Algorithms for GIS:

Quadtrees

Quadtree

- A data structure that corresponds to a hierarchical subdivision of the plane
- Start with a square (containing inside input data)
- Divide into 4 equal squares (quadrants)
- Continue subdividing each quadrant recursively
- Subdivide a square until it satisfies a stopping condition:
- a quadrant is "small" enough, for e.g. contains at most 1 point

Quadtrees

- Simple and versatile data structure
- Lots of applications
- Quadtree can be built for
- points
- edges
- polygons
- images
- Generalizes to d dimensions
- d=3: octree
- Many variants of quadtrees have been proposed
- Hundreds of papers

Point-quadtree

- Input: P
- Problem: Store P in a quadtree
- such that every square has <= 1 point
- Questions:

1. Size?
2. How to build it and how fast?
3. What can we do with it?

Exercises

- Draw the quadtree corresponding to a regular grid
- how many nodes does it have?
- how many leaves?
- height?
- Pick a set of points with a non-uniform distribution and draw the quadtree
- how many nodes does it have?
- how many leaves?
- height?

Exercises

- Let $\mathrm{n}=2$ ==> we'll look at sets of 2 points in the plane.
- Sketch the smallest possible quad tree for two points in the plane.
- Sketch the largest possible quad tree for two points in the plane.
- Give an upper bound for the height of a quadtree for 2 points.

Theorem: The height of a quadtree storing P is at most $\lg (s / d)+3 / 2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof: Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is $s / 2^{\wedge}$ i. ...

This means that...

- The distance between points can be arbitrarily small, so the height of a quad tree can be arbitrarily large in the worst case.

Building a quad tree

Node buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4
- partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node $->$ child $2=$ buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- node ->child4 = buildQuadtree(P4, S4)
- return node

Building a quadtree

- How long does it take?
- Let the height of the quadtree be h.
- Analysis:
- Total time $=$ total time in partitioning + total time in recursion
- Partitioning
- Partitioning P into P1, P2, P3, P4 runs in time $\mathrm{O}(|\mathrm{P}|)$.
- We cannot bound precisely each P1, P2, P3, P4 (each can have anywhere between 0 points and n points);
- But if we look at all nodes at same level in the quadtree: together they partition the input square and all their sets add up to precisely n
- The time to partition, summed over the entire quadtree, will be $\mathrm{O}(\mathrm{n})$ per level, or $\mathrm{O}\left(\mathrm{h}_{\mathrm{x}}\right.$ n) in total
- Recursion:
- Every recursive call creates a node
- How many nodes?

Building a quad tree

Question: What is the total size (number of nodes) in a quadtree if height h, storing n points?

- Quadtree consists of leaves and internal nodes
- Let L_i = number of leaves
- Let N_i = number of internal nodes
- Counting leaves: each node has 0 or 4 children.
- Claim: The number of leaves is $1+3 \mathrm{~N} _\mathrm{i}$
- Counting the internal nodes:
- Each internal node has at least two point inside it (otherwise it would satisfy the stopping criterion and would be a leaf)
- At each level of the quadtree: the internal nodes define a partition of the input square $==>O(n)$ nodes per level
- Total N_i $=\mathrm{h} \times \mathrm{O}(\mathrm{n})$
- Total:
- $L_{-} i+N _i=\left(1+3 N _i\right)+N _i=O\left(N _i\right)=O(h \times n)$

Building a quad tree

Let $P=$ set of n points in the plane

Theorem: A quadtree for P can be built in $O(h \times n)$ time, where h is the depth (height) of the quad tree.

Building a quad tree

Let $P=$ set of n points in the plane

Theorem: A quadtree for P can be built in $O(h \times n)$ time, where h is the depth (height) of the quad tree.

Point quadtree: Summary

- A quadtree for P has height $O(\lg (1 / d))$.
- A point quadtree of n points can be built in $O(h \times n)$ time.
- Theoretical worst case:
- height is unbounded in the worst case
- In practice:
- often $\mathrm{h}=\mathrm{O}(\mathrm{n})$ and build time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Note:
- For sets of points that are approximately uniformly distributed, we have that $h=O(\lg n)$ and the running time becomes $O(n \lg n)$.
- In many practical situations quad trees have logarithmic height and can be built in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time

Point quadtree: Summary

Let $P=$ set of n points in the plane

- A quadtree for P has height $O(\lg (1 / d))$.
- A point quadtree of n points can be built in $O(h \times n)$ time.
- Extensions:
- compressed quadtrees: height is $h=O(n)$ in the worst-case
- idea: compress paths of nodes with 3 empty children into one node, called a donut
==> a node may have 5 children, an empty donut + 4 regular quadrants

Number of nodes in a regular quadtree can be large.

Number of nodes in a regular quadtree can be large.

Number of nodes in a compressed quadtree is $\mathrm{O}(\mathrm{n})$.

Applications of quadtrees

- Hundreds of papers..
- Specialized quadtrees for storing edges (edge quad trees), polygons, etc
- Used to answer queries on spatial data such as:
- find the nearest neighbor (NN) of this point
- find the k-NNs of this point
- find all points in this rectangle (range searching)
- find all segments intersecting a given segment
- etc

Applications of quadtrees

- Used for fast rendering (LOD)
- Level i in the qdt \longrightarrow scene at a certain resolution
- bottom level has full resolution
- render scene at a resolution dependent on its distance from the viewpoint

Figure 3 LOD selection of quadtree nodes (the frustum culled section is shaded in dark).

Figure 5 Distribution of LOD levels and nodes (different colors represent different layers).

Applications of quadtrees

- Image analysis/compression

