
Pointers in C

Pointers
 A pointer is an address
 The & and * operators

• Any variable a has an address
• &a

• Any valid address p has a content
• *p
• *p is called “dereferencing” the pointer

• int a;
• *(&a) = a

• int *p
• //assume p is a valid address
• &(*p) = p

 Dereferencing an invalid address ===> seg fault 2

Simple pointer example
main() {

int a;
int *p, *q;
//p, q are variables that point to ints; they do NOT point to anything yet
p = (int*) malloc(sizeof(int));
//now p points to a valid memory location
*p = 10 ;

q = (int*) malloc(sizeof(int));
//now q points to a valid memory location
*q = *p; //copy the value of *p to *q
...
free(p);
free(q);

}

3

Static and dynamic data

 all static variables live on stack
• the stack data is called static data; its size needs to be known at compile time
• e.g. int a[10] is a static array
• the lifetime of a stack variable is the duration when the function is active

 malloc() allocates space on the heap
• the heap data is called dynamic
• the allocated heap space needs to be freed with free()

4

Pointers and arrays

int *p;
p = (int*) malloc(n * sizeof(int));

 p is the same as an array (if allocating an array of unknown size were possible)
 int[n] p;

 an int[] is an int*
 the [] operator is implemented by the language on top of pointers to manipulate

arrays easily

• p[0] = *p
• &p[0] = p
• *(p+sizeof(int)) = p[1]

5

Pointer arithmetic
 int *p;
 float *p;
 double *p;

 pointer arithmetic
• T *p;
• p + 1 is the same as p + sizeof(T);

 void *p;
 //p can be thought of as the address of a chunk of bytes
 in order to be accessed it needs to be cast
 ((int*)p)[0]

6

Pointers and parameter passing

 ... fun (Type x)

 when calling fun(a), the value of a is copied into x
 if x is changed inside fun(), this change does not affect a

 if fun() wants to modify x, it needs to get a pointer to x
 ... fun(Type *x)

 Examples:
• if swap(int a, int b) wants to swap the values of two integers, it needs to take

their addresses
• void swap(int* a, int* b)

• if fun wants to allocate an int*, it needs to take as parameter &(int*), which is an
int**

• void allocateArray(int** a, int n) 7

Pointer programming guidelines
 asserts

• malloc() returns NULL is it cannot allocate memory
• always assert the pointer after a malloc()
• always assert a pointer p before dereferencing
• initialize pointers by setting them to NULL

 write correctness checks and assert them
• assert(arrayIsSorted(a))

 asserts may be expensive
• they can be turned off by compiling with -DNDEBUG

 flushes
• printf is a library function that buffers its output
• this buffer is emptied periodically and when the program terminates normally
• in case the program does not finish normally (i.e. it segfaults) you will NOT see

everything that you printed out
• use fflush(stdout)

8

Pointers caveats
 Accessing/dereferencing a non-valid address (pointer) may cause an error

• seg fault
 Pointer errors do NOT always manifest
 Pointer errors do NOT always manifest the same way

 the space allocated with malloc() must be freed
• there is no garbage collection

 no free(): memory leaks
 double free(): seg fault

9

Pointers

 Why use pointers?
• flexibility
• efficiency

• provide a pointer to the data as parameters to functions, not a copy of the data

• build flexible, dynamic data structures
• precise control over allocation & deallocation

 Why are pointers scary?
• error-prone
• pointer mistakes have wide variations on symptoms
• memory bugs hard to understand and debug

10

