Variations on Sweep Algorithms:

efficient computation of extended viewsheds and class intervals

Marc van Kreveld

Dept. of Computer Science, Utrecht University
The Netherlands

E-mail;: marc@cs.ruu.nl

Abstract

Two novel applications of the plane sweep paradigm are demonstrated, namely,
for the computation of extended viewsheds on gridded DEMs and for class interval
selection on TIN-based DEMs. In both cases, the efficiency of the plane sweep
algorithm is significantly better than a straightforward approach. The algorithms
are presented by first giving the plane sweep method as a general approach that
requires some ingredients to make it work well. Adaptations to minimize additional
storage use are also presented.

1 Introduction

One of the most important paradigms in the design of geometric algorithms is that of
sweeping. In a plane sweep algorithm, an imaginary horizontal line traverses the plane
from top to bottom, during which some property of the data is computed (a more clear
description is given later). Plane sweep algorithms have been used for a variety of geometric
problems like map overlay, Voronoi diagrams and hidden surface removal. The plane
sweep approach is described in most textbooks on computational geometry [34, 37, 40].
Implementation of plane sweep algorithms usually is straightforward.

In computational geometry, the plane sweep approach has become a standard technique
in the design of efficient algorithms. On the other hand, in GIS literature the plane sweep
technique is known—in particular for map overlay [4, 28, 32]-—but not yet a standard
technique. Certainly, its use hasn’t been recognized to its full extent. The purpose of this
paper is to give two new applications of the plane sweep method, showing its importance
and versatility once more. Both applications address a problem in the important GIS
capability of geographical analysis.

The first plane sweep algorithm that will be described solves various problems in view-
shed analysis, such as the computation of extended viewsheds [18, 19] and visibility indices

[23, 44]. Given a gridded DEM and a specific pixel on it, we're interested in information
like the number of pixels that are visible from the specific pixel (the visibility index), the
vertical distance to visibility for the non-visible pixels, and the vertical distance to the
local or global horizons. A straightforward algorithm would do these computations on an
n x n grid in O(rn®) time. Our variant plane sweep algorithm requires only O(n?logn)
time, saving an order of magnitude. The algorithm is based on a half-line rotating around
the specified pixel. Rotating sweep algorithms have been described before, but not for
viewshed computations, nor for elevation grids. The additional storage required by the
algorithm is only O(n). There have been many other papers dealing with various aspects
of viewshed analysis [20, 21, 17, 30, 31].

The second application of plane sweep involves the computation of class intervals on
DEMs. These are needed for displaying isarithmic maps with appropriate isolines. We
now assume that the elevation model is a triangulated irregular network, or TIN. The
idea applies to grids as well. Since an elevation model represents some surface, the dis-
tribution of the elevation values of that surface is modelled best by a density function
(or, frequency distribution). Once the density function is computed, various class inter-
val selection systems may be used, like percentile (quantile) classes, natural breaks, and
bounded within-class variance. It is important that classes are chosen based on the whole
elevation model, not the underlying data set of point samples, so that percentile classes
ensure equal representation of each class on the isarithmic map. For a good discussion on
class interval selection, see Evans [14]. Several textbooks also describe the choice of class
intervals, sometimes called setting contour levels or indicator thresholds [7, 27, 46, 47].

The algorithm to compute the density function sweeps a horizontal plane vertically
through the TIN. For a TIN with n triangles the algorithm requires O(nlogn) time. The
sweep algorithm is the first one—to our knowledge—to sweep a horizontal plane through a
TIN. The extra storage required by the algorithm is O(n) in the worst case, but in practice
it can be reduced considerably.

Section 2 of this paper explains the basic ideas and applications of the plane sweep
method. In Section 3 the viewshed algorithm is presented, in Section 4 the approach
toward the selection of class intervals is given, and in Section 5 we show that storage
requirements of both algorithms can be reduced. Conclusions are given in Section 6.

2 Sweep algorithms

Imagine a set S of objects in the plane about which something must be computed. Let’s
say a question () needs to be addressed. Sometimes the following intuitive approach works:
Take a horizontal line above all objects and sweep it downward. During the sweep, make
sure that all information relevant to answer () becomes known when the sweep line passes
the objects that give the information. When the sweep line lies below all objects, we have
gathered all relevant information and we can output or construct the answer.

A more explicit but still general description follows; see also Figures 1 and 2. During
the sweep, we nearly always have to maintain the subset of objects that is intersected by

a
Q b status structure

c
d \ E
/% K\ sweep line
v 7} o KH fy e d b S

g Upcoming events:

Bottom of b

h Bottom of d

@i Top of ¢

Figure 1: Sketch of the sweep algorithm.

the sweep line. Since this subset changes repeatedly, this subset must be maintained in a
dynamic data structure. Often a balanced binary search tree suffices. This data structure
is called the status structure.

We also have to know somehow when the status changes, and when we can find bits of
information to answer the question (). This happens at certain positions of the sweep line.
These positions are called events and they are given by a y-coordinate since we assumed
the sweep line to be horizontal. Since the sweep line may only move downward, we need to
store these events sorted on y-coordinate. The data structure for this purpose is called the
event list. Often it is simply a priority queue (or a balanced binary tree). The sweep line
jumps from event to event by repeatedly removing the one with maximum y-coordinate,
until all events have taken place.

There is one more ingredient to sweep line algorithms: the handling of events. This
ingredient is the one that varies most from application to application. Two types of event
are almost always present: when the sweep line starts intersecting an object of the set 5,
it must be inserted into the status structure, and when the sweep line has just passed the
lowest point of an object of S, it must be removed again.

With plane sweep, a two-dimensional geometric problem is solved by using dynamic
one-dimensional data structures. More extensive descriptions of plane sweep algorithms
can be found in textbooks on computational geometry [34, 37, 40].

The idea can be generalized to dimension three, where a plane sweeps through space.
The status structure now is a dynamic two-dimensional data structure and since these
aren’t that well-known, three-dimensional sweeping hasn’t been applied as often as plane
sweep.

Known applications of plane sweep and variants are computation of the Voronoi di-
agram [22], map overlay [4, 32|, nearest objects [3, 25, 26], triangulation [29], hidden
surface removal [33, 38], two- and three-dimensional point location [8, 41, 42], separation

1. Initialize the event list.
2. Initialize the status structure.
3. While the event list is not empty
4. Do Delete the event with maximum y-coordinate from the event list.
5. If a new object is intersected by the sweep line
then insert it in the status structure.
6. If an object stops being intersected by the sweep line
then delete it from the status structure.
7. Address the question of interest using the status structure.
8. If necessary, add new events to the event list.
9. Enddo

Figure 2: Structure of a sweep algorithm.

of point sets [15], rectangle intersection [11], shortest paths [36], median-of-squares statis-
tics [13, 43], and many others that don’t seem to have immediate applications in GIS. The
Geometry Literature Database [24], a database with over 7000 papers related to computa-
tional geometry, lists about one hundred papers that employ plane sweep. In most of the
two-dimensional applications listed above, the status structure is either a balanced binary
tree or a segment tree. Both allow updates and queries to be performed in O(logn) if the
data structure stores O(n) objects. This often results in O(nlogn) time algorithms, plus
the time needed to report the answer. The more staightforward algorithms take quadratic
time for these problems. For example, one can compute the Voronoi diagram of a set of n
sites by computing all Voronoi cells (Thiessen polygons) separately, taking O(nlogn) time
per site. In total, this comes down to O(n?logn) time, whereas plane sweep only takes
O(nlogn) time.

Some variants of the standard sweep are versions where a line rotates about a point
[9, 15, 35], and the three-dimensional version where a horizontal plane translates through
space [39, 41]. There are also sweep algorithms where a “topological” line is used instead
of a straight line [12].

Implementation of plane sweep algorithms is not difficult, certainly not if existing code
for balanced search trees, sorting, and geometric primitives is used. A major advantage of
sweeping over other methods like divide-and-conquer is that not all objects need be in main
memory simultaneously. Objects are needed in the order of their y-coordinates, and only
the objects that intersect the sweep line in its current position need be in main memory
(in the status structure). There are simple ways to avoid storing the whole event list in
main memory [1, 2, 28]. Divide-and-conquer algorithms usually require all objects to be
in main memory at some moment, either during the first divide or during the last conquer
step.

Of course, plane sweep is not the appropriate solution to all problems. For certain more
difficult tasks, lack of a dynamic geometric data structure prohibits the use of efficient plane
sweep. In other cases, plane sweep is just one of several candidates for a problem. Map

overlay can also be solved using different techniques, like those based on R-trees [45, 5] or
on geometric graph traversal [16].

Finally, there are cases where plane sweep is possible but not at all clever. To construct a
minimum bounding box of a set of n objects one can use plane sweep and get an O(nlogn)
time solution. However, the straightforward inspection of all coordinate values of the
objects is much simpler and takes only O(n) time.

3 Viewshed computation

V\ This section presents efficient algorithms for viewshed com-

L - putations on an n x n grid. We don’t just consider standard
viewsheds, but also local and global horizon offsets like de-

-
-

= scribed by Fisher [18, 19]. He notes the use of computing more
v than just a binary grid of visible/non-visible information, such
as, what distance a grid pixel is below the local horizon that
obscures it (the local offset). In other words, how high a stick
must be placed so that it is visible from the viewpoint. Fisher

studies the uncertainty aspects of viewshed computation rather

Figure 3: Rotating a {hap efficiency aspects. A standard algorithm for the visibil-

half-line over the grid; ity information would, however, require O(n*) time. We show
the grey pixels are stored

that using sweep, O(n? logn) time suffices, improving the effi-
in order of intersection in

ciency considerably. Our algorithm is more complex than the
straightforward one, but still it is fairly simple to implement.
There are other methods to compute viewsheds in roughly
quadratic time. These can perhaps be generalized to extended viewsheds as well, but they
have other drawbacks. The ring growing method, described in several papers [23, 44],

the status structure.

requires O(n?) time, but visibility between two pixels can be blocked by pixels that may
be quite far from the line of sight. A highly undesirable situation. Another algorithm that
requires quadratic time uses the line of sight from the viewpoint to all perimeter pixels,
but not to others [23]. This method doesn’t use center-of-pixel to center-of-pixel visibility
except for the perimeter. Furthermore, it requires additional bookkeeping to determine
for pixels which line(s) of sight determine the visibility. In some versions, a counter is
needed with every pixel, thus requiring quadratic extra storage. Our algorithm, and also
the partial blocking method of Teng and Davis [44], doesn’t have these drawbacks.
Suppose a grid GG with elevation data is given together with a viewpoint v, which is
represented by the center of one of the pixels. The idea of our variant of plane sweep
is to rotate a half-line about v a full turn of 27 radians, while computing the visibility
or local offset of each pixel when the half-line passes over the pixel center. The status
structure stores all pixels intersecting the sweep half-line in the leaves of a balanced binary
search tree T', such that the leftmost leaf of T' stores the pixel closest to the pixel with
the viewpoint, see Figure 3. The tree T' is augmented with one real number per leaf and
internal node. With each leaf the gradient is stored of the line segment from the center of

the pixel with v to the center of the pixel stored in the leaf (the gradient of the line-of-sight
LoS). So if the pixel with v has elevation h,, the pixel in a leaf [has elevation h;, and the
distance between the centers of the pixels is d, we store arctan((h; — h,)/d) in the leaf. In
bottom up fashion we define the additional real number stored with internal nodes: it is
the maximum of the real numbers stored with its two children. So for each node in T, we
have stored the gradient of the “most obscuring” pixel in its subtree. One can perform
insertions and deletions in O(log n) time in T, inclusive the updating of the additional real
numbers. The method of augmenting data structures, that is, maintaining the additional
information in the tree, is described in several textbooks on algorithms (e.g. [10]).

The event list consists of all angles at which the sweep half-line starts to intersect a
pixel, at which the sweep half-line stops intersecting a pixel, and at which the sweep half-
line goes through a pixel center. So for each pixel exactly three event angles are stored,
and in total O(n?) events will take place. If two angles are the same we let the event of
the pixel closer to the viewpoint have preference in the event order.

The sweep algorithm is as follows.
Initialize the event list by sorting all
the event angles we referred to. As-
sume for instance we start with a right-
ward directed half-line (angle 0 with
the positive z-axis) and we rotate coun-
terclockwise. Repeatedly take an event—
the first one—from the event list and

0.1 0.2 0.1 0.25 0.2 0.1 0.05-0.1 9 0.15 0.2 0.25 depending on the type of event, insert

Fisure 4: A search path in T. a pixel ‘in T, delete a piX‘el from T, or
search in T'. The latter is done when
the event is caused by the center of a pixel, and the algorithm must establish whether it is
visible (and if not, its local offset). The pixel is visible if and only if the LoS to it has greater
gradient than of all pixels closer to the viewpoint, since only these may obstruct visibility.
We follow the search path to the pixel whose center the sweep half-line has reached, and
we consider the nodes in T' nearest to the root that are left children of the nodes where the
search path turned right. In Figure 4, a search path and the corresponding left children
are indicated. Next we determine the maximum of the real numbers stored with these left
children (0.25 in the figure). This maximum is the maximum gradient of the LoS to a pixel
closer to the viewpoint. By comparing the maximum gradient to the gradient of the pixel
itself we establish whether the pixel is visible. If not, we use the gradients and the distance
of the pixel to the viewpoint to determine the local offset.

Observe that at most 2n pixels are stored at any time in T'. Since T is balanced, its
depth is O(logn). A search follows one path to a leaf, and the left children of this path.
There can only be O(logn) left children on a path of length O(logn), and all further
computations are trivial. So inserting, deleting, and searching only take O(log n) time per
operation on an n x n grid. Since there are O(n?) events, and each event is handled in
O(log n) time, we have given an O(n?logn) time algorithm. The initial sorting of events

by angle also takes O(n*logn) time.

Note that in our model we have chosen to store the gradient to the center of the pixel
in the leaves of the tree T'. When the LoS passes over a pixel, it usually doesn’t pass over
the pixel center, which may influence visibility of the pixels beyond it slightly. It depends
on the model we assume to hold for the grid entries. We omit this issue here; adaptations
to the algorithm can be made to incorporate different grid interpretations.

The algorithm that was given determined visibility of every pixel from the viewpoint,
and therefore it can be used to compute the visibility index as well. We simply record how
many pixels were visible from v. It is easy to adapt the algorithm for global offsets; we
won’t discuss this any further. Similarly, one could compute the number of local horizons
in each direction, or the number of visible local horizons, with a similar sweep. It comes
down to augmenting the status structure 7" in a different manner.

4 Density function computation and class interval se-
lection

It is well-known that a finite population of interval data can be described by a histogram.
For continuous interval data, the density function—or frequency distribution—is the cor-
responding descriptive statistic. It shows how frequent each elevation occurs in the data.
The density function plays an important role in the choice of class intervals. This section
studies the computation of the density function of a TIN that models a continuous uni-
variate variable. Similar ideas can be used for some other elevation models, though. Note
that it is more appropriate to compute class intervals based on the density function than
on the finite set of sampled locations that has been the basis of the data. The presense
of auto-correlation in the data will cause that class intervals based on the sample will not
classify in a fair way, unless random sampling was used. By interpolating between the data
points this problem is overcome (see e.g. [14, 27]). A triangulation is one example of an
interpolation method.

We begin with a useful observation and a straightforward algorithm. Consider just one
triangle A in 3-space with vertices u, v, w. Assume for simplicity that A(u) > h(v) > h(w),
where h(..) denotes the elevation of a vertex. Then the density on the triangle for a given
elevation t is [- cos(a), where [is the length of the intersection of the triangle A with the
plane z = ¢, and « is the angle between the normal of A and any horizontal plane. The
density is zero for all elevations ¢ with ¢ > h(u) or t < h(w). It is given by a function
fuv depending linearly on ¢ if A(u) >t > h(v), and it is given by a different function f,.,
depending linearly on ¢ if h(v) >t > h(w). So we have f,,(t) = a -t + b, where a and b
depend only on the coordinates of u, v, w and thus are fixed. The same holds for f,,, but
with different a and b.

For simplicity of exposition we assume that all vertices have different elevations. This
restriction can be overcome without problems, but some care must be taken. Let vy,..., v,
be the vertices of the TIN, and assume that they are sorted on decreasing elevation. This

density

elevation

Figure 5: Density function of a TIN.

holds without loss of generality because we can simply relabel the vertices to enforce h(vy) >
h(vy) > -+ > h(v,). Consider the density for an elevation ¢, where t € (h(v;), h(v41)).
In such an open interval, the density is the sum of a set of linear functions, which is again
a function linear in . We denote the linear function that gives the density over the whole
TIN in the interval (A(v;), h(v;41)) by Fj(t). So the linear functions Fy, Fi,..., F, form
the density function, where each function is only valid in its interval. By default we set
Fo(t) = 0 and F,(t) = 0 for the intervals (h(vy),00) and (—o0, h(v,,)), because for these

elevations the density is zero. We observe:

Proposition 1 The density function based on a TIN with n vertices is a piecewise linear
continuous function with at most n + 1 pieces.

The density function need not be continuous when there are vertices with the same
elevation. The straighforward algorithm to construct the density function on the TIN is the
following: Sort the vertices by elevation, and for each interval (h(v;), h(vj41)), determine
the set of linear functions contributing to it. Then add up these linear functions to get one
linear piece F; of the density function. Since we have O(n) vertices, we have O(n) intervals
and for each we can easily determine in O(n) time which linear functions contribute. The
total time taken by this algorithm is O(n?).

The efficient computation of the density function is again based on the sweeping ap-
proach. We will exploit the fact that the linear function F}; can be obtained easily from
the linear function [;_; since the contributing f are for the larger part the same ones.
We compute the summed linear functions F' from top to bottom, which comes down to a
sweep with a horizontal plane through the TIN. Throughout the sweep we maintain the
density function of the current elevation. Using sweeping terminology, every vertex of the
TIN gives rise to one event. The event list is a priority queue storing all these O(n) events
in order of decreasing elevation. With each event we store a pointer to the vertex of the
TIN that will cause the event. The status structure is trivial: it is simply the summed
linear function F' for the current position of the sweep plane.

The final ingredient to the sweep algorithm is handling the events. When considering
how F;_; should be changed to get F; when the sweep plane passes the vertex with elevation

Figure 6: Passing a vertex with the sweep plane.

h(v;), we must examine how the density function changes. The vertex v; is incident to
some triangles, for which it can be the highest vertex, the lowest vertex or the vertex with
middle elevation. We update F;_; to get F}; according to the following rules:

e For all triangles for which v; is the lowest vertex (lightly shaded in Figure 6), we
subtract from F' the appropriate linear function (f; in Figure 6).

e For all triangles for which v; is the highest vertex (darkly shaded), we add to F' the
appropriate linear function (fs and f7).

e For all triangles for which v; is the middle vertex (white in the figure), we subtract

the one linear function (f; and f4) and add the other (f5 and f5).

We don’t need to precompute or store the linear functions f on each triangle to update
F'; the f can be obtained from the coordinates of the vertices on the TIN when the event
at vertex v; is handled. We have fast access to vertex v; in the TIN; recall that an extra
pointer was stored in the event list.

We also evaluate the function F); at the event. The sequence of evaluations gives the
breakpoints of the (piecewise linear) density function. These breakpoints are computed
from right to left in Figure 5 since the sweep goes from high to low elevations.

Considering the efficiency of the algorithm, the initial sorting of the events takes
O(nlogn) time for a TIN with n vertices. Extraction of an event takes O(logn) time;
for all events this adds up to O(nlogn) time. Updating the status structure at an event
v; requires time linear in the number of triangles incident to v;. Summed over all vertices
this is linear in n by Euler’s formula. The evaluation to determine the breakpoints requires
constant time per event. So in total the sweep algorithm requires O(nlog n) time.

Once the density function is computed, the class intervals may be determined. Suppose
as an example that the objective is to determine seven classes such that each class occupies
an equivalent amount of area on an isoline map. We assume that the isoline map and the
TIN have the same domain, otherwise we can clip the TIN with the domain of the isoline

map before doing the sweep. The total area of the isoline map is the same as the total area
under the density function and is denoted A. The area under the density function in the
elevation interval [a, b] is denoted A(a,bd). If F(t) denotes the (piecewise linear) density

function, then
b

Ala,b) = / F(1)dt

a

The value of A(a,b) is exactly the area for the class [a, b] on the isoline map. We know
the total area A and compute A/7, the desired area for each class. We then determine the
lowest elevation such that A/7 of the area is below that elevation. This operation is easy by
scanning over the known density function F(¢) from left to right and maintaining the area
under F(?) (this is also a kind of sweep). This gives the lowest class boundary. Continuing
the scan gives all six boundaries of the seven classes in O(n) time. In a similar way one can
compute a non-fixed number of classes with the property that the within-class variance is
less than or equal to a certain threshold, for each class. Finally, the density function can
be used class interval selection by natural breaks in the data: They are the local minima
of F(t). We refer to Burrough [7] and Evans [14] for other classification schemes.

5 Reducing the storage requirements

In both of the given sweep algorithms, the event list requires far more storage than the
status structure. For the viewshed computations, the status structure required O(n) stor-
age and the event list O(n?) storage, since we stored all upcoming events in the event
list before the sweep started. Similarly, for the density function computation, the status
structure required O(1) storage and the event list O(n) storage.

In both algorithms we can bring down the storgae requirements of the event list using
the same idea. Observe that for a sweep algorithm to work well, we need not have all
upcoming events in the event list initially. We only need to be sure that if some event
is the next one to be handled (reached by the sweep), then it must be in the event list.
The underlying idea is the same as Brown’s improvement in storage of the well-known
Bentley-Ottmann sweep algorithm [6].

Consider the viewshed algorithm of Section 3. Instead of storing all O(n?) events, we
will only store the events caused by pixels that are not yet encountered, but which have a
neighboring pixel that has been encountered. It is easy to see that there are only O(n) of
these pixels, and that every pixel is present in the event list before it causes an event. The
algorithm has to be adapted slightly: when the event to be handled next is an insertion
of a pixel to the staus structure, then we must also insert its neighbors in the event list
(unless they were already present, or have already been passed by the sweep).

Consider the density function computation of Section 4. The storage needed by the
algorithm is O(n) for the event list, but this can be reduced using a simple observation.
Every vertex except the local maxima (peaks) have a higher neighbor in the TIN. So we
can initialize the event list with the local maxima only. When the event at a vertex v is
handled, we insert all lower neighbors of v in the event list. This guarantees that every

10

event is present in the event list when the sweep plane reaches it. The storage required by
the algorithm is equal to the sum of the number of local maxima and the number of edges
in the largest complexity cross-section.

6 Conclusions

This paper presented two new sweep algorithms that are usetul in GIS applications. We
showed that extended viewsheds can be computed in O(n*logn) time on an n x n grid
of elevation data, and that the density function of an elevation model based on a TIN
with n vertices can be determined in O(nlogn) time. The density function is the basis
of various class interval systems other than the equal-class-width classes. Both algorithms
are simple to implement and require only little extra storage. In both cases we reduced
the computation time by an order of magnitude, when compared to the more straightfor-
ward algorithms. This demonstrates the use and relevance of one of the most important
geometric algorithms design methods, namely, that of plane sweep. This type of algorithm
has much more promise in geographic information systems than is recognized to date.

References

[1] L. Arge. External-storage data structures for plane-sweep algorithms. Technical Report

RS-94-16, BRICS, Aarhus Univ., Denmark, 1994.

[2] L. Arge. The Buffer Tree: A new technique for optimal I/0-algorithms. In Proc. WADS,
number 955 in Lect. Notes in Comp. Science, pages 334-345, 1995.

[3] F. Bartling and K. Hinrichs. A plane-sweep algorithm for finding a closest pair among convex
planar objects. In Proc. 9th Sympos. Theoret. Aspects Comput. Sci., volume 577 of Lecture
Notes in Computer Science, pages 221-232. Springer- Verlag, 1992.

[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric inter-
sections. IFEFE Trans. Comput., C-28:643-647, 1979.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using R-trees.
In Proc. ACM SIGMOD, pages 237-246, 1993.

[6] K. Q. Brown. Comments on “Algorithms for reporting and counting geometric intersections”.
IEFEFE Trans. Comput., C-30:147-148, 1981.

[7] P. A. Burrough. Principles of Geographical Information Systems for Land Resourses Assess-
ment. Oxford University Press, New York, 1986.

[8] R. Cole. Searching and storing similar lists. J. Algorithms, 7:202—-220, 1986.

[9] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM .J. Comput.,
16:61-77, 1987.

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, Mass., 1990.

H. Edelsbrunner. A new approach to rectangle intersections, Part II. Internat. J. Comput.
Math., 13:221-229, 1983.

H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. Syst.
Sei., 38:165-194, 1989. Corrigendum in 42 (1991), 249-251.

H. Edelsbrunner and D. L. Souvaine. Computing median-of-squares regression lines and
guided topological sweep. J. Amer. Statist. Assoc., 85:115-119, 1990.

I. 5. Evans. The selection of class intervals. Trans. Inst. Br. Geogrs., 2:98-124, 1977.

H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the (< k)-levels,
with applications to separation and transversal problems. In Proc. 9th Annu. ACM Sympos.
Comput. Geom., pages 38-46, 1993.

U. Finke and K. H. Hinrichs. The quad view data structure — a representation for planar
subdivisions. In Advances in Spatial Databases (proc. SSD’95), number 951 in Lect. Notes
in Comp. Science, pages 29-46, 1995.

P. F. Fisher. Algorithm and implementation uncertainty in viewshed analysis. Int. J. of

G1S, 7:331-347, 1993.

P. F. Fisher. Stretching the viewshed. In Proc. 6th Int. Symp. on Spatial Data Handling,
pages 725-738, 1994.

P. F. Fisher. Reconsideration of the viewshed function in terrain modelling. Geographical
Systems, 3:33-58, 1996.

L. De Floriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy. A visibility-based model
for terrain features. In Proc. 2nd Int. Symp. on Spatial Data Handling, pages 235250, 1986.

L. De Floriani, G. Nagy, and E. Puppo. Computing a line-of-sight network on a terrain
model. In Proc. 5th Int. Symp. on Spatial Data Handling, pages 672-681, 1992.

S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.

Wm Randolph Franklin and C. K. Ray. Higher isn’t necessarily better: Visibility algorithms
and experiments. In Proc. 6th Int. Symp. on Spatial Data Handling, pages 751-763, 1994.

Geometry Literature Database. http://www.cs.ruu.nl/people/otfried/html/geombib.html.

Thorsten Graf and Klaus Hinrichs. A plane-sweep algorithm for the all-nearest-neighbors
problem for a set of convex planar objects. In Proc. 3rd Workshop Algorithms Data Struct.,
volume 709 of Lecture Notes in Computer Science, pages 349-360, 1993.

K. Hinrichs, J. Nievergelt, and P. Schorn. A sweep algorithm for the all-nearest-neighbours
problem. In Computational Geometry and its Applications, volume 333 of Lecture Notes in
Computer Science, pages 43-54. Springer-Verlag, 1988.

12

[27]

[28]

[36]

[37]
[38]

E. H. Isaaks and R. M Srivastava. An Introduction to Applied Geostatistics. Oxford Univer-
sity Press, New York, 1989.

H.-P. Kriegel, T. Brinkhoff, and R. Schneider. The combination of spatial access methods and
computational geometry in geographic database systems. In Advances in Spatial Databases
(proc. SSD’91), number 525 in Lect. Notes in Comp. Science, pages 5-21, 1991.

D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applica-
tions. SIAM J. Comput., 6:594-606, 1977.

J. Lee. Analyses of visibility sites on topographic surfaces. Int. J. of GIS, 5:413-430, 1991.

P. Magillo and L. De Floriani. Computing visibility maps on hierarchical terrain models. In
Proc. 2nd ACM Workshop on Advances in GIS, page 77, 1994.

H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets of line
segments. In R. A. Earnshaw, editor, Theoretical Foundations of Computer Graphics and
CAD, volume F40 of NATO ASI, pages 307-325. Springer-Verlag, Berlin, West Germany,
1988.

M. McKenna. Worst-case optimal hidden-surface removal. ACM Trans. Graph., 6:19-28,
1987.

K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, volume 3 of Data
Structures and Algorithms. Springer-Verlag, Heidelberg, West Germany, 1984.

A. Mirante and N. Weingarten. The radial sweep algorithm for constructing triangulated
irreguler networks. IEFEFFE Comput. Graph. Appl., pages 11-21, May 1982.

J. S. B. Mitchell. L, shortest paths among polygonal obstacles in the plane. Algorithmica,
8:55-88, 1992.

J. O’Rourke. Computational Geometry in C. Cambridge University Press, New York, 1994.

M. Overmars and M. Sharir. A simple output-sensitive algorithm for hidden surface removal.
ACM Trans. Graph., 11:1-11, 1992.

M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem. STAM J.
Comput., 20:1034-1045, 1991.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

F. P. Preparata and R. Tamassia. Efficient point location in a convex spatial cell-complex.
SIAM J. Comput., 21:267-280, 1992.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun.

ACM, 29:669-679, 1986.

D. L. Souvaine and J. M. Steele. Time- and space- efficient algorithms for least median of
squares regression. J. Amer. Statist. Assoc., 82:794-801, 1987.

13

[44] Y. A. Teng and L. S. Davies. Visibility analysis on digital terrain models and its parallel im-
plementation. Technical Report CAR-TR-625, Center for Automation Research, University
of Maryland, 1992.

[45] P. van Qosterom. An R-tree based map-overlay algorithm. In Proc. EG15°9/, pages 318-327,
1994.

[46] David F. Watson. Contouring: A Guide to the Analysis and Display of Spatial Data. Perg-
amon, 1992.

[47] R. Webster and M. A. Oliver. Statistical Methods in Soil and Land Resource Survey. Oxford
University Press, New York, 1990.

14

