An Introduction To Range Searching

Jan Vahrenhold
Department of Computer Science
Westfälische Wilhelms-Universität Münster, Germany.

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.

Given: Collection \mathcal{S} of n points in d dimensions $\left(\mathcal{S} \subset \mathbb{R}^{d}\right)$.
Wanted: Algorithm for efficiently reporting all k points in \mathcal{S} falling into a given axis-parallel query range $D \subset \mathbb{R}^{d}$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\begin{aligned}
& \left.\frac{p_{0}}{4} \mathrm{p}_{1}\left|\mathrm{p}_{2}\right| \mathrm{p}_{3}\left|\mathrm{p}_{4}\right| p_{5} \right\rvert\, \mathrm{p}_{6} \\
& \hline
\end{aligned}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\begin{aligned}
& \frac{p_{0}}{}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10} \\
& \uparrow
\end{aligned}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\frac{p_{0}\left|p_{1}\right| p_{2}\left|p_{3}\right| p_{4}\left|p_{5}\right| p_{6}\left|p_{7}\right| p_{8}\left|p_{9}\right| p_{10}}{\uparrow}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

$$
\begin{aligned}
& \mathrm{p}_{0}\left|\mathrm{p}_{1}\right| \mathrm{p}_{2}\left|\mathrm{p}_{3}\right| \mathrm{p}_{4}\left|p_{5}\right| \mathrm{p}_{6}\left|p_{7}\right| \mathrm{p}_{8}\left|p_{9}\right| p_{10} \\
& \uparrow
\end{aligned}
$$

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
- Assume that $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\}$ is stored in an array.
- Scan though the array and test for each p_{i} whether $p_{i} \in D$.

- Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
- Change the model to also include k (the number of points reported) as a parameter.
- Algorithm on previous slide has complexity $\mathcal{O}(n+k)=\mathcal{O}(n)$.
- Time complexity: preprocessing time \Leftrightarrow query time
- Can disregard preprocessing time for many applications (one-time operation).
- Query time composed of two components:
- Search time: Time to locate the first element to be reported.
- Retrieval time: Time to fetch and report all k elements to be reported.
- Space requirement (lower bound for preprocessing time).
- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.
- Query ranges not-empty, each produces a different answer.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.
- Query ranges not-empty, each produces a different answer.
- Overall: $a^{2 d}=(n /(2 d))^{2 d}$ different answers.

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
- $\quad(n=) 2 a d$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \backslash\{0\}$.
- $D=\left[b_{1}, \ldots, b_{d}\right] \times\left[c_{1}, \ldots, c_{d}\right]$, with $b_{i} \in[-a,-1], c_{i} \in[1, a], 1 \leq i \leq d$.
- Query ranges not-empty, each produces a different answer.
- Overall: $a^{2 d}=(n /(2 d))^{2 d}$ different answers.

- Depth of decision tree: $\Omega\left(\log (n /(2 d))^{2 d}\right)=\Omega(d \cdot \log n)$.
- Lower bound not tight for all d.

1. Introduction: Problem Statement, Lower Bounds

2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

$$
\begin{aligned}
& \mathrm{p}_{3} \mathrm{p}_{8} \mathrm{p}_{10} \mathrm{p}_{1} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{0} \mathrm{p}_{9} \mathrm{p}_{7} \mathrm{p}_{2} \mathrm{p}_{4} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array}
\end{aligned}
$$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{aligned}
& \begin{array}{l}
p_{3} p_{8} \\
p_{10} \\
p_{1}
\end{array} p_{6} p_{5} p_{0} \\
& \hline
\end{aligned}
$$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} & \mathrm{p}_{8} & \mathrm{p}_{9} & \mathrm{p}_{10} \\
\hline
\end{array}
$$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} & \mathrm{p}_{8} & \mathrm{p}_{9} & \mathrm{p}_{10} \\
\hline
\end{array}
$$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} & \mathrm{p}_{8} & \mathrm{p}_{9} & \mathrm{p}_{10} \\
\hline
\end{array}
$$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

\[

\]

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array} \\
& \uparrow
\end{aligned}
$$

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array} \\
& \uparrow
\end{aligned}
$$

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
...scan forward until first $p_{i}<x_{2}$ (or end of array).

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array} \\
& \uparrow
\end{aligned}
$$

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
...scan forward until first $p_{i}<x_{2}$ (or end of array).

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} & \mathrm{p}_{8} & \mathrm{p}_{9} & \mathrm{p}_{10} \\
\hline
\end{array}
$$

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
...scan forward until first $p_{i}<x_{2}$ (or end of array).

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

\[

\]

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
...scan forward until first $p_{i}<x_{2}$ (or end of array).

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

\[

\]

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
$\underline{\text {...scan forward until first } p_{i}<x_{2} \text { (or end of array). }}$

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} & \mathrm{p}_{8} & \mathrm{p}_{9} & \mathrm{p}_{10} \\
\hline
\end{array}
$$

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
...scan forward until first $p_{i}<x_{2}$ (or end of array).

- Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}$, stored in an array.
- Query range $D=\left[x_{1}, x_{2}\right]$.
- Scanning is sub-optimal; lower bound: $\Omega\left(1 \cdot \log _{2} n+k\right)$.

Preprocessing:

- Sort the points, e.g., using heapsort in $\mathcal{O}\left(n \log _{2} n\right)$ time.

Query: Binary search for smallest $p_{i} \geq x_{1} \ldots$
$\mathcal{O}\left(\log _{2} n\right)$
\ldots...scan forward until first $p_{i}<x_{2}$ (or end of array). $\mathcal{O}(k+1)$

$$
\begin{aligned}
& { }^{\circ} \mathrm{p}_{2} \\
& { }^{\circ} \mathrm{p}_{0} \quad{ }^{\circ}{ }^{\mathrm{p}_{3}} \quad{ }^{\circ}{ }^{\circ} \mathrm{p}_{7} \quad{ }^{\circ} \mathrm{p}_{8}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} \\
\hline
\end{array}
$$

- There is no total order on points in two dimensions sorting according to which guarantees $\Theta\left(2 \cdot \log _{2} n+k\right)$ query time for range searching.
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}
$$

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.
(1)(2)(3)45(6)78(9)(1)(12(3)(14) 15
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

- Time Complexity:
- Preprocessing time: $\mathcal{O}(n \log n)$
- Query time: $\mathcal{O}(\log n+k)$
- Space Complexity: $\mathcal{O}(n)$.
- Inserts/DeleteS possible.

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

- Time Complexity:
- Preprocessing time: $\mathcal{O}(n \log n)$
- Query time: $\mathcal{O}(\log n+k)$
- Space Complexity: $\mathcal{O}(n)$.
- Inserts/DeleteS possible.

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$ using, e.g., a threaded binary search tree.

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty, y$]

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty, y$] using, e.g., a heap:

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$ using,
 e.g., a threaded binary search tree.

Report all points in $\mathbb{R} \times]-\infty, y$] using, e.g., a heap:

- Almost complete binary tree.

Given: Point set $\mathcal{S}=\left\{p_{0}, \ldots, p_{n-1}\right\} \subset \mathbb{R}^{2}$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given $\left(x_{1}, x_{2}, y\right)$, fall into $\left.\left.\left[x_{1}, x_{2}\right] \times\right]-\infty, y\right]$.

Look at two subproblems:

- Report all points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$ using,
 e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty, y$] using, e.g., a heap:
- Almost complete binary tree.
$-\operatorname{key}(v) \leq \min \{\operatorname{key}(\operatorname{LSON}(v)), \operatorname{key}(\operatorname{RSON}(v))\}$.

Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.

Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.
- No (direct) way of incorporating heap property.

Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.

Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.

Binary search tree with heap property:

- Binary search tree unique w.r.t. inorder-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.
- Additional requirement: $\forall v \in \mathcal{H}: \exists x_{v} \in \mathbb{R}$:

$$
l \leq x_{v}<r \quad \forall l \in \operatorname{LSUBTREE}(v), \forall r \in \operatorname{RSUBTREE}(v) .
$$

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.
- Else let $p_{\text {min }}$ be the point in \mathcal{S} having the minimum y-coordinate.

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.
- Else let $p_{\text {min }}$ be the point in \mathcal{S} having the minimum y-coordinate.
- Let $x_{\text {mid }}$ be the median of the x-coordinates in $\mathcal{S} \backslash\left\{p_{\min }\right\}$.
- Partition $\mathcal{S} \backslash\left\{p_{\min }\right\}:$

$$
\begin{aligned}
\mathcal{S}_{\text {left }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\min }\right\} \mid p \cdot x \leq x_{\text {mid }}\right\} \\
\mathcal{S}_{\text {right }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\text {min }}\right\} \mid p \cdot x>x_{\text {mid }}\right\}
\end{aligned}
$$

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.
- Else let $p_{\text {min }}$ be the point in \mathcal{S} having the minimum y-coordinate.
- Let $x_{\text {mid }}$ be the median of the x-coordinates in $\mathcal{S} \backslash\left\{p_{\min }\right\}$.
- Partition $\mathcal{S} \backslash\left\{p_{\min }\right\}:$

$$
\begin{aligned}
\mathcal{S}_{\text {left }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\min }\right\} \mid p \cdot x \leq x_{\text {mid }}\right\} \\
\mathcal{S}_{\text {right }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\text {min }}\right\} \mid p \cdot x>x_{\text {mid }}\right\}
\end{aligned}
$$

- Construct search tree node v storing $x_{\text {mid }}$ and set $p(v):=p_{\text {min }}$.

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.
- Else let $p_{\min }$ be the point in \mathcal{S} having the minimum y-coordinate.
- Let $x_{\text {mid }}$ be the median of the x-coordinates in $\mathcal{S} \backslash\left\{p_{\min }\right\}$.
- Partition $\mathcal{S} \backslash\left\{p_{\min }\right\}:$

$$
\begin{aligned}
\mathcal{S}_{\text {left }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\min }\right\} \mid p \cdot x \leq x_{\text {mid }}\right\} \\
\mathcal{S}_{\text {right }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\text {min }}\right\} \mid p \cdot x>x_{\text {mid }}\right\}
\end{aligned}
$$

- Construct search tree node v storing $x_{\text {mid }}$ and set $p(v):=p_{\text {min }}$.
- Recursively compute v 's children $\mathcal{H}\left(\mathcal{S}_{\text {left }}\right)$ and $\mathcal{H}\left(\mathcal{S}_{\text {right }}\right)$.

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(\mathcal{S})$ for a given set \mathcal{S} of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $\mathcal{S}=\emptyset$, construct $\mathcal{H}(\mathcal{S})$ as an (empty) leaf.
- Else let $p_{\min }$ be the point in \mathcal{S} having the minimum y-coordinate.
- Let $x_{\text {mid }}$ be the median of the x-coordinates in $\mathcal{S} \backslash\left\{p_{\min }\right\}$.
- Partition $\mathcal{S} \backslash\left\{p_{\min }\right\}:$

$$
\begin{aligned}
\mathcal{S}_{\text {left }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\text {min }}\right\} \mid p \cdot x \leq x_{\text {mid }}\right\} \\
\mathcal{S}_{\text {right }} & :=\left\{p \in \mathcal{S} \backslash\left\{p_{\text {min }}\right\} \mid p \cdot x>x_{\text {mid }}\right\}
\end{aligned}
$$

- Construct search tree node v storing $x_{\text {mid }}$ and set $p(v):=p_{\text {min }}$.
- Recursively compute v 's children $\mathcal{H}\left(\mathcal{S}_{\text {left }}\right)$ and $\mathcal{H}\left(\mathcal{S}_{\text {right }}\right)$.
- Complexity: $\mathcal{O}(n)$ space; $\mathcal{O}(n \log n)$ time (why?).

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.
- Check all points on these paths.

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$.

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$.

- Query these subtrees a follows:

SearchInSubtree (v, y)
if v not a leaf and $p(v) . y \leq y$ then Report $p(v)$;
SearchInSubtree $(\operatorname{LSON}(v), y)$;
SearchInSubtree $(\operatorname{RSON}(v), y)$;
Query time: $\mathcal{O}\left(1+k_{v}\right)$.

Example for $y=5$.

Query range $\left[x_{1}, x_{2}\right] \times[-\infty, y]$:

- Queries for x_{1} and x_{2} result in two search paths in \mathcal{H}.
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $\left[x_{1}, x_{2}\right] \times \mathbb{R}$.

- Query these subtrees a follows:

SearchInSubtree (v, y)
if v not a leaf and $p(v) . y \leq y$ then Report $p(v)$;
SearchInSubtree $(\operatorname{LSON}(v), y)$;
SearchInSubtree $(\operatorname{RSON}(v), y)$;
Query time: $\mathcal{O}\left(1+k_{v}\right)$.

Example for $y=5$.

Missing Components:

- A more detailed description of the query algorithm.
- Proof of correctness.
\Rightarrow [de Berg et al., 2000]

Theorem 2.1

Priority search trees allow for answering three-sided range queries on points in \mathbb{R}^{2} with time and space complexities as follows:

Preprocessing time: $\Theta(n \log n)$
Query time: $\quad \mathcal{O}(\log n+k)$
Space requirement: $\Theta(n)$

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook

- Extend the concept of binary search by bisection to higher dimensions.
- Instead of intervals, partition (hyper-)rectangles; do the partitioning alternating parallel to the coordinate axes.
- R_{i} is partitioned into R_{j} and $R_{k} \Rightarrow\left|R_{j}\right| \approx\left|R_{k}\right| \approx \frac{1}{2}\left|R_{i}\right|$.
- Structure corresponding to partitioning: balanced binary tree (k D-tree [Bentley, 1975]).
- Node v corresponds to hyperrectangle $R(v), R($ root $)=\mathbb{R}^{d}$; children correspond to sub-hyperrectangles.
- Each node v is augmented to store:
- $\mathcal{S}(v)$: points contained in $R(v)$ (implicitly).
- $\quad \ell(v)$: representation of split axis.
- $p(v)$: median of $\mathcal{S}(v)$ w.r.t. $\ell(v)$.

Alternating partitioning along the coordinate axes.

Alternating partitioning along the coordinate axes.

Alternating partitioning along the coordinate axes.

Alternating partitioning along the coordinate axes.
void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median \(<\) right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


void search(node v, rectangle D, list \langle point $\&$ \& result)

```
double left, median, right;
if v.type \(==\) "vertical" then
        left \(=\) D. \(\times 1\); right \(=\mathrm{D} . \times 2\);
        median \(=\) v.p.x;
    else
        left \(=\) D.y1; right = D.y2;
        median \(=\) v.p.y;
    if left \(\leq\) median \(\leq\) right and
        D.contains(v.p) then
        result.append(v.p);
    if !isLeaf \((v)\) then
        if left < median then
            search(leftSon(v), D, result);
        if median < right then
            search(rightSon(v), D, result);
    return;
```


Space requirement:

- $p \in R(v) \Longleftrightarrow p=p(v) \vee p \in R(q)$ for any descendant q of v.
- \mathcal{O} (1) space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Space requirement:

- $p \in R(v) \Longleftrightarrow p=p(v) \vee p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Construction time (preprocessing):

- Linear-time median finding per partitioning step, i.e., recurrence:

$$
T(n)=2 \cdot T(\lceil n / 2\rceil)+\mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)
$$

Space requirement:

- $p \in R(v) \Longleftrightarrow p=p(v) \vee p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Construction time (preprocessing):

- Linear-time median finding per partitioning step, i.e., recurrence:

$$
T(n)=2 \cdot T(\lceil n / 2\rceil)+\mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)
$$

- Alternative: Replace median-finding by pre-sorting (copies of) the point by their x - and y-coordinates, respectively.
- Can find median w.r.t. x-coordinate in $\mathcal{O}(1)$ time.
- Can construct sorted y-arrays to be passed to the children in linear time.
- Query time proportional to number of nodes visited.
- v productive $\Longleftrightarrow p(v) \in D$.
- Nodes visited: productive and unproductive nodes.

Definition 3.1

Let $R(v)$ be a rectangle and let $0 \leq$ $i \leq 4$. D and $R(v)$ form a typei situation $\Longleftrightarrow i$ sides of $R(v)$ intersect the interior of D.

Type 0

Type 1

Type 2

Type 3

Type 4

- Type-4 situation always productive, all other situations may be unproductive.
- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Use self-replicating type-2/type-3 situations [Lee \& Wong, 1977].

- Recurrence for worst-case query time:

$$
T(h)=\underbrace{1}_{A}+\underbrace{1}_{B}+\underbrace{1}_{C}+\underbrace{T(h-2)}_{G}+\underbrace{T^{\prime}(h-2)}_{D}+\underbrace{1}_{F}+\underbrace{T^{\prime}(h-3)}_{H}
$$

- A closer look at situation "subtree rooted at node D ".

- Recurrence for this situation:

$$
T^{\prime}(h)=\underbrace{1}_{D}+\underbrace{1}_{X}+\underbrace{1}_{Y}+\underbrace{2 \cdot T^{\prime}(h-2)}_{\text {Children of } X \text { and } Y}
$$

Constructing a worst-case situation-III

- The following recurrence holds for $T^{\prime}(h)$:

$$
\begin{aligned}
& \quad T^{\prime}(h)=2 \cdot T^{\prime}(h-2)+3 \\
& \text { with } T^{\prime}(0)=0 \text { and } T^{\prime}(1)=1
\end{aligned}
$$

Constructing a worst-case situation-III

- The following recurrence holds for $T^{\prime}(h)$:

$$
T^{\prime}(h)=2 \cdot T^{\prime}(h-2)+3
$$

with $T^{\prime}(0)=0$ and $T^{\prime}(1)=1$.

- Solve recurrence for $T^{\prime}(h)$, w.I.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

$$
\begin{aligned}
T^{\prime}(2 \cdot i) & =3+2 \cdot T^{\prime}(2(i-1)) \\
& =3+2 \cdot\left(3+2 \cdot T^{\prime}(2(i-2))\right) \\
& =\sum_{j=0}^{i-1} 3 \cdot 2^{j}=3 \cdot 2^{i}-3
\end{aligned}
$$

Constructing a worst-case situation-III

- The following recurrence holds for $T^{\prime}(h)$:

$$
T^{\prime}(h)=2 \cdot T^{\prime}(h-2)+3
$$

with $T^{\prime}(0)=0$ and $T^{\prime}(1)=1$.

- Solve recurrence for $T^{\prime}(h)$, w.I.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

$$
\begin{aligned}
T^{\prime}(2 \cdot i) & =3+2 \cdot T^{\prime}(2(i-1)) \\
& =3+2 \cdot\left(3+2 \cdot T^{\prime}(2(i-2))\right) \\
& =\sum_{j=0}^{i-1} 3 \cdot 2^{j}=3 \cdot 2^{i}-3
\end{aligned}
$$

Similarly: $T^{\prime}(2 \cdot i+1)=4 \cdot 2^{i}-3$.

- The following recurrence holds for $T(h)$:

$$
\begin{aligned}
& T(h)=T(h-2)+T^{\prime}(h-2)+T^{\prime}(h-3)+4 \\
& T^{\prime}(h)= \begin{cases}4 \cdot 2^{i}-3 & \text { for } h=2 \cdot i+1 \\
3 \cdot 2^{i}-3 & \text { for } h=2 \cdot i\end{cases} \\
& \text { with } T(0)=T^{\prime}(0)=0 \text { and } T(1)=T^{\prime}(1)=1
\end{aligned}
$$

- The following recurrence holds for $T(h)$:

$$
\begin{aligned}
& T(h)=T(h-2)+T^{\prime}(h-2)+T^{\prime}(h-3)+4 \\
& T^{\prime}(h)= \begin{cases}4 \cdot 2^{i}-3 & \text { for } h=2 \cdot i+1 \\
3 \cdot 2^{i}-3 & \text { for } h=2 \cdot i\end{cases} \\
& \text { with } T(0)=T^{\prime}(0)=0 \text { and } T(1)=T^{\prime}(1)=1
\end{aligned}
$$

- Solve recurrence for $T(h)$, w.l.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

Constructing a worst-case situation-IV

- The following recurrence holds for $T(h)$:

$$
\begin{aligned}
& T(h)=T(h-2)+T^{\prime}(h-2)+T^{\prime}(h-3)+4 \\
& T^{\prime}(h)= \begin{cases}4 \cdot 2^{i}-3 & \text { for } h=2 \cdot i+1 \\
3 \cdot 2^{i}-3 & \text { for } h=2 \cdot i\end{cases} \\
& \text { with } T(0)=T^{\prime}(0)=0 \text { and } T(1)=T^{\prime}(1)=1
\end{aligned}
$$

- Solve recurrence for $T(h)$, w.l.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

$$
\begin{aligned}
T(2 \cdot i) & =4+T(2(i-1))+3 \cdot 2^{i-1}-3+4 \cdot 2^{i-2}-3 \\
& =T(2(i-1))+5 \cdot 2^{i-1}-2 \\
& =5 \cdot\left(2^{h / 2}-1\right)-h
\end{aligned}
$$

Constructing a worst-case situation-IV

- The following recurrence holds for $T(h)$:

$$
\begin{aligned}
& T(h)=T(h-2)+T^{\prime}(h-2)+T^{\prime}(h-3)+4 \\
& T^{\prime}(h)= \begin{cases}4 \cdot 2^{i}-3 & \text { for } h=2 \cdot i+1 \\
3 \cdot 2^{i}-3 & \text { for } h=2 \cdot i\end{cases} \\
& \text { with } T(0)=T^{\prime}(0)=0 \text { and } T(1)=T^{\prime}(1)=1
\end{aligned}
$$

- Solve recurrence for $T(h)$, w.l.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

$$
\begin{aligned}
T(2 \cdot i) & =4+T(2(i-1))+3 \cdot 2^{i-1}-3+4 \cdot 2^{i-2}-3 \\
& =T(2(i-1))+5 \cdot 2^{i-1}-2 \\
& =5 \cdot\left(2^{h / 2}-1\right)-h
\end{aligned}
$$

Similarly: $T(2 \cdot i+1)=7 \cdot\left(2^{\lfloor h / 2\rfloor}-1\right)-h+2$.

- The following recurrence holds for $T(h)$:

$$
\begin{aligned}
& T(h)=T(h-2)+T^{\prime}(h-2)+T^{\prime}(h-3)+4 \\
& T^{\prime}(h)= \begin{cases}4 \cdot 2^{i}-3 & \text { for } h=2 \cdot i+1 \\
3 \cdot 2^{i}-3 & \text { for } h=2 \cdot i\end{cases} \\
& \text { with } T(0)=T^{\prime}(0)=0 \text { and } T(1)=T^{\prime}(1)=1
\end{aligned}
$$

- Solve recurrence for $T(h)$, w.l.o.g. $h=2 \cdot i, i \in \mathbb{N}$.

$$
\begin{aligned}
T(2 \cdot i) & =4+T(2(i-1))+3 \cdot 2^{i-1}-3+4 \cdot 2^{i-2}-3 \\
& =T(2(i-1))+5 \cdot 2^{i-1}-2 \\
& =5 \cdot\left(2^{h / 2}-1\right)-h
\end{aligned}
$$

Similarly: $T(2 \cdot i+1)=7 \cdot\left(2^{\lfloor h / 2\rfloor}-1\right)-h+2$.

- Overall (for $n \leq 2^{h}-1$): $T(n) \in \mathcal{O}\left(2 \cdot n^{1 / 2}\right)$.
- Worst-case query time independent of the number of points reported.
- k D-tree very relevant in practice!
- Extension to higher dimensions (points in \mathbb{R}^{d}): Do partitioning in a round-robin manner of the coordinate axes $x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow$ $x_{d} \rightarrow x_{1} \rightarrow \ldots$

Theorem 3.2

Multidimensional search trees ($k \mathrm{D}$-trees) allow for answering foursided range queries on points in $\mathbb{R}^{d}, d \geq 2$ with time and space complexities as follows:

$$
\begin{array}{ll}
\text { Preprocessing time: } & \Theta(d \cdot n \log n) \\
\text { Query time: } & \mathcal{O}\left(d \cdot n^{1-1 / d}+k\right) \\
\text { Space requirement: } & \Theta(n)
\end{array}
$$

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}\left(n^{1-1 / d}+k\right)$ algorithm, $\Theta(n)$ space.

Lower bounds:

- $\Omega\left(d \cdot \log _{2} n+k\right)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}\left(\log _{2} n+k\right)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}\left(n^{1-1 / d}+k\right)$ algorithm, $\Theta(n)$ space.

Outlook:

- Optimal query time possible of one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.

Bibliography

[Bentley \& Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range searching. Acta Informatica, 13:155-168, 1980.
[Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509-517, September 1975.
[Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching. I: The reporting case. Journal of the ACM, 37(2):200-212, April 1990.
[de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer, Berlin, second edition, 2000.
[Lee \& Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. Acta Informatica, 9:23-29, 1977.
[McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257-276, May 1985.

