) of this point
• find the k-NNs of this point
• find all points in this rectangle (range searching)
• find all segments intersecting a given segment
• etc

Applications of quadtrees

• Used for fast rendering (LOD)
• Level i in the qdt —> scene at a certain resolution
• bottom level has full resolution
• render scene at a resolution dependent on its distance from the viewpoint

Applications of quadtrees

• Image analysis/compression

