Pointers in C

Pointers

= A pointer is an address

= The & and * operators
* Any variable a has an address
e &a
Any valid address p has a content

*k
T Y
» *pis called “dereferencing” the pointer

* Inta;
e *(&a)=a
e int*p

» //assume p is a valid address
* &(p)=p

= Dereferencing an invalid address ===> seg fault

Simple pointer example

main() {
int a;
int *p, *q;
//p, q are variables that point to ints; they do NOT point to anything yet
p = (int*) malloc(sizeof(int));
//mow p points to a valid memory location
*p=10;

q = (int*) malloc(sizeof(int));
//mow q points to a valid memory location
*q = *p; //copy the value of *p to *q

free(p);
free(q);

Static and dynamic data

= all static variables live on stack
 the stack data is called static data; its size needs to be known at compile time
* e.g.inta[10] is a static array
 the lifetime of a stack variable 1s the duration when the function is active

= malloc() allocates space on the heap
 the heap data is called dynamic
 the allocated heap space needs to be freed with free()

Pointers and arrays

int *p;

p = (int*) malloc(n * sizeof(int));

p 1s the same as an array (if allocating an array of unknown size were possible)

nt[n] p;

an int[] 1s an int*®
the [] operator 1s implemented by the language on top of pointers to manipulate
arrays easily

* plO]="p
* &p[0]=p
o *(ptsizeof(int)) = p[1]

Pointer arithmetic

int *p;
float *p;
double *p;

pointer arithmetic
* T*p;
* p+1 1sthe same as p + sizeof(T);

void *p;
//p can be thought of as the address of a chunk of bytes

1n order to be accessed it needs to be cast

((int*)p)[0]

Pointers and parameter passing

... fun (Type x)

when calling fun(a), the value of a is copied into x

if x 1s changed inside fun(), this change does not affect a

if fun() wants to modify x, it needs to get a pointer to x
... fun(Type *x)

Examples:

» 1if swap(int a, int b) wants to swap the values of two integers, it needs to take
their addresses
* void swap(int* a, int* b)
« if fun wants to allocate an int*, it needs to take as parameter &(int*), which is an
int**

» void allocateArray(int** a, int n) 7

Pointer programming guidelines

asserts
malloc() returns NULL 1s it cannot allocate memory
always assert the pointer after a malloc()
always assert a pointer p before dereferencing
initialize pointers by setting them to NULL

write correctness checks and assert them
 assert(arraylsSorted(a))
asserts may be expensive
 they can be turned off by compiling with -DNDEBUG
flushes
printf is a library function that buffers its output
this buffer 1s emptied periodically and when the program terminates normally

in case the program does not finish normally (i.e. it segfaults) you will NOT see
everything that you printed out

use fflush(stdout)

Pointers caveats

Accessing/dereferencing a non-valid address (pointer) may cause an error
» seg fault
Pointer errors do NOT always manifest

Pointer errors do NOT always manifest the same way

the space allocated with malloc() must be freed
 there is no garbage collection

no free(): memory leaks

double free(): seg fault

Pointers

= Why use pointers?
» flexibility
» efficiency
» provide a pointer to the data as parameters to functions, not a copy of the data
» build flexible, dynamic data structures
» precise control over allocation & deallocation

= Why are pointers scary?
* error-prone
* pointer mistakes have wide variations on symptoms

* memory bugs hard to understand and debug

