
An Introduction To Range Searching

Jan Vahrenhold

Department of Computer Science

Westfälische Wilhelms-Universität Münster, Germany.

Overview

1. Introduction: Problem Statement, Lower Bounds

2. Range Searching in 1 and 1.5 Dimensions

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Jan Vahrenhold Range Searching 1

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Jan Vahrenhold Range Searching 2

Problem Setting

Given: Collection S of n points in d dimensions (S ⊂ IRd).

Wanted: Algorithm for efficiently reporting all k points in S falling

into a given axis-parallel query range D ⊂ IRd.

Applications: Geographic Information Systems; Databases having

relations in which the keys can be totally ordered.

Name

Gehalt

Eintrittsdatum

Mayer

Meier
Maier

Ma Me

100.000

35.000

1985

1990

Jan Vahrenhold Range Searching 2

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: �

(

n

)

time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: Θ(n) time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: Θ(n) time and space.

Jan Vahrenhold Range Searching 3

A First Approach

Assume that S = {p0, . . . , pn−1} is stored in an array.

Scan though the array and test for each pi whether pi ∈ D.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0

p1 p2
p3

p4

p5

p6

p7 p8

p9

p10

Need to scan the whole array, regardless of how many points are

reported. Complexity: Θ(n) time and space.

Jan Vahrenhold Range Searching 3

Lower (and Upper) Bounds

Change the model to also include k (the number of points re-

ported) as a parameter.

– Algorithm on previous slide has complexity O (n + k) = O (n).

Time complexity: preprocessing time ⇔ query time

Can disregard preprocessing time for many applications

(one-time operation).

Query time composed of two components:

– Search time: Time to locate the first element to be reported.

– Retrieval time: Time to fetch and report all k elements to be reported.

Space requirement (lower bound for preprocessing time).

Jan Vahrenhold Range Searching 4

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

{ (n =) 2ad points, each with exactly

one unique non-zero integer coor-

dinate taken from

[

�a; a

]

n f0g.

{ D =

[

b

1

; : : : ; b

d

]

�

[

c

1

; : : : ; c

d

]

, with

b

i

2

[

�a;�1

]

; c

i

2

[

1; a

]

; 1 � i � d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

{ D =

[

b

1

; : : : ; b

d

]

�

[

c

1

; : : : ; c

d

]

, with

b

i

2

[

�a;�1

]

; c

i

2

[

1; a

]

; 1 � i � d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

{ D =

[

b

1

; : : : ; b

d

]

�

[

c

1

; : : : ; c

d

]

, with

b

i

2

[

�a;�1

]

; c

i

2

[

1; a

]

; 1 � i � d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

(b1,b2)

(c1,c2)

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

(b1,b2)

(c1,c2)

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

{ Query ranges not-empty, each pro-

duces a di�erent answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

(b1,b2)

(c1,c2)

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

– Query ranges not-empty, each pro-
duces a different answer.

{ Overall: a

2d

=

(

n=(2d)

)

2d

di�erent

answers.

(b1,b2)

(c1,c2)

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

– Query ranges not-empty, each pro-
duces a different answer.

– Overall: a2d = (n/(2d))2d different
answers.

(b1,b2)

(c1,c2)

{ Depth of decision tree:

�

log

(

n=(2d)

)

2d

�

=

(

d � logn

)

.

{ Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Lower Bounds [Bentley & Maurer, 1980]

Parameters: n points, k points reported, d dimensions.

Space requirement: Ω (n).

Retrieval time: Ω (k).

Search time: Using binary decision tree (→ sorting lower bound).

Lower bound construction:

– (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [−a, a] \ {0}.

– D = [b1, . . . , bd] × [c1, . . . , cd], with
bi ∈ [−a,−1] , ci ∈ [1, a] , 1 ≤ i ≤ d.

– Query ranges not-empty, each pro-
duces a different answer.

– Overall: a2d = (n/(2d))2d different
answers.

(b1,b2)

(c1,c2)

– Depth of decision tree: Ω
(
log (n/(2d))2d

)
= Ω(d · logn).

– Lower bound not tight for all d.

Jan Vahrenhold Range Searching 5

Overview

1. Introduction: Problem Statement, Lower Bounds

2. Range Searching in 1 and 1.5 Dimensions

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Jan Vahrenhold Range Searching 6

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O

(

n log

2

n

)

time.

p3 p8 p10 p1 p6 p5 p0 p9 p7 p2 p4

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O

(

n log

2

n

)

time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p3 p8 p10 p1 p6 p5 p0 p9 p7 p2 p4

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p3 p8 p10 p1 p6 p5 p0 p9 p7 p2 p4

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest p

i

� x

1

. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O

(

log

2

n

)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until �rst p

i

< x

2

(or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O

(

k+1

)

Jan Vahrenhold Range Searching 7

One-Dimensional Range Searching

Point set S = {p0, . . . , pn−1} ⊂ IR, stored in an array.

Query range D = [x1, x2].

Scanning is sub-optimal; lower bound: Ω(1· log2 n + k).

Preprocessing:

Sort the points, e.g., using heapsort in O (n log2 n) time.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Query: Binary search for smallest pi ≥ x1. . . O (log2 n)

. . . scan forward until first pi < x2 (or end of array). O (k + 1)

Jan Vahrenhold Range Searching 7

Does Sorting Help in Two Dimensions?

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p4

p0 p3
p7

p2

p8

p9

p1 p5

p10

p6

There is no total order on points in two dimensions sorting ac-

cording to which guarantees �

(

2� log

2

n+ k

)

query time for range

searching.

Jan Vahrenhold Range Searching 8

Does Sorting Help in Two Dimensions?

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p4

p0 p3
p7

p2

p8

p9

p1 p5

p10

p6

There is no total order on points in two dimensions sorting ac-

cording to which guarantees �

(

2� log

2

n+ k

)

query time for range

searching.

Jan Vahrenhold Range Searching 8

Does Sorting Help in Two Dimensions?

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p4

p0 p3
p7

p2

p8

p9

p1 p5

p10

p6

There is no total order on points in two dimensions sorting ac-

cording to which guarantees �

(

2� log

2

n+ k

)

query time for range

searching.

Jan Vahrenhold Range Searching 8

Does Sorting Help in Two Dimensions?

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p4

p0 p3
p7

p2

p8

p9

p1 p5

p10

p6

There is no total order on points in two dimensions sorting ac-

cording to which guarantees �

(

2� log

2

n+ k

)

query time for range

searching.

Jan Vahrenhold Range Searching 8

Does Sorting Help in Two Dimensions?

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p4

p0 p3
p7

p2

p8

p9

p1 p5

p10

p6

There is no total order on points in two dimensions sorting ac-

cording to which guarantees Θ(2· log2 n + k) query time for range

searching.

Jan Vahrenhold Range Searching 8

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 152 6 10 144 128

Time Complexity:

{ Preprocessing time: O

(

n logn

)

{ Query time: O

(

logn+ k

)

Space Complexity: O

(

n

)

.

Inserts/Deletes possible.

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 152 6 10 144 128

Time Complexity:

{ Preprocessing time: O

(

n logn

)

{ Query time: O

(

logn+ k

)

Space Complexity: O

(

n

)

.

Inserts/Deletes possible.

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 152 6 10 144 12

8

Time Complexity:

{ Preprocessing time: O

(

n logn

)

{ Query time: O

(

logn+ k

)

Space Complexity: O

(

n

)

.

Inserts/Deletes possible.

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 152 6 10 14

4 12

8

Time Complexity:

{ Preprocessing time: O

(

n logn

)

{ Query time: O

(

logn+ k

)

Space Complexity: O

(

n

)

.

Inserts/Deletes possible.

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Time Complexity:

{ Preprocessing time: O

(

n logn

)

{ Query time: O

(

logn+ k

)

Space Complexity: O

(

n

)

.

Inserts/Deletes possible.

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Time Complexity:

– Preprocessing time: O (n logn)
– Query time: O (logn + k)

Space Complexity: O (n).

Inserts/Deletes possible.
1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Jan Vahrenhold Range Searching 9

Recap: One-Dimensional Range Searching

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Time Complexity:

– Preprocessing time: O (n logn)
– Query time: O (logn + k)

Space Complexity: O (n).

Inserts/Deletes possible.
1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Jan Vahrenhold Range Searching 9

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x

1

; x

2

] � IRusing,

e.g., a threaded binary search tree.

Report all points in IR �]�1; y]using,

e.g., a heap:

{ Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR �]�1; y]using,

e.g., a heap:

{ Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR �]�1; y]using,

e.g., a heap:

{ Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR ×]−∞, y] using,

e.g., a heap:

{ Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR ×]−∞, y] using,

e.g., a heap:

{ Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR ×]−∞, y] using,

e.g., a heap:

– Almost complete binary tree.

{ key(v) � minfkey(LSON(v)); key(RSON(v))g.

Jan Vahrenhold Range Searching 10

Three-sided (1.5-dim.) Range Searching

Given: Point set S = {p0, . . . , pn−1} ⊂ IR2,

stored in an array.

Wanted: Method to efficiently retrieve all

p ∈ S that, for given (x1, x2, y), fall into

[x1, x2] ×]−∞, y].

Look at two subproblems:

Report all points in [x1, x2] × IR using,

e.g., a threaded binary search tree.

Report all points in IR ×]−∞, y] using,

e.g., a heap:

– Almost complete binary tree.

– key(v) ≤ min{key(LSON(v)), key(RSON(v))}.

1

3

11 4

36 21

8

31 19

Jan Vahrenhold Range Searching 10

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is ful�lled.

Additional requirement: 8v 2 H : 9x

v

2 IR :

l � x

v

< r 8l 2 LSUBTREE(v); 8r 2 RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is ful�lled.

Additional requirement: 8v 2 H : 9x

v

2 IR :

l � x

v

< r 8l 2 LSUBTREE(v); 8r 2 RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is ful�lled.

Additional requirement: 8v 2 H : 9x

v

2 IR :

l � x

v

< r 8l 2 LSUBTREE(v); 8r 2 RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is ful�lled.

Additional requirement: 8v 2 H : 9x

v

2 IR :

l � x

v

< r 8l 2 LSUBTREE(v); 8r 2 RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is fulfilled.

Additional requirement: 8v 2 H : 9x

v

2 IR :

l � x

v

< r 8l 2 LSUBTREE(v); 8r 2 RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Combining the best of both worlds(?)

Binary search tree with heap property:

Binary search tree unique w.r.t. inorder -traversal.

No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

More precisely: Children of a node may be switched.

Priority Search Tree:

Binary tree H storing a two-dimensional point at each node s.t.

the heap property w.r.t. the y-coordinates is fulfilled.

Additional requirement: ∀v ∈ H : ∃xv ∈ IR :

l ≤ xv < r ∀l ∈ LSUBTREE(v), ∀r ∈ RSUBTREE(v).

Jan Vahrenhold Range Searching 11

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let p

min

be the point in S having the minimum y-coordinate.

Let x

mid

be the median of the x-coordinates in S n fp

min

g.

Partition S n fp

min

g:

S

left

:= fp 2 S n fp

min

g j p:x � x

mid

g

S

right

:= fp 2 S n fp

min

g j p:x > x

mid

g

Construct search tree node v storing x

mid

and set p(v) := p

min

.

Recursively compute v's children H(S

left

) and H(S

right

).

Complexity: O

(

n

)

space; O

(

n logn

)

time (why?).

Jan Vahrenhold Range Searching 12

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let pmin be the point in S having the minimum y-coordinate.

Let x

mid

be the median of the x-coordinates in S n fp

min

g.

Partition S n fp

min

g:

S

left

:= fp 2 S n fp

min

g j p:x � x

mid

g

S

right

:= fp 2 S n fp

min

g j p:x > x

mid

g

Construct search tree node v storing x

mid

and set p(v) := p

min

.

Recursively compute v's children H(S

left

) and H(S

right

).

Complexity: O

(

n

)

space; O

(

n logn

)

time (why?).

Jan Vahrenhold Range Searching 12

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let pmin be the point in S having the minimum y-coordinate.

Let xmid be the median of the x-coordinates in S \ {pmin}.

Partition S \ {pmin}:

Sleft := {p ∈ S \ {pmin} | p.x ≤ xmid}
Sright := {p ∈ S \ {pmin} | p.x > xmid}

Construct search tree node v storing x

mid

and set p(v) := p

min

.

Recursively compute v's children H(S

left

) and H(S

right

).

Complexity: O

(

n

)

space; O

(

n logn

)

time (why?).

Jan Vahrenhold Range Searching 12

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let pmin be the point in S having the minimum y-coordinate.

Let xmid be the median of the x-coordinates in S \ {pmin}.

Partition S \ {pmin}:

Sleft := {p ∈ S \ {pmin} | p.x ≤ xmid}
Sright := {p ∈ S \ {pmin} | p.x > xmid}

Construct search tree node v storing xmid and set p(v) := pmin.

Recursively compute v's children H(S

left

) and H(S

right

).

Complexity: O

(

n

)

space; O

(

n logn

)

time (why?).

Jan Vahrenhold Range Searching 12

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let pmin be the point in S having the minimum y-coordinate.

Let xmid be the median of the x-coordinates in S \ {pmin}.

Partition S \ {pmin}:

Sleft := {p ∈ S \ {pmin} | p.x ≤ xmid}
Sright := {p ∈ S \ {pmin} | p.x > xmid}

Construct search tree node v storing xmid and set p(v) := pmin.

Recursively compute v’s children H(Sleft) and H(Sright).

Complexity: O

(

n

)

space; O

(

n logn

)

time (why?).

Jan Vahrenhold Range Searching 12

Building a priority search tree

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.o.g. that all coordinates are pairwise distinct.

If S = ∅, construct H(S) as an (empty) leaf.

Else let pmin be the point in S having the minimum y-coordinate.

Let xmid be the median of the x-coordinates in S \ {pmin}.

Partition S \ {pmin}:

Sleft := {p ∈ S \ {pmin} | p.x ≤ xmid}
Sright := {p ∈ S \ {pmin} | p.x > xmid}

Construct search tree node v storing xmid and set p(v) := pmin.

Recursively compute v’s children H(Sleft) and H(Sright).

Complexity: O (n) space; O (n logn) time (why?).

Jan Vahrenhold Range Searching 12

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees \embraced" by these paths con-

tain points in [x

1

; x

2

] � IR.

Query these subtrees a follows:

SearchInSubtree(v; y)

if v not a leaf and p(v):y � y then

Report p(v);

SearchInSubtree(LSON(v); y);

SearchInSubtree(RSON(v); y);

Query time: O

(

1 + k

v

)

.

Example for y = 5.

Jan Vahrenhold Range Searching 13

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees \embraced" by these paths con-

tain points in [x

1

; x

2

] � IR.

Query these subtrees a follows:

x
1

SearchInSubtree(v; y)

if v not a leaf and p(v):y � y then

Report p(v);

SearchInSubtree(LSON(v); y);

SearchInSubtree(RSON(v); y);

Query time: O

(

1 + k

v

)

.

Example for y = 5.

Jan Vahrenhold Range Searching 13

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees \embraced" by these paths con-

tain points in [x

1

; x

2

] � IR.

Query these subtrees a follows:

x
1

x
2

SearchInSubtree(v; y)

if v not a leaf and p(v):y � y then

Report p(v);

SearchInSubtree(LSON(v); y);

SearchInSubtree(RSON(v); y);

Query time: O

(

1 + k

v

)

.

Example for y = 5.

Jan Vahrenhold Range Searching 13

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees “embraced” by these paths con-

tain points in [x1, x2] × IR.

Query these subtrees a follows:

x
1

x
2

SearchInSubtree(v; y)

if v not a leaf and p(v):y � y then

Report p(v);

SearchInSubtree(LSON(v); y);

SearchInSubtree(RSON(v); y);

Query time: O

(

1 + k

v

)

.

Example for y = 5.

Jan Vahrenhold Range Searching 13

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees “embraced” by these paths con-

tain points in [x1, x2] × IR.

Query these subtrees a follows:

x
1

x
2

SearchInSubtree(v, y)

if v not a leaf and p(v).y ≤ y then

Report p(v);

SearchInSubtree(LSON(v), y);

SearchInSubtree(RSON(v), y);

Query time: O (1 + kv).

1

3

4

36 21

31 1911

8

Example for y = 5.

Jan Vahrenhold Range Searching 13

Querying a priority search tree

Query range [x1, x2]× [−∞, y]:

Queries for x1 and x2 result in two search

paths in H.

Check all points on these paths.

All subtrees “embraced” by these paths con-

tain points in [x1, x2] × IR.

Query these subtrees a follows:

x
1

x
2

SearchInSubtree(v, y)

if v not a leaf and p(v).y ≤ y then

Report p(v);

SearchInSubtree(LSON(v), y);

SearchInSubtree(RSON(v), y);

Query time: O (1 + kv).

1

3

4

36 21

31 1911

8

Example for y = 5.

Jan Vahrenhold Range Searching 13

Summary

Missing Components:

A more detailed description of the

query algorithm.

Proof of correctness.

 ⇒ [de Berg et al., 2000]

Theorem 2.1

Priority search trees allow for answering three-sided range queries on

points in IR2 with time and space complexities as follows:

Preprocessing time: Θ(n logn)

Query time: O (logn + k)

Space requirement: Θ(n)

Jan Vahrenhold Range Searching 14

Overview

1. Introduction: Problem Statement, Lower Bounds

2. Range Searching in 1 and 1.5 Dimensions

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Jan Vahrenhold Range Searching 15

Multidimensional Binary Search Tree

Extend the concept of binary search by bisection to higher dimen-

sions.

Instead of intervals, partition (hyper-)rectangles; do the partition-

ing alternating parallel to the coordinate axes.

Ri is partitioned into Rj and Rk ⇒ |Rj| ≈ |Rk| ≈ 1
2|Ri|.

Structure corresponding to partitioning: balanced binary tree

(kD-tree [Bentley, 1975]).

Node v corresponds to hyperrectangle R(v), R(root) = IRd;

children correspond to sub-hyperrectangles.

Each node v is augmented to store:

– S(v): points contained in R(v) (implicitly).

– `(v): representation of split axis.

– p(v): median of S(v) w.r.t. `(v).

Jan Vahrenhold Range Searching 16

Example

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

p
6

Alternating partitioning along the coordinate axes.

Jan Vahrenhold Range Searching 17

Example

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4 p p3 10

p
6

Alternating partitioning along the coordinate axes.

Jan Vahrenhold Range Searching 17

Example

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

1
p p

7
p

9

p p3 10

p

p
2

6

Alternating partitioning along the coordinate axes.

Jan Vahrenhold Range Searching 17

Example

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Alternating partitioning along the coordinate axes.

Jan Vahrenhold Range Searching 17

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Querying a 2D-tree

void search(node v, rectangle D, list〈point〉& result)

double left, median, right;
if v.type == “vertical” then

left = D.x1; right = D.x2;
median = v.p.x;

else
left = D.y1; right = D.y2;
median = v.p.y;

if left ≤ median ≤ right and
D.contains(v.p) then
result.append(v.p);

if !isLeaf(v) then
if left < median then

search(leftSon(v), D, result);
if median < right then

search(rightSon(v), D, result);

return;

6
9

p

2
p

5
7

8

10

11

p
p

p

p

p
p

p

p

p

1

3

4

D

p
4

1
p

p
8

p
7

p
11

p
9

p p3 10

p

p

p
5

2

6

Jan Vahrenhold Range Searching 18

Complexity of a 2D-tree

Space requirement:

p ∈ R(v) ⇐⇒ p = p(v) ∨ p ∈ R(q) for any descendant q of v.

O (1) space requirement per node, exactly one point stored at

each node ⇒ O (n) overall space requirement.

Construction time (preprocessing):

Linear-time median �nding per partitioning step, i.e., recurrence:

T (n) = 2 � T

(

dn=2e

)

+O

(

n

)

2 O

(

n � logn

)

Alternative: Replace median-�nding by pre-sorting (copies of) the

point by their x- and y-coordinates, respectively.

{ Can �nd median w.r.t. x-coordinate in O

(

1

)

time.

{ Can construct sorted y-arrays to be passed to the children in linear time.

Jan Vahrenhold Range Searching 19

Complexity of a 2D-tree

Space requirement:

p ∈ R(v) ⇐⇒ p = p(v) ∨ p ∈ R(q) for any descendant q of v.

O (1) space requirement per node, exactly one point stored at

each node ⇒ O (n) overall space requirement.

Construction time (preprocessing):

Linear-time median finding per partitioning step, i.e., recurrence:

T (n) = 2 · T (dn/2e) +O (n) ∈ O (n · logn)

Alternative: Replace median-�nding by pre-sorting (copies of) the

point by their x- and y-coordinates, respectively.

{ Can �nd median w.r.t. x-coordinate in O

(

1

)

time.

{ Can construct sorted y-arrays to be passed to the children in linear time.

Jan Vahrenhold Range Searching 19

Complexity of a 2D-tree

Space requirement:

p ∈ R(v) ⇐⇒ p = p(v) ∨ p ∈ R(q) for any descendant q of v.

O (1) space requirement per node, exactly one point stored at

each node ⇒ O (n) overall space requirement.

Construction time (preprocessing):

Linear-time median finding per partitioning step, i.e., recurrence:

T (n) = 2 · T (dn/2e) +O (n) ∈ O (n · logn)

Alternative: Replace median-finding by pre-sorting (copies of) the

point by their x- and y-coordinates, respectively.

– Can find median w.r.t. x-coordinate in O (1) time.

– Can construct sorted y-arrays to be passed to the children in linear time.

Jan Vahrenhold Range Searching 19

Analysis of worst-case query time

Query time proportional to number of nodes visited.

v productive ⇐⇒ p(v) ∈ D.

Nodes visited: productive and

unproductive nodes.

Definition 3.1

Let R(v) be a rectangle and let 0 ≤
i ≤ 4. D and R(v) form a type-

i situation ⇐⇒ i sides of R(v)

intersect the interior of D.

D

R(v)

D

R(v)

D

R(v)

R(v)

D

Type 1Type 0 Type 2

Type 3 Type 4

R(v)

D

Type-4 situation always productive, all other situations may be

unproductive.

Jan Vahrenhold Range Searching 20

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

A

h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

C

B

A

B C

h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

F

E

B

D

A

B

D E F G

C

X h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

F

E

B

D

A

B

D E F G

C

X h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

F

E

B

D

A

B

D E F G

C

X

T(h-2)

h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

IF
H

E

B

X D Y

A

B

D E F G

C

X Y H I

X

X

T(h-2)

h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

IF
H

E

B

X D Y

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)

h

Recurrence for worst-case query time:

T (h) = 1

|{z}

A

+ 1

|{z}

B

+ 1

|{z}

C

+ + + 1

|{z}

F

+

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–I

Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

A

G

C

IF
H

E

B

X D Y

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Recurrence for worst-case query time:

T (h) = 1︸︷︷︸
A

+ 1︸︷︷︸
B

+ 1︸︷︷︸
C

+T (h− 2)︸ ︷︷ ︸
G

+T ′(h− 2)︸ ︷︷ ︸
D

+ 1︸︷︷︸
F

+T ′(h− 3)︸ ︷︷ ︸
H

Jan Vahrenhold Range Searching 21

Constructing a worst-case situation–II

A closer look at situation “subtree rooted at node D”.

A

G

C

IF
H

E

B

X D Y

D

X Y

h

T (h-2) T (h-2)

X X

Recurrence for this situation:

T ′(h) = 1︸︷︷︸
D

+ 1︸︷︷︸
X

+ 1︸︷︷︸
Y

+ 2 · T ′(h− 2)︸ ︷︷ ︸
Children of X and Y

Jan Vahrenhold Range Searching 22

Constructing a worst-case situation–III

The following recurrence holds for T ′(h):

T ′(h) = 2 · T ′(h− 2) + 3

with T ′(0) = 0 and T ′(1) = 1.

D

X Y

h

T (h-2) T (h-2)

X X

Solve recurrence for T

0

(h), w.l.o.g. h = 2 � i, i 2 IN.

T

0

�

2 � i

�

= 3+ 2 � T

0

�

2(i� 1)

�

= 3+ 2 �

�

3+ 2 � T

0

�

2(i� 2)

��

=

i�1

X

j=0

3 � 2

j

= 3 � 2

i

� 3

Similarly: T

0

(2 � i+1) = 4 � 2

i

� 3.

Jan Vahrenhold Range Searching 23

Constructing a worst-case situation–III

The following recurrence holds for T ′(h):

T ′(h) = 2 · T ′(h− 2) + 3

with T ′(0) = 0 and T ′(1) = 1.

D

X Y

h

T (h-2) T (h-2)

X X

Solve recurrence for T ′(h), w.l.o.g. h = 2 · i, i ∈ IN.

T ′
(
2 · i

)
= 3 + 2 · T ′

(
2(i− 1)

)
= 3 + 2 ·

(
3 + 2 · T ′

(
2(i− 2)

))

=
i−1∑
j=0

3 · 2j = 3 · 2i − 3

Similarly: T

0

(2 � i+1) = 4 � 2

i

� 3.

Jan Vahrenhold Range Searching 23

Constructing a worst-case situation–III

The following recurrence holds for T ′(h):

T ′(h) = 2 · T ′(h− 2) + 3

with T ′(0) = 0 and T ′(1) = 1.

D

X Y

h

T (h-2) T (h-2)

X X

Solve recurrence for T ′(h), w.l.o.g. h = 2 · i, i ∈ IN.

T ′
(
2 · i

)
= 3 + 2 · T ′

(
2(i− 1)

)
= 3 + 2 ·

(
3 + 2 · T ′

(
2(i− 2)

))

=
i−1∑
j=0

3 · 2j = 3 · 2i − 3

Similarly: T ′(2 · i + 1) = 4 · 2i − 3.

Jan Vahrenhold Range Searching 23

Constructing a worst-case situation–IV

The following recurrence holds for T (h):

T (h) = T (h− 2) + T ′(h− 2) + T ′(h− 3) + 4

T ′(h) =

4 · 2i − 3 for h = 2 · i + 1

3 · 2i − 3 for h = 2 · i

with T (0) = T ′(0) = 0 and T (1) = T ′(1) = 1.

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Solve recurrence for T (h), w.l.o.g. h = 2 � i, i 2 IN.

T

�

2 � i

�

= 4+ T

�

2(i� 1)

�

+3 � 2

i�1

� 3+ 4 � 2

i�2

� 3

= T

�

2(i� 1)

�

+5 � 2

i�1

� 2

= 5 �

�

2

h=2

� 1

�

� h

Similarly: T (2 � i+1) = 7 �

�

2

bh=2c

� 1

�

� h+2.

Overall (for n � 2

h

� 1): T (n) 2 O

�

2 � n

1=2

�

.

Jan Vahrenhold Range Searching 24

Constructing a worst-case situation–IV

The following recurrence holds for T (h):

T (h) = T (h− 2) + T ′(h− 2) + T ′(h− 3) + 4

T ′(h) =

4 · 2i − 3 for h = 2 · i + 1

3 · 2i − 3 for h = 2 · i

with T (0) = T ′(0) = 0 and T (1) = T ′(1) = 1.

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Solve recurrence for T (h), w.l.o.g. h = 2 · i, i ∈ IN.

T

�

2 � i

�

= 4+ T

�

2(i� 1)

�

+3 � 2

i�1

� 3+ 4 � 2

i�2

� 3

= T

�

2(i� 1)

�

+5 � 2

i�1

� 2

= 5 �

�

2

h=2

� 1

�

� h

Similarly: T (2 � i+1) = 7 �

�

2

bh=2c

� 1

�

� h+2.

Overall (for n � 2

h

� 1): T (n) 2 O

�

2 � n

1=2

�

.

Jan Vahrenhold Range Searching 24

Constructing a worst-case situation–IV

The following recurrence holds for T (h):

T (h) = T (h− 2) + T ′(h− 2) + T ′(h− 3) + 4

T ′(h) =

4 · 2i − 3 for h = 2 · i + 1

3 · 2i − 3 for h = 2 · i

with T (0) = T ′(0) = 0 and T (1) = T ′(1) = 1.

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Solve recurrence for T (h), w.l.o.g. h = 2 · i, i ∈ IN.

T
(
2 · i

)
= 4 + T

(
2(i− 1)

)
+ 3 · 2i−1 − 3 + 4 · 2i−2 − 3

= T
(
2(i− 1)

)
+ 5 · 2i−1 − 2

= 5 ·
(
2h/2 − 1

)
− h

Similarly: T (2 � i+1) = 7 �

�

2

bh=2c

� 1

�

� h+2.

Overall (for n � 2

h

� 1): T (n) 2 O

�

2 � n

1=2

�

.

Jan Vahrenhold Range Searching 24

Constructing a worst-case situation–IV

The following recurrence holds for T (h):

T (h) = T (h− 2) + T ′(h− 2) + T ′(h− 3) + 4

T ′(h) =

4 · 2i − 3 for h = 2 · i + 1

3 · 2i − 3 for h = 2 · i

with T (0) = T ′(0) = 0 and T (1) = T ′(1) = 1.

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Solve recurrence for T (h), w.l.o.g. h = 2 · i, i ∈ IN.

T
(
2 · i

)
= 4 + T

(
2(i− 1)

)
+ 3 · 2i−1 − 3 + 4 · 2i−2 − 3

= T
(
2(i− 1)

)
+ 5 · 2i−1 − 2

= 5 ·
(
2h/2 − 1

)
− h

Similarly: T (2 · i + 1) = 7 ·
(
2bh/2c − 1

)
− h + 2.

Overall (for n � 2

h

� 1): T (n) 2 O

�

2 � n

1=2

�

.

Jan Vahrenhold Range Searching 24

Constructing a worst-case situation–IV

The following recurrence holds for T (h):

T (h) = T (h− 2) + T ′(h− 2) + T ′(h− 3) + 4

T ′(h) =

4 · 2i − 3 for h = 2 · i + 1

3 · 2i − 3 for h = 2 · i

with T (0) = T ′(0) = 0 and T (1) = T ′(1) = 1.

A

B

D E F G

C

X Y H I

X

X

T(h-2)T (h-2)
T (h-3)

h

Solve recurrence for T (h), w.l.o.g. h = 2 · i, i ∈ IN.

T
(
2 · i

)
= 4 + T

(
2(i− 1)

)
+ 3 · 2i−1 − 3 + 4 · 2i−2 − 3

= T
(
2(i− 1)

)
+ 5 · 2i−1 − 2

= 5 ·
(
2h/2 − 1

)
− h

Similarly: T (2 · i + 1) = 7 ·
(
2bh/2c − 1

)
− h + 2.

Overall (for n ≤ 2h − 1): T (n) ∈ O
(
2 · n1/2

)
.

Jan Vahrenhold Range Searching 24

Summary

Worst-case query time independent of the number of points re-

ported.

kD-tree very relevant in practice!

Extension to higher dimensions (points in IRd): Do partitioning

in a round-robin manner of the coordinate axes x1 → x2 → . . . →
xd → x1 → . . .

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering four-

sided range queries on points in IRd, d ≥ 2 with time and space com-

plexities as follows:

Preprocessing time: Θ(d · n logn)

Query time: O
(
d · n1−1/d + k

)
Space requirement: Θ(n)

Jan Vahrenhold Range Searching 25

Overview

1. Introduction: Problem Statement, Lower Bounds

2. Range Searching in 1 and 1.5 Dimensions

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Jan Vahrenhold Range Searching 26

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O

(

log

2

n+ k

)

algorithm, �

(

n

)

space.

1.5 dimensions: optimal O

(

log

2

n+ k

)

algorithm, �

(

n

)

space.

Two dimensions: sub-optimal O

�

n+ k

�

algorithm, �

(

n

)

space.

d dimensions: sub-optimal O

�

n

1�1=d

+ k

�

algorithm, �

(

n

)

space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O (log2 n + k) algorithm, Θ(n) space.

1.5 dimensions: optimal O

(

log

2

n+ k

)

algorithm, �

(

n

)

space.

Two dimensions: sub-optimal O

�

n+ k

�

algorithm, �

(

n

)

space.

d dimensions: sub-optimal O

�

n

1�1=d

+ k

�

algorithm, �

(

n

)

space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O (log2 n + k) algorithm, Θ(n) space.

1.5 dimensions: optimal O (log2 n + k) algorithm, Θ(n) space.

Two dimensions: sub-optimal O

�

n+ k

�

algorithm, �

(

n

)

space.

d dimensions: sub-optimal O

�

n

1�1=d

+ k

�

algorithm, �

(

n

)

space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O (log2 n + k) algorithm, Θ(n) space.

1.5 dimensions: optimal O (log2 n + k) algorithm, Θ(n) space.

Two dimensions: sub-optimal O
(√

n + k
)
algorithm, Θ(n) space.

d dimensions: sub-optimal O

�

n

1�1=d

+ k

�

algorithm, �

(

n

)

space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O (log2 n + k) algorithm, Θ(n) space.

1.5 dimensions: optimal O (log2 n + k) algorithm, Θ(n) space.

Two dimensions: sub-optimal O
(√

n + k
)
algorithm, Θ(n) space.

d dimensions: sub-optimal O
(
n1−1/d + k

)
algorithm, Θ(n) space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Summary

Lower bounds:

Ω(d · log2 n + k) time, Ω(n) space.

Results:

One dimension: optimal O (log2 n + k) algorithm, Θ(n) space.

1.5 dimensions: optimal O (log2 n + k) algorithm, Θ(n) space.

Two dimensions: sub-optimal O
(√

n + k
)
algorithm, Θ(n) space.

d dimensions: sub-optimal O
(
n1−1/d + k

)
algorithm, Θ(n) space.

Outlook:

Optimal query time possible of one is willing to spend superlinear

space [Chazelle, 1990]. Beware: choosing the adequate model of

computation is crucial.

Jan Vahrenhold Range Searching 27

Bibliography

[Bentley & Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case
data structures for range searching. Acta Informatica, 13:155–168, 1980.

[Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509–517, September
1975.

[Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching.
I: The reporting case. Journal of the ACM, 37(2):200–212, April 1990.

[de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer, Berlin, second edition, 2000.

[Lee & Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region
and partial region searches in multidimensional binary search trees and balanced
quad trees. Acta Informatica, 9:23–29, 1977.

[McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on
Computing, 14(2):257–276, May 1985.

