An Introduction To Range Searching

Jan VVahrenhold

Department of Computer Science
Westfalische Wilhelms-Universitat Munster, Germany.

W N

Introduction: Problem Statement, Lower Bounds
Range Searching in 1 and 1.5 Dimensions
Range Searching in 2 Dimensions

Summary and Outlook

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R?.

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R?.

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R?.

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R?.

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R?.

Given: Collection S of n points in d dimensions (S ¢ R%).

Wanted: Algorithm for efficiently reporting all £ points in § falling
into a given axis-parallel query range D C R€.

Applications: Geographic Information Systems; Databases having
relations in which the keys can be totally ordered.

Given: Collection S of n points in d dimensions (S C R%)

Wanted: Algorithm for efficiently reporting all k points in & falling

into a given axis-parallel query range D C R?
Databases having

Applications: Geographic Information Systems
relations in which the keys can be totally ordered

i Bngham Ciy 7 Rock Springs 5 e wes : A
]l Ogden I Green R"’e" .araggvav py, Lramie Pine Bl.uﬂs Gehalt
S U (P " . @CHEVEME_ _ _ -
] SALT LARE 177 T T T TR o W Haxon .
' .Togée)e Al Tl Walten T Steing K 100.000
o Greel
'f .P Duchesn.e -Hooseven Hang ‘Y oy Estes Pl i Akron Yuma = Mayer
! ayson \ .Bouider . tChance
I Del o Nephi oPrice 7 l Rifle Vall @DENV R o® *Cope
! o5 A Glenwoods r. ~Dillon SFlagier
! U rls‘ J_A H b° IR, Erand Junction .Aspenp L‘moon. = Maier
I e Saina Hugo . .
| Elsinore oRishion \&] De\laC OLORADO i Ca = Meier
| oo | Montrose Colorado Sprgwgs. o Jloca [
annon Ci . =
! ! . o Plebio Lams; 35.000 | Eintrittsdatum
gedar Clt‘ P anguich ;oM Wlfson .S\\Lyear};on 1990 /
I 1* Dave Creek \’\—og NI o'Veisenurg Spri /
| @ Springdale i Cortgz . 1985
= 251George_ | oDUraNg Alamosd Trinidad /
| - ~ e - —a—r—a—a— —y—y—a] ——
| Page o fayenta " Shy:riock o Atec o Tierra Amarilla efaton :
armington WheeJer Pk y
\Welt a
J\ 00 Grand‘ Canygn o Tuba City i) ! Ma Me Name

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Need to scan the whole array, regardless of how many points are
reported. Complexity: © (n) time and space.

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Need to scan the whole array, regardless of how many points are
reported. Complexity: © (n) time and space.

m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.

°p,
°p,
.pl .p2 .ps ® p9
) (@)
P, P
® p7 .pg
°po

Po [P1 |P2 |Ps|Pa|Ps |Ps |P7|Ps Py |Pio

m Need to scan the whole array, regardless of how many points are
reported. Complexity: © (n) time and space.

Change the model to also include k (the number of points re-
ported) as a parameter.

— Algorithm on previous slide has complexity O (n + k) = O (n).

Time complexity: preprocessing time < query time

Can disregard preprocessing time for many applications
(one-time operation).

Query time composed of two components:

— Search time: Time to locate the first element to be reported.
— Retrieval time: Time to fetch and report all £ elements to be reported.

Space requirement (lower bound for preprocessing time).

Parameters: n points, &k points reported, d dimensions.
Space requirement: Q2(n).
Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Parameters: n points, k£ points reported, d dimensions.

Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

Parameters: n points, k£ points reported, d dimensions.

Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

Parameters: n points, k£ points reported, d dimensions.
Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor- (C1,C2)
dinate taken from [—a,a] \ {O0}.

- D = [bl,...,bd] X [Cl,...,cd], with
bi € [—a,—1], ci € [1,a], 1 <i<d.

(b1,by)

Parameters: n points, k£ points reported, d dimensions.
Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [—a,a] \ {0}. (C1.C2)

- D = [bl,...,bd] X [Cl,...,cd], with
bi € [—a,—1], ci € [1,a], 1 <i<d.

(b1,by)

Parameters: n points, k£ points reported, d dimensions.
Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [—a,a] \ {0}. (C1.C2)

- D = [bl,...,bd] X [Cl,...,cd], with
bi € [—a,—1], ci € [1,a], 1 <i<d.

(b1,by)

Parameters: n points, k£ points reported, d dimensions.
Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly (C1.C2)
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

- D = [bl,...,bd] X [Cl,...,cd], with
b € [—a,—1], ¢; € [1,a], 1 <17 < d.

— Query ranges not-empty, each pro-
duces a different answer.

(b4,b;)

Parameters: n points, k£ points reported, d dimensions.
Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly (C1.C2)
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

- D = [bl,...,bd] X [Cl,...,cd], with
b € [—a,—1], ¢; € [1,a], 1 <17 < d.

— Query ranges not-empty, each pro-
duces a different answer.

— Overall: a2 = (n/(2d))** different
answers.

(b4,b;)

Parameters: n points, k£ points reported, d dimensions.

Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly (C1.C2)
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

- D = [bl,...,bd] X [Cl,...,cd], with
b € [—a,—1], ¢; € [1,a], 1 <17 < d.

— Query ranges not-empty, each pro-
duces a different answer.

— Overall: a2 = (n/(2d))** different .
answers. (by,b)

— Depth of decision tree: © (Iog (n/(2d))2d) — Q(d-logn).
— Lower bound not tight for all d.

2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions

4. Summary and Outlook

m Point set S ={pg,...,pn—1} C R, stored in an array.
s Query range D = [x1, z>o].

m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Ps Ps P Py Ps Ps Py Ps Pr P, Py

_C "y "y "y "y \ \ "y "y "y "y >

m Point set S ={pg,...,pn—1} C R, stored in an array.
s Query range D = [x1, z>o].

m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Ps Ps P Py Ps Ps Py Ps Pr P, Py

_C "y "y "y "y \ \ "y "y "y "y >

Po |P1 | P2 |Ps | Pa|Ps|Ps |P7|Ps|Ps |Pig

s Point set S = {po, . ..

= Query range D = [z1, z»o].

m Scanning is sub-optimal; lower bound: Q(

Preprocessing:

m Sort the points, e.g., using heapsort in O (nlogpyn) time.

logon + k).

Pa Ps PPy Ps Ps Po Ps P7 P2 P

—0

)
A

)
A

)
A

)
A

)
S

)
S

()
A

()
A

()
A

)
A

,Pn—1+ C IR, stored in an array.

Po

P,

P,

P,

P,

Ps

Ps

P,

Py

Py

Pio

>

s Point set S = {po, . ..

= Query range D = [z1, z»o].

m Scanning is sub-optimal; lower bound: Q(

Preprocessing:

m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po P P2 Ps Py Ps Ps P

—0

)
A

)

)
A

)
A

O

O
S

O

logon + k).

7 Ps Pg Pao

,Pn—1+ C IR, stored in an array.

S

S

S

A

S

S

Po

P,

P,

P,

P,

Ps

Ps

P,

Py

Py

Pio

>

s Point set S = {po, . ..

= Query range D = [z1, z»o].

m Scanning is sub-optimal; lower bound: Q(

Preprocessing:

m Sort the points, e.g., using heapsort in O (nlogpyn) time.

O

O

,Pn—1+ C IR, stored in an array.

O

Q

Q

@)

O

O

O

logon + k).

O
v

Po

P,

P,

P,

P,

Ps

Ps

P,

Pq

Py

Py

s Point set S = {po, . ..

= Query range D = [z1, z»o].

m Scanning is sub-optimal; lower bound: Q(

Preprocessing:

m Sort the points, e.g., using heapsort in O (nlogpyn) time.

,Pn—1+ C IR, stored in an array.

Q

Q

Q

Q

logon + k).

Po

P,

P,

P,

P,

Ps

Ps

P,

Pq

Py

Py

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

*

Query: Binary search for smallest p;, > xq. ..

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

*

Query: Binary search for smallest p;, > xq. ..

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

*

Query: Binary search for smallest p; > 1. .. O (logon)

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

*

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

*

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

Po | P1 | P2 [Ps | Py |Ps | Pe | Pz | Ps | Py | P

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

—O0—0—=C *—0—0—0—O+—0—0—»

Po | Py |Ps | P3| Pa|Ps | Pe | Pz |Ps | Py | P

*

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

—O0—0—=C —0—0—0

O
O
v

Po | Py |Ps | P3| Pa|Ps | Pe | Pz |Ps | Py | P

*

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p;, < 2o (or end of array).

m Point set S ={pg,...,pn—1} C R, stored in an array.
= Query range D = [z1, z»o].
m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpyn) time.

—O0—0—=C —0—0—0

O
O
v

Po | Py |Ps | P3| Pa|Ps | Pe | Pz |Ps | Py | P

Query: Binary search for smallest p; > 1. .. O (logon)

... scan forward until first p; < x> (or end of array). O(k+1)

P,
Opo Op3 Op7 Oplo
o @)
P, Ps
°p, °p,
°pe
Po [Py | P2 |Ps (P4 |Ps|Ps P [Ps | Py |Pio

“p,
°p,
OpO Op3 Op7 Oplo
O @)
P, Ps
°p, °p,
°p,
Po [Py P2 |Ps|Ps|Ps|Ps |P7|Ps|Pg | Py

I Op8 |
Opo Op3 Op7 Oplo
o @)
P, Ps
°Py °p,
°p,
Po [P1 | P2 | P3| Pa|Ps |Ps | Pz |Ps [Py | Pig

°Ps
e Op, °p, °p.,
o5 Prog, °p,
°Ps
Po Py P2 [P |Pa | Ps | Ps [Py [Ps [Po | Po

°p,
@)
Po Op3 Op7 Oplo
o °p,
°p, °p,
°p,

Po [P1 | P2 | P3| Pa|Ps |Ps | Pz |Ps [Py | Pig

m [here is no total order on points in two dimensions sorting ac-
cording to which guarantees © (2-logon + k) query time for range
searching.

s Key ingredient: binary search (bisection).

m Replace (sorted) array by binary search tree.

11

12

13

14

15

s Key ingredient: binary search (bisection).

m Replace (sorted) array by binary search tree.

96600600000 DDHBEDE

s Key ingredient: binary search (bisection).

m Replace (sorted) array by binary search tree.

s Key ingredient: binary search (bisection).

m Replace (sorted) array by binary search tree.

s Key ingredient: binary search (bisection).

m Replace (sorted) array by binary search tree.

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

Time Complexity:

— Preprocessing time: O (nlogn)
— Query time: O (logn + k)

Space Complexity: O (n).

InsertS/DeleteS possible.

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

Time Complexity:

— Preprocessing time: O (nlogn)
— Query time: O (logn + k)

Space Complexity: O (n).

InsertS/DeleteS possible.

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array. °

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into ° .

[mlaxQ] X] — OO,y].

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[mlaxQ] X] — OO,y].

Look at two subproblems:
s Report all points in [x1,22] X R

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[mlaxQ] X] — OO,y].

Look at two subproblems:

s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[xlaxQ] X] — OO,y].

Look at two subproblems:

s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.

s Report all pointsin R x | — oo, 9]

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[xlaxQ] X] — OO,y].

Look at two subproblems:
s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.

s Report all points in R x | — oo, y] using,
e.d., a heap:

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[xlaxQ] X] — OO,y].

Look at two subproblems:

s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.

s Report all points in R x | — oo, y] using,
e.d., a heap:

— Almost complete binary tree.

Given: Point set S = {pg,...,pn_1} C R?,
stored in an array.

Wanted: Method to efficiently retrieve all
p € § that, for given (x1,x5,y), fall into

[xlaxQ] X] — OO,y].

Look at two subproblems:
s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.
s Report all points in R x | — oo, y] using,
e.d., a heap:

— Almost complete binary tree.
— key(v) < min{key(LSON(v)), key(RSON(v))}.

Binary search tree with heap property:

m Binary search tree unique w.r.t. inorder-traversal.

Binary search tree with heap property:

m Binary search tree unique w.r.t. inorder-traversal.

s No (direct) way of incorporating heap property.

Binary search tree with heap property:.
m Binary search tree unique w.r.t. inorder-traversal.
s No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

Binary search tree with heap property:.
m Binary search tree unique w.r.t. inorder-traversal.
s No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

m More precisely: Children of a node may be switched.

Binary search tree with heap property:.
m Binary search tree unique w.r.t. inorder-traversal.
s No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

m More precisely: Children of a node may be switched.

Priority Search Tree:

m Binary tree 'H storing a two-dimensional point at each node s.t.
the heap property w.r.t. the y-coordinates is fulfilled.

Binary search tree with heap property:.
m Binary search tree unique w.r.t. inorder-traversal.
s No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

m More precisely: Children of a node may be switched.

Priority Search Tree:

m Binary tree 'H storing a two-dimensional point at each node s.t.
the heap property w.r.t. the y-coordinates is fulfilled.

m Additional requirement: Yv € H : dxpy € R :
| <xy<r VI € LSUBTREE(v), Vr € RSUBTREE(v).

Use recursive definition [McCreight, 1985]:

m Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

m If S =10, construct H(S) as an (empty) leaf.

Use recursive definition [McCreight, 1985]:

m Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

m If S =10, construct H(S) as an (empty) leaf.

m Else let pmin be the point in § having the minimum y-coordinate.

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =0, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let xmig be the median of the z-coordinates in S\ {pmin}-

Partition S\ {pmin}:

{r € S\ {Pmin} | p-x < zmid}
{p € S\{Pmin} | P > Tmid}

Sleft
Sright

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =0, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let xmig be the median of the z-coordinates in S\ {pmin}-

Partition S\ {pmin}:

{r € S\ {Pmin} | p-x < zmid}
{p € S\{Pmin} | P > Tmid}

Sleft
Sright

Construct search tree node v storing xmig and set p(v) ‘= Pmin-

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =0, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let xmig be the median of the z-coordinates in S\ {pmin}-

Partition S\ {pmin}:

{r € S\ {Pmin} | p-x < zmid}
{p € S\{Pmin} | P > Tmid}

Sleft
Sright

Construct search tree node v storing xmig and set p(v) ‘= Pmin-

Recursively compute v's children H(Siert) and H(Syight) -

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =0, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let xmig be the median of the z-coordinates in S\ {pmin}-

Partition S\ {pmin}:

{r € S\ {Pmin} | p-x < zmid}
{p € S\{Pmin} | P > Tmid}

Sleft
Sright

Construct search tree node v storing xmig and set p(v) ‘= Pmin-
Recursively compute v's children H(Siert) and H(Syight) -

Complexity: O (n) space; O (nlogn) time (why?).

Query range [z1, 5] X [—o0,y]:

m Queries for 1 and xzo result in two search
paths in H.

Query range [z1, 5] X [—o0,y]:

m Queries for 1 and xzo result in two search
paths in H.

Query range [z1, 5] X [—o0,y]:

m Queries for 1 and xzo result in two search
paths in H.

m Check all points on these paths.

Query range [z1, 5] X [—o0,y]:
m Queries for 1 and xzo result in two search
paths in H.
m Check all points on these paths.

m All subtrees “embraced’ by these paths con-
tain points in [z1,25] X R.

Query range [z1, 5] X [—o0,y]:
m Queries for 1 and xzo result in two search
paths in H.
m Check all points on these paths.

m All subtrees “embraced’ by these paths con-
tain points in [z1,25] X R.

m Query these subtrees a follows:

SearchInSubtree(v, y)

if v not a leaf and p(v).y <y then
Report p(v);
SearchInSubtree(LSON(v),y);
SearchInSubtree(RSON(v), y);

Query time: O (1 + k). Example for y = 5.

Query range [z1, 5] X [—o0,y]:
m Queries for 1 and xzo result in two search
paths in H.
m Check all points on these paths.

m All subtrees “embraced’ by these paths con-
tain points in [z1,25] X R.

m Query these subtrees a follows:

SearchInSubtree(v, y)

if v not a leaf and p(v).y <y then
Report p(v);
SearchInSubtree(LSON(v),y);
SearchInSubtree(RSON(v), y);

Query time: O (1 + k). Example for y = 5.

Missing Components:

= A more detailed description of the)
query algorithm. s = [de Berg et al., 2000]
m Proof of correctness.)

Theorem 2.1
Priority search trees allow for answering three-sided range queries on
points in R2 with time and space complexities as follows:

Preprocessing time: © (nlogn)
Query time: O (logn + k)

Space requirement: © (n)

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Extend the concept of binary search by bisection to higher dimen-
sSions.

Instead of intervals, partition (hyper-)rectangles; do the partition-
ing alternating parallel to the coordinate axes.

R; is partitioned into R; and Ry = |R;| ~ |Ry| =~ 3|R;|.

Structure corresponding to partitioning: balanced binary tree
(kD-tree [Bentley, 1975]).

Node v corresponds to hyperrectangle R(v), R(root) = R?:
children correspond to sub-hyperrectangles.

Each node v is augmented to store:
— S(v): points contained in R(v) (implicitly).

— /Y(v): representation of split axis.
— p(v): median of S(v) w.r.t. £(v).

o
p o
¢ P,
P
]
o
p . B 10
2 ® 8
g |

Alternating partitioning along the coordinate axes.

o °
®
7 P,
P3
o
P,
e o 10
2 p. p7. p8
5

Alternating partitioning along the coordinate axes.

P4
° p90
4 Y
R P,
P3
@
o
p | ° 10
2 p. p 7. p8
5

Alternating partitioning along the coordinate axes.

P

P.d)
0 %e
19 P e
.4 pll
Ps
@
@
Pio
T N
5

Alternating partitioning along the coordinate axes.

P

Y d% N

void search(node v, rectangle D, list(point)& result)

double left, median, right;

iIf v.type == ‘“vertical” then
left = D.x1; right = D.x2;
median = v.p.X;

else
left = D.y1; right = D.y2;
median = Vv.p.y;

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then

search(rightSon(v), D, result);

return;

P
D D 6+ Pog
19 P ——
o P
P 11
s
P,
o _B 10
e 8
22

P,

ST E:

Pio

./\. ./\. ./\. ./\.

void search(node v, rectangle D, list(point)& result)

double left, median, right;

iIf v.type == ‘“vertical” then
left = D.x1; right = D.x2;
median = v.p.X;

else
left = D.y1; right = D.y2;
median = Vv.p.y;

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then

search(rightSon(v), D, result);

return;

P
D D 6+ Pog
19 P ——
o P
P 11
s
P,
o _B 10
e 8
22

P,

ST E:

Pio

./\. ./\. ./\. ./\.

void search(node v, rectangle D, list(point)& result)

double left, median, right;

iIf v.type == ‘“vertical” then
left = D.x1; right = D.x2;
median = v.p.X;

else
left = D.y1; right = D.y2;
median = Vv.p.y;

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then

search(rightSon(v), D, result);

return;

P
D D 6+ Pog
19 P ——
o P
P 11
s
P,
o _B 10
e 8
22

P;

‘ST E:

Pio

./\. ./\. ./\. ./\.

void search(node v, rectangle D, list(point)& result)

double left, median, right; D p6+ Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y;) p#ps

b

If left < median < right and
D.contains(v.p) then
result.append(v.p); @

iIf lisLeaf(v) then P
If left < median then

search(leftSon(v), D, result); (p,) (p) OO

If median < right then
search(rightSon(v), D, result);

Ps
return; o/ \o o/

P

S

P

P

Y IS 4

void search(node v, rectangle D, list(point)& result)

double left, median, right; D p6+ Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y;) p#ps

b

If left < median < right and
D.contains(v.p) then
result.append(v.p); @

iIf lisLeaf(v) then P
If left < median then

search(leftSon(v), D, result); (p,) (p) OO

If median < right then
search(rightSon(v), D, result);

Ps
return; o/ \o o/

P

S

P

P

Y IS 4

void search(node v, rectangle D, list(point)& result)

double left, median, right; D p6+ Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y;) p#ps

b

If left < median < right and
D.contains(v.p) then
result.append(v.p); @

iIf lisLeaf(v) then P
If left < median then

search(leftSon(v), D, result); (p,) (p) OO

If median < right then
search(rightSon(v), D, result);

Ps
return; o/ \o o/

P

S

P

P

Y IS 4

void search(node v, rectangle D, list(point)& result)

double left, median, right; D p6+ Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y;) p#ps

b

If left < median < right and
D.contains(v.p) then
result.append(v.p); @

iIf lisLeaf(v) then P
If left < median then

search(leftSon(v), D, result); (p,) (p) OO

If median < right then
search(rightSon(v), D, result);

Ps
return; o/ \o o/

P

S

P

P

Y IS 4

void search(node v, rectangle D, list(point)& result)

double left, median, right; D pﬁl Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y; P, p#pS

b

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then
search(rightSon(v), D, result);

return;

void search(node v, rectangle D, list(point)& result)

double left, median, right; D pﬁl Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y; P, p#pS

b

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then
search(rightSon(v), D, result);

return;

void search(node v, rectangle D, list(point)& result)

double left, median, right; D pﬁl Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y; P, p#pS

b

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then
search(rightSon(v), D, result);

return;

void search(node v, rectangle D, list(point)& result)

double left, median, right; D pﬁl Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y; P, p#pS

b

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then
search(rightSon(v), D, result);

return;

Space requirement:

m pc R(v) <= p=1p(v) Vpe€ R(q) for any descendant g of v.

m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.

Space requirement:

m pc R(v) <= p=1p(v) Vpe€ R(q) for any descendant g of v.

m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.

Construction time (preprocessing):

m Linear-time median finding per partitioning step, i.e., recurrence:

T(n)=2-T(n/2])+0Mm) € O(n-logn)

Space requirement:

= pc R(v) < p=p(v)Vpe R(q) for any descendant ¢ of wv.
m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.

Construction time (preprocessing):

m Linear-time median finding per partitioning step, i.e., recurrence:
T(n)=2-T(n/2])+0On) € O(n-logn)

m Alternative: Replace median-finding by pre-sorting (copies of) the
point by their z- and y-coordinates, respectively.

— Can find median w.r.t. z-coordinate in O (1) time.

— (Can construct sorted y-arrays to be passed to the children in linear time.

m Query time proportional to number of nodes visited.

= v productive <— p(v) € D.

L : []P D
m Nodes visited: productive and
unproductive nodes. R(V) R(V) R(V)
Type O Type 1 Type 2

Definition 3.1

Let R(v) be a rectangle and let 0 < D D
i < 4. D and R(v) form a type- RE)
i situation <= i sides of R(v) RW)
intersect the interior of D. Type 3 Type 4

m [ype-4 situation always productive, all other situations may be
unproductive.

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A
A
B./\.C
B h
—HA
C
o— v
>

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A
A
¢ B C
oG D /E F\ G
B h
TS A
D
! c
— v
+F
>

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A A
¢ B C
oG D /E F\ G
B h
TS A
D
! C
— v
+F
>

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A A
¢ B C
oG D /E F\ G
B h
TS A
P
C
— v
*F T(h-2)
>

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

C
H — \/
‘* F o T(h-2)
>

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

C
H o v
‘iF | T'(h-2) 1 T(h-2)

> T'(h-3)

m Recurrence for worst-case query time:

T(h) =L+ +LA+Th=2)+T(h=2)+ 1 +T'(h—3)
A B ¢ I % F 3

m A closer ook at situation ‘“‘subtree rooted at node D".

A
D /
'E X Y A
[1€

B

®* 1B A h
o D8V -

H ®
> T'(h-2) T'(h-2)

m Recurrence for this situation:

T =1+ L+ 1+ 2702
D X Y Children of X and Y

= The following recurrence holds for T'(h): X Y
T(h) = 2-T"(h—2)+3

with 7(0) = 0 and 7"(1) = 1.

T'(h-2) T'(h-2)

= The following recurrence holds for T'(h): X Y
T(h) = 2-T'"(h—2)+3 h

with 7(0) = 0 and 7"(1) = 1.

T'(h-2) T'(h-2)

= Solve recurrence for T'(h), w.l.o.g. h=2-4, i € N.

T'(2 i)

3—|—2-T’<2(i— 1))
34+2-(342-7'(2(i-2)))

1—1 . _
> 3.2/ =3.2'-3
j=0

= The following recurrence holds for T'(h): X Y

T(h) = 2-T'"(h—2)+3 h

with 7(0) = 0 and 7"(1) = 1.

T'(h-2) T'(h-2)

= Solve recurrence for T(h), w.l.o.g. h=2-1, i € N.
T'(2-i) = 342 7'(2(i—1))
= 3+2-(3+2-7'(2(i-2)))

,L_l . .
j=0

Similarly: T/(2-i+ 1) = 4.2t — 3.

m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

h) — {4.22'—3 for h=2-i+1

3.20-3 forh=2-3

TMh-2) | T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

4 .2v — f =2.i+1
) — { 3 for h P4

3.20-3 forh=2-3

TMh-2) | T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.

m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

4 .2v — f =2.i+1
h) — { 3 for h i+

3.20-3 forh=2-3

TMh-2) | T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.

T(2-z’) = 4—|—T(2(z’—1))—|—3-2i_1—3—|-4-2i_2—3

T(Q(i - 1)) +5.2071 _»

— 5-<2h/2—1>—h

m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

4 .2v — f =2.i+1
) — { 3 for h P4

3.20-3 forh=2-3

T'(h-2) 1 T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.

T(2-z’) = 4—|—T(2(z’—1))—|—3-2i_1—3—|-4-2i_2—3

T(2(i-1))+5-2i—1—2
— 5-<2h/2—1>—h

Similarly: T(2-i+1)=7- (2W2J - 1) —h+2.

m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

4 .2v — f =2.i+1
) — { 3 for h P4

3.20-3 forh=2-3

T'(h-2) 1 T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.

T(2-z’) = 4—|—T(2(z’—1))—|—3-2i_1—3—|-4-2i_2—3

T(Q(i - 1)) +5.2071 _»
— 5-<2h/2—1>—h
Similarly: T(2-i+1)=7- (2W2J - 1) —h+2.

s Overall (forn <2"—1): T(n) € © (2 : nl/z).

m \Worst-case query time independent of the number of points re-
ported.

m kD-tree very relevant in practice!

m Extension to higher dimensions (points in]Rd): Do partitioning

in @ round-robin manner of the coordinate axes 1 - x> — ... —
Ld — L1 — ...

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering four-

sided range queries on points in]Rd,d > 2 with time and space com-
plexities as follows:

Preprocessing time: © (d-nlogn)
Query time: O(d-nl_l/d—l—k)

Space requirement: © (n)

4. Summary and Outlook

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (yv/n + k) algorithm, © (n) space.

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (yv/n + k) algorithm, © (n) space.
= d dimensions: sub-optimal © (nl—l/d—l— k) algorithm, © (n) space.

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (yv/n + k) algorithm, © (n) space.
= d dimensions: sub-optimal © (nl—l/d—l— k) algorithm, © (n) space.

Outlook:

m Optimal query time possible of one is willing to spend superlinear
space [Chazelle, 1990]. Beware: choosing the adequate model of
computation is crucial.

Bibliography

[Bentley & Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case
data structures for range searching. Acta Informatica, 13:155-168, 1980.

[Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509-517, September
1975.

[Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching.
I. The reporting case. Journal of the ACM, 37(2):200—212, April 1990.

[de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer, Berlin, second edition, 2000.

[Lee & Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region
and partial region searches in multidimensional binary search trees and balanced
quad trees. Acta Informatica, 9:23—29, 1977.

[McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on
Computing, 14(2):257-276, May 1985.

