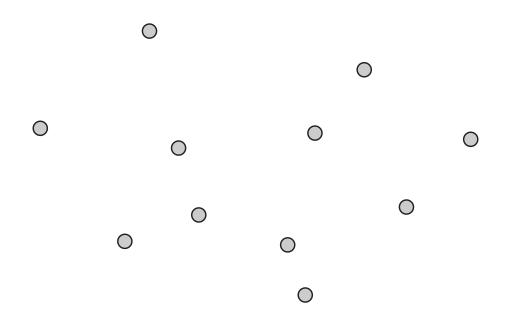
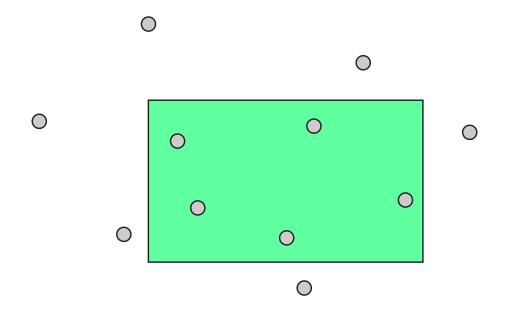
An Introduction To Range Searching

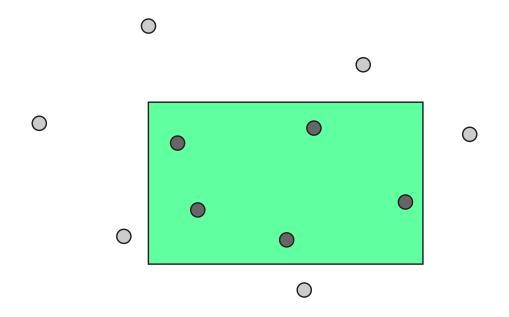
Jan Vahrenhold

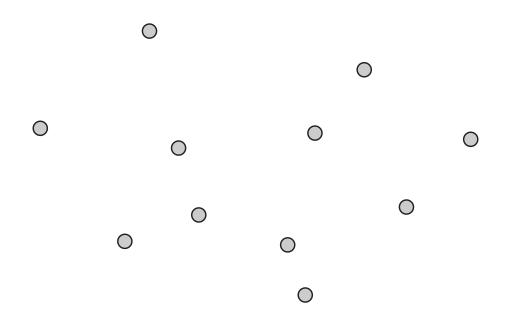
Department of Computer Science Westfälische Wilhelms-Universität Münster, Germany.

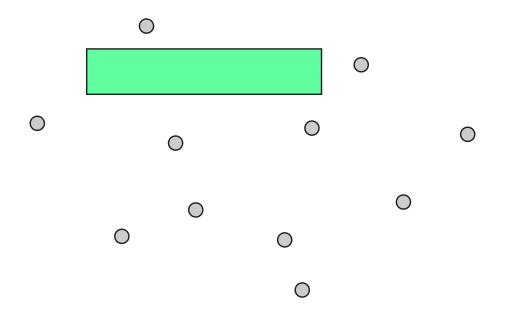
- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook









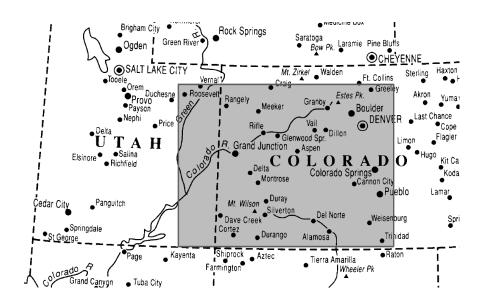


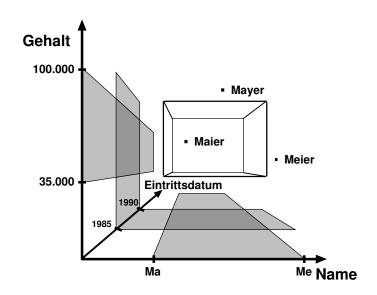
Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.

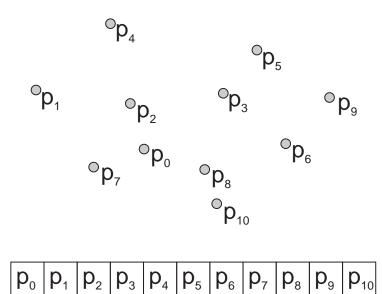
Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.

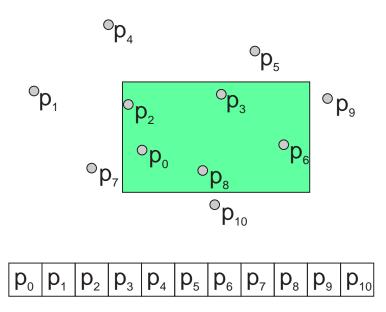




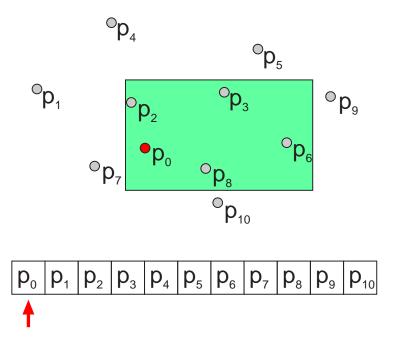
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



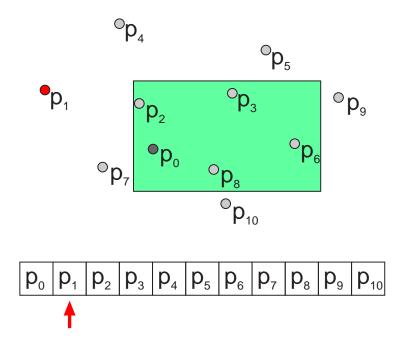
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



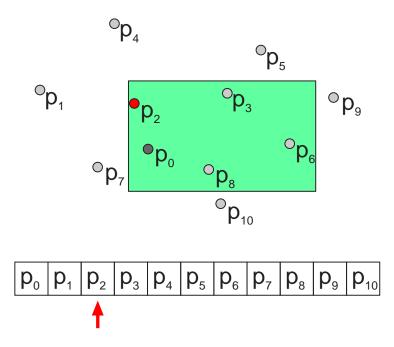
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



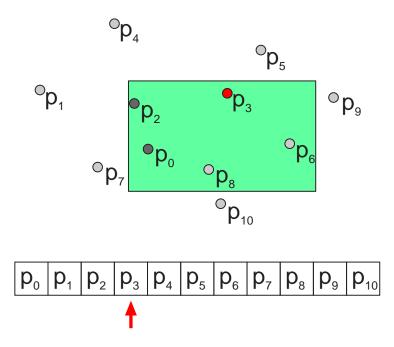
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



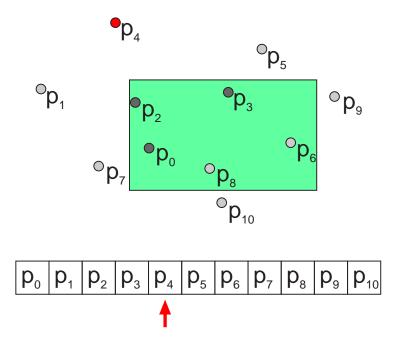
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



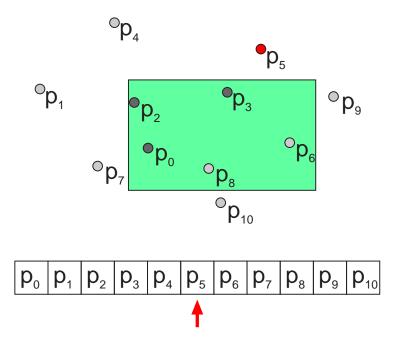
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



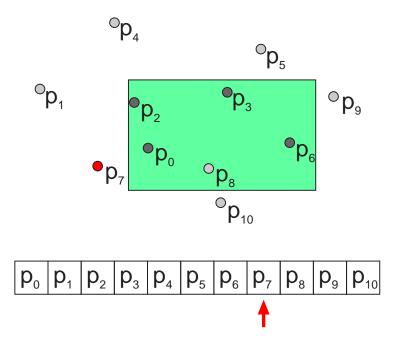
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



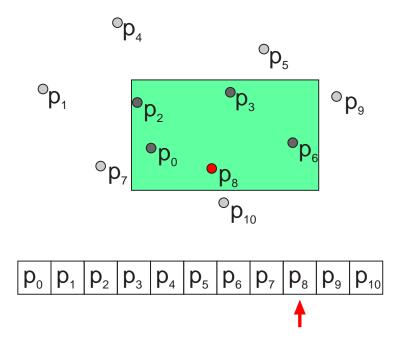
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



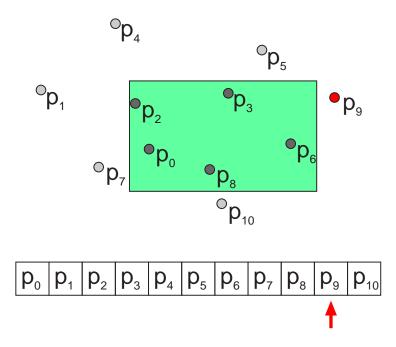
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



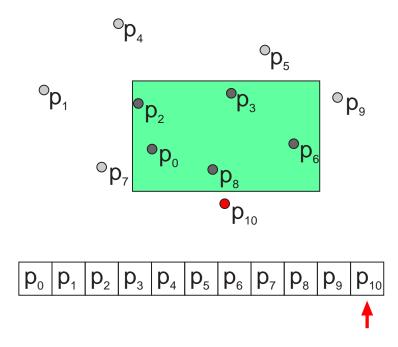
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



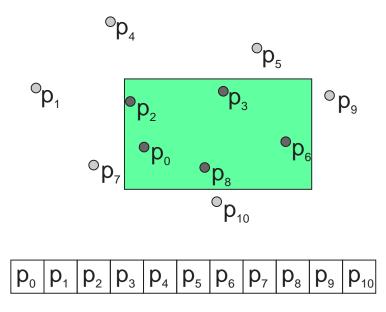
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



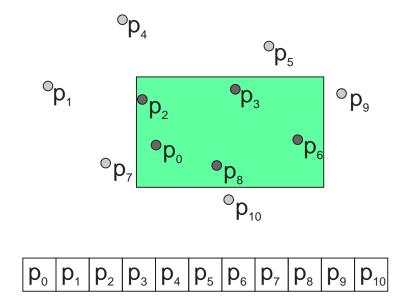
- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

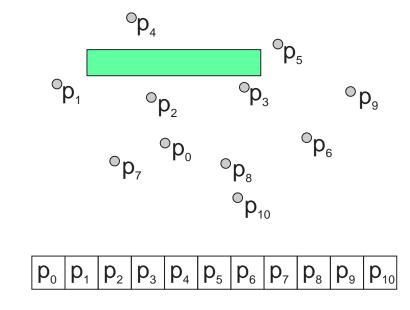


- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



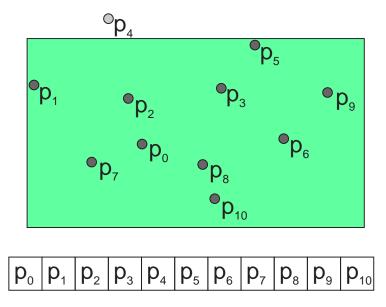
■ Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.

- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



■ Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.

- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



■ Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.

Lower (and Upper) Bounds

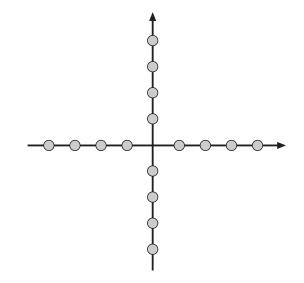
- Change the model to also include k (the number of points reported) as a parameter.
 - Algorithm on previous slide has complexity $\mathcal{O}(n+k) = \mathcal{O}(n)$.

- Time complexity: preprocessing time ⇔ query time
- Can disregard preprocessing time for many applications (one-time operation).
- Query time composed of two components:
 - Search time: Time to locate the first element to be reported.
 - Retrieval time: Time to fetch and report all k elements to be reported.
- Space requirement (lower bound for preprocessing time).

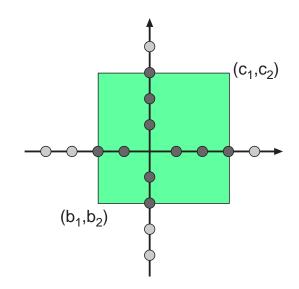
- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).

- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.

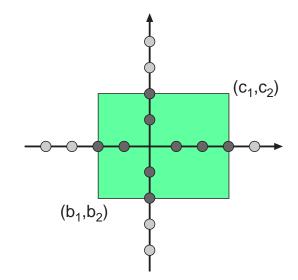
- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.



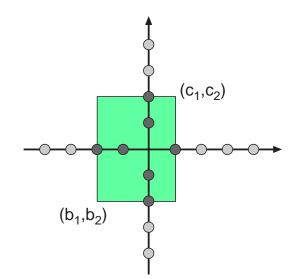
- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.



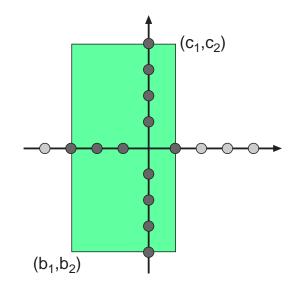
- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.



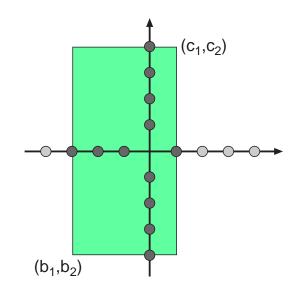
- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.



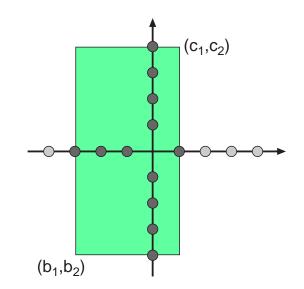
- lacktriangle Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.
 - Query ranges not-empty, each produces a different answer.



- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.
 - Query ranges not-empty, each produces a different answer.
 - Overall: $a^{2d} = (n/(2d))^{2d}$ different answers.



- \blacksquare Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1], c_i \in [1, a], 1 \le i \le d$.
 - Query ranges not-empty, each produces a different answer.
 - Overall: $a^{2d} = (n/(2d))^{2d}$ different answers.



- Depth of decision tree: $\Omega\left(\log\left(n/(2d)\right)^{2d}\right) = \Omega\left(d \cdot \log n\right)$.
- Lower bound not tight for all d.

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

$$\begin{bmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p_9 & p_{10} \end{bmatrix}$$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $\mathcal{O}(n \log_2 n)$ time.

$$p_3$$
 p_8 p_{10} p_1 p_6 p_5 p_0 p_9 p_7 p_2 p_4

$$| p_0 | p_1 | p_2 | p_3 | p_4 | p_5 | p_6 | p_7 | p_8 | p_9 | p_{10}$$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

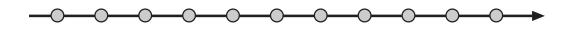
■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

$$p_0$$
 p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10}

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

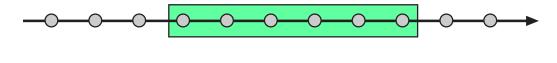


$$\begin{bmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p_9 & p_{10} \end{bmatrix}$$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

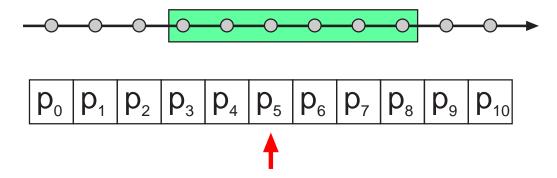
■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

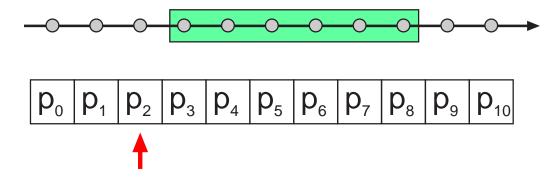


Query: Binary search for smallest $p_i \geq x_1$...

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $\mathcal{O}(n \log_2 n)$ time.

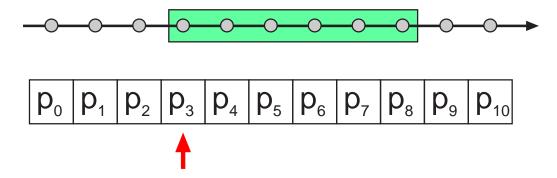


Query: Binary search for smallest $p_i \geq x_1 \dots$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



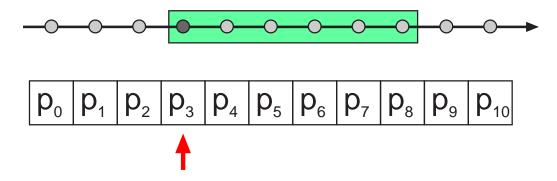
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



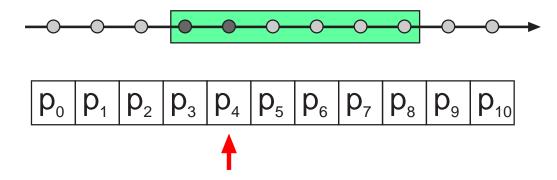
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



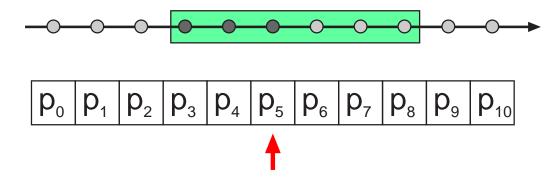
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



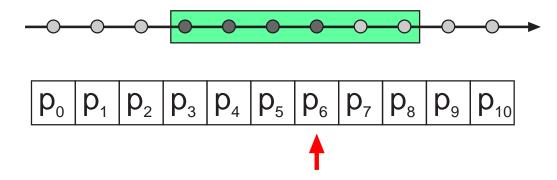
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



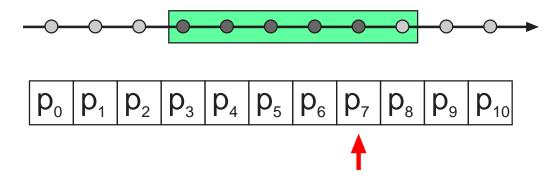
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $\mathcal{O}(n \log_2 n)$ time.



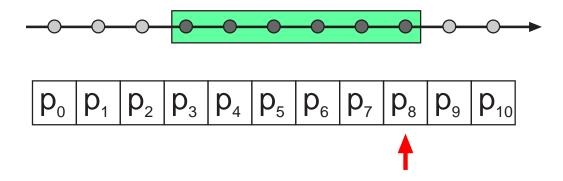
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

■ Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.



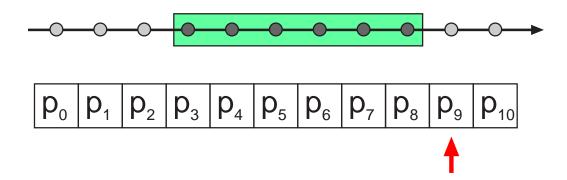
Query: Binary search for smallest $p_i \geq x_1 \dots$

 $\mathcal{O}(\log_2 n)$

- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

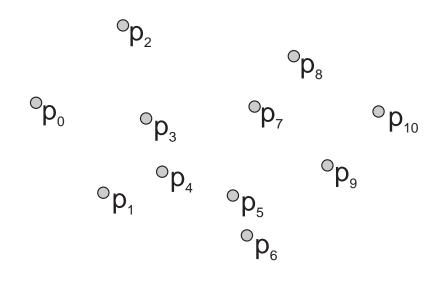
■ Sort the points, e.g., using *heapsort* in $\mathcal{O}(n \log_2 n)$ time.



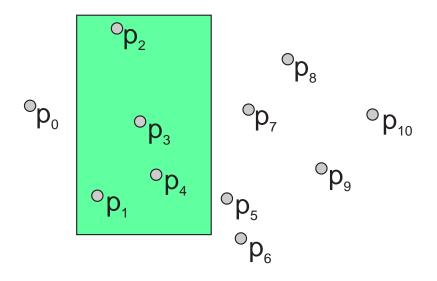
Query: Binary search for smallest $p_i \geq x_1 \dots$

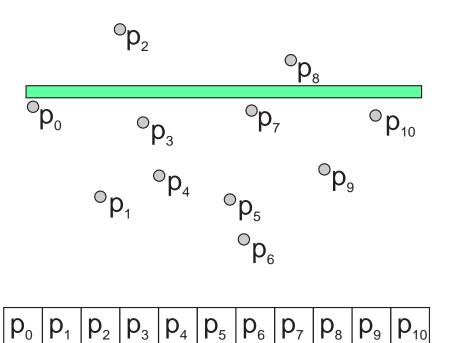
 $\mathcal{O}(\log_2 n)$

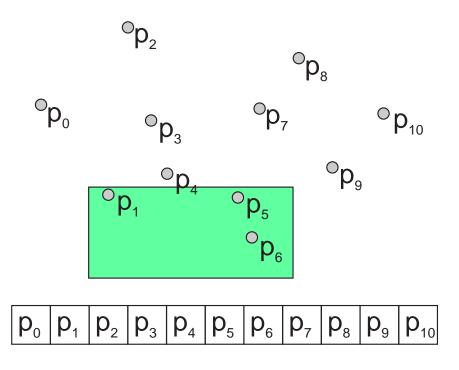
... scan forward until first $p_i < x_2$ (or end of array). $\mathcal{O}(k+1)$

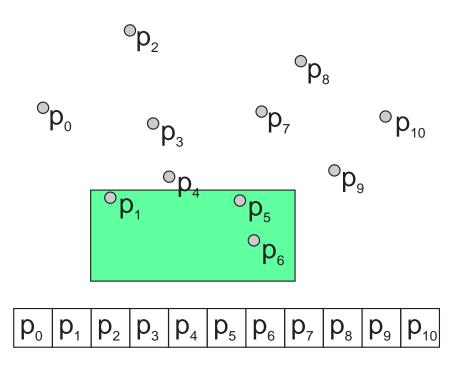


$$\begin{bmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p_9 & p_{10} \end{bmatrix}$$









■ There is no total order on points in two dimensions sorting according to which guarantees $\Theta(2 \cdot \log_2 n + k)$ query time for range searching.

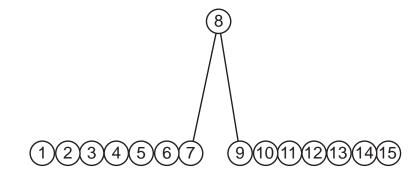
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

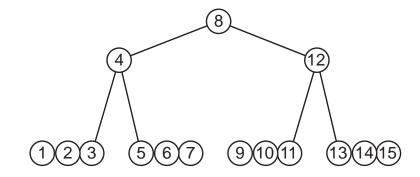
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

123456789101112131415

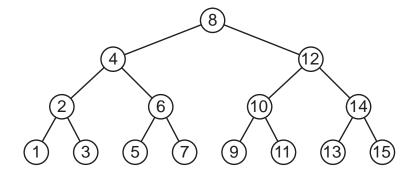
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.



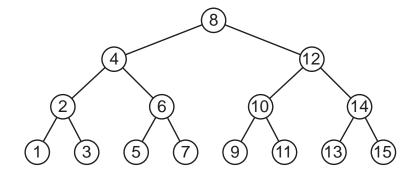
- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.



- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

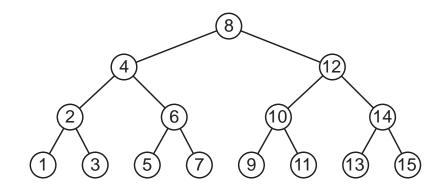


- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

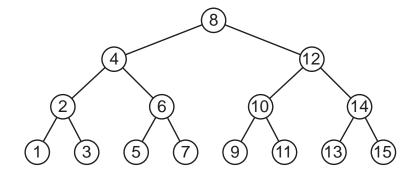


■ Time Complexity:

- Preprocessing time: $\mathcal{O}(n \log n)$
- Query time: $\mathcal{O}(\log n + k)$
- Space Complexity: $\mathcal{O}(n)$.
- InsertS/DeleteS possible.

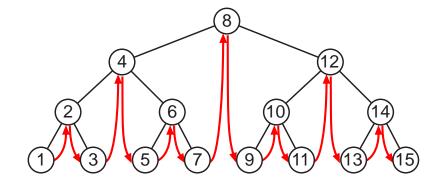


- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

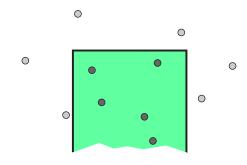


■ Time Complexity:

- Preprocessing time: $\mathcal{O}(n \log n)$
- Query time: $\mathcal{O}(\log n + k)$
- Space Complexity: $\mathcal{O}(n)$.
- InsertS/DeleteS possible.

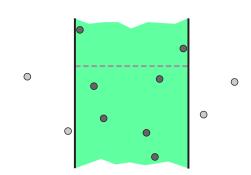


- **Given:** Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.
- **Wanted:** Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] \infty, y].$



Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y].$

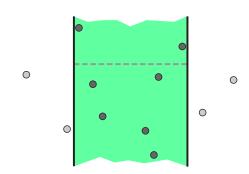


Look at two subproblems:

lacksquare Report all points in $[x_1, x_2] imes \mathbb{R}$

Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y].$

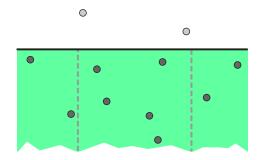


Look at two subproblems:

■ Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded binary search tree.

Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

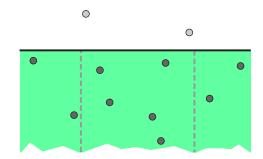
Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y]$.



- Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- lacksquare Report all points in $\mathbb{R} \times]-\infty,y]$

Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

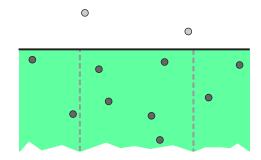
Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y].$



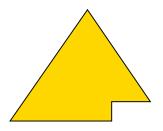
- Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty,y]$ using, e.g., a heap:

Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y].$

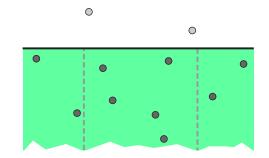


- Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty,y]$ using, e.g., a heap:
 - Almost complete binary tree.

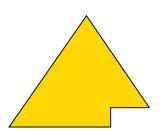


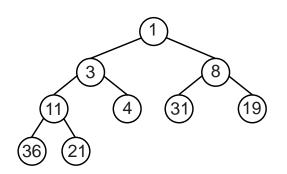
Given: Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in \mathcal{S}$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y]$.



- Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded binary search tree.
- Report all points in $\mathbb{R} \times]-\infty,y]$ using, e.g., a heap:
 - Almost complete binary tree.
 - $key(v) \le min\{key(LSON(v)), key(RSON(v))\}.$





Combining the best of both worlds(?)

Binary search tree with heap property:

■ Binary search tree unique w.r.t. *inorder*-traversal.

Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

Heap not unique.

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

■ Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.
- Additional requirement: $\forall v \in \mathcal{H} : \exists x_v \in \mathbb{R}$:

 $l \leq x_v < r \quad \forall l \in LSUBTREE(v), \ \forall r \in RSUBTREE(v).$

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the $\min y$ -coordinate.

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{min}\}$.
- Partition $S \setminus \{p_{\min}\}$:

$$\mathcal{S}_{\mathsf{left}} := \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x \leq x_{\mathsf{mid}} \}$$

$$\mathcal{S}_{\mathsf{right}} := \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x > x_{\mathsf{mid}} \}$$

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{min}\}$.
- Partition $S \setminus \{p_{\min}\}$:

$$\mathcal{S}_{\mathsf{left}} := \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x \leq x_{\mathsf{mid}} \}$$

$$\mathcal{S}_{\mathsf{right}} := \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x > x_{\mathsf{mid}} \}$$

• Construct search tree node v storing x_{mid} and set $p(v) := p_{min}$.

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{min}\}$.
- Partition $S \setminus \{p_{\min}\}$:

$$\mathcal{S}_{\mathsf{left}} := \{ p \in \mathcal{S} \setminus \{p_{\mathsf{min}}\} \mid p.x \leq x_{\mathsf{mid}} \}$$

$$\mathcal{S}_{\mathsf{right}} := \{ p \in \mathcal{S} \setminus \{p_{\mathsf{min}}\} \mid p.x > x_{\mathsf{mid}} \}$$

- Construct search tree node v storing x_{mid} and set $p(v) := p_{min}$.
- Recursively compute v's children $\mathcal{H}(S_{\text{left}})$ and $\mathcal{H}(S_{\text{right}})$.

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{min}\}$.
- Partition $S \setminus \{p_{\min}\}$:

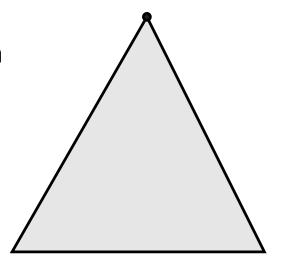
$$\mathcal{S}_{\mathsf{left}} := \{ p \in \mathcal{S} \setminus \{p_{\mathsf{min}}\} \mid p.x \leq x_{\mathsf{mid}} \}$$

$$\mathcal{S}_{\mathsf{right}} := \{ p \in \mathcal{S} \setminus \{p_{\mathsf{min}}\} \mid p.x > x_{\mathsf{mid}} \}$$

- Construct search tree node v storing x_{mid} and set $p(v) := p_{min}$.
- Recursively compute v's children $\mathcal{H}(S_{\text{left}})$ and $\mathcal{H}(S_{\text{right}})$.
- Complexity: $\mathcal{O}(n)$ space; $\mathcal{O}(n \log n)$ time (why?).

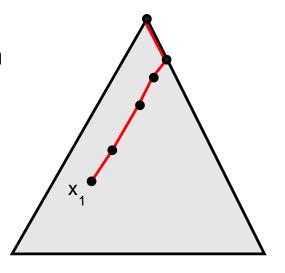
Query range $[x_1, x_2] \times [-\infty, y]$:

• Queries for x_1 and x_2 result in two search paths in \mathcal{H} .



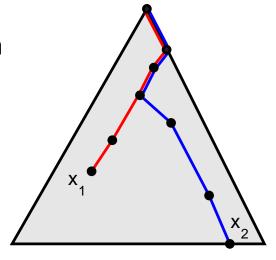
Query range $[x_1, x_2] \times [-\infty, y]$:

• Queries for x_1 and x_2 result in two search paths in \mathcal{H} .



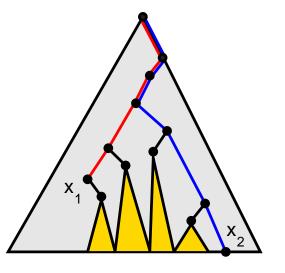
Query range $[x_1, x_2] \times [-\infty, y]$:

- Queries for x_1 and x_2 result in two search paths in \mathcal{H} .
- Check all points on these paths.



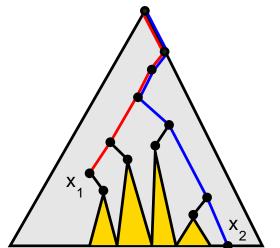
Query range $[x_1, x_2] \times [-\infty, y]$:

- Queries for x_1 and x_2 result in two search paths in \mathcal{H} .
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $[x_1, x_2] \times \mathbb{R}$.



Query range $[x_1, x_2] \times [-\infty, y]$:

- lacktriangle Queries for x_1 and x_2 result in two search paths in \mathcal{H} .
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $[x_1, x_2] \times \mathbb{R}$.
- Query these subtrees a follows:

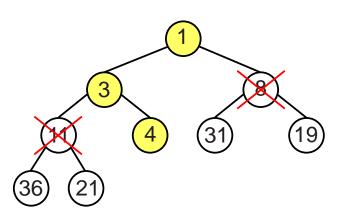


SearchInSubtree(v, y)

if
$$v$$
 not a leaf and $p(v).y \le y$ then Report $p(v)$;

SearchInSubtree(LSON(v), y);

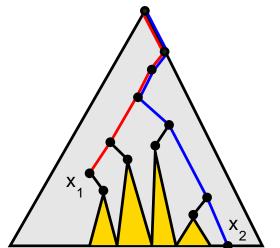
SearchInSubtree(RSON(v), y);



Example for y = 5.

Query range $[x_1, x_2] \times [-\infty, y]$:

- lacktriangle Queries for x_1 and x_2 result in two search paths in \mathcal{H} .
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $[x_1, x_2] \times \mathbb{R}$.
- Query these subtrees a follows:

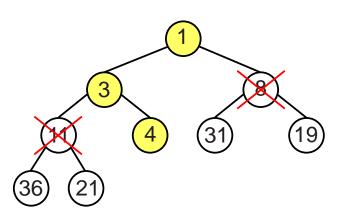


SearchInSubtree(v, y)

if
$$v$$
 not a leaf and $p(v).y \le y$ then Report $p(v)$;

SearchInSubtree(LSON(v), y);

SearchInSubtree(RSON(v), y);



Example for y = 5.

Missing Components:

- A more detailed description of the query algorithm.
- Proof of correctness.

 \Rightarrow [de Berg et al., 2000]

Theorem 2.1

Priority search trees allow for answering three-sided range queries on points in \mathbb{R}^2 with time and space complexities as follows:

Preprocessing time: $\Theta(n \log n)$

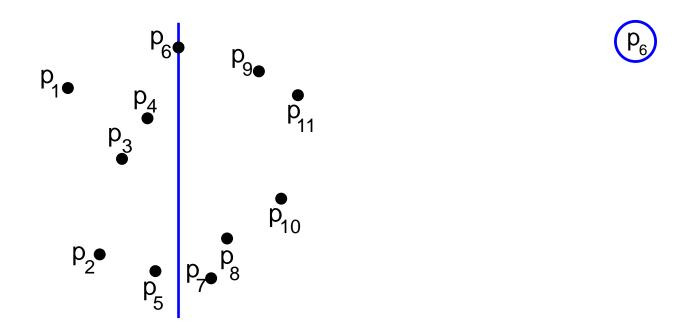
Query time: $O(\log n + k)$

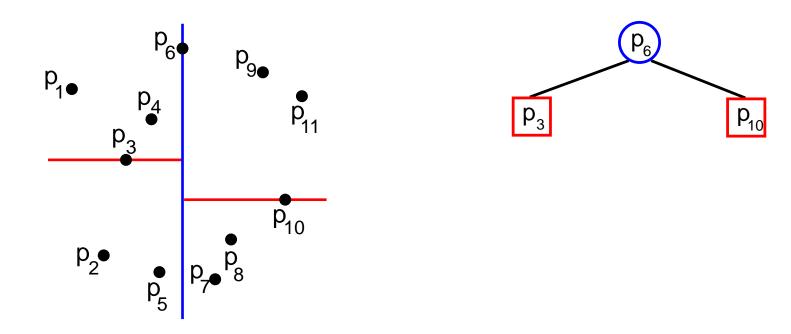
Space requirement: $\Theta(n)$

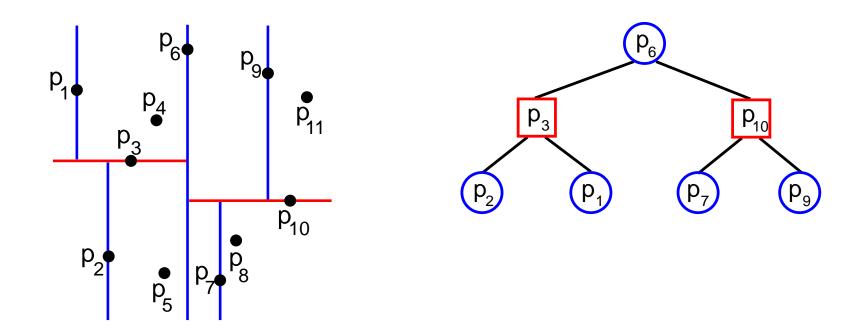
- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

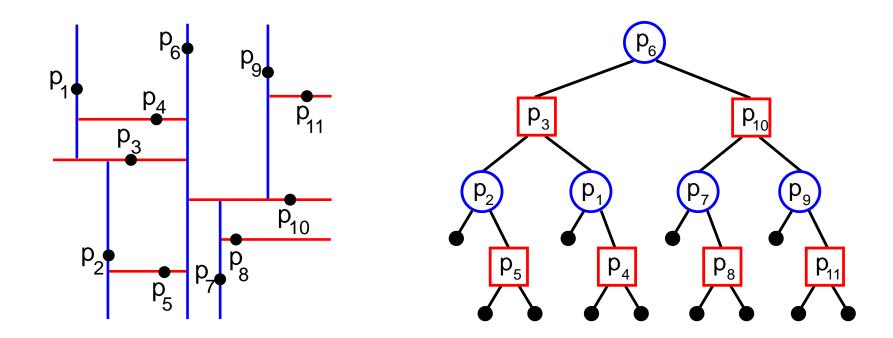
Multidimensional Binary Search Tree

- Extend the concept of binary search by bisection to higher dimensions.
- Instead of intervals, partition (hyper-)rectangles; do the partitioning alternating parallel to the coordinate axes.
- R_i is partitioned into R_j and $R_k \Rightarrow |R_j| \approx |R_k| \approx \frac{1}{2}|R_i|$.
- Structure corresponding to partitioning: balanced binary tree (kD-tree [Bentley, 1975]).
- Node v corresponds to hyperrectangle R(v), $R(\mathbf{root}) = \mathbb{R}^d$; children correspond to sub-hyperrectangles.
- lacktriangle Each node v is augmented to store:
 - S(v): points contained in R(v) (implicitly).
 - $-\ell(v)$: representation of split axis.
 - p(v): median of S(v) w.r.t. $\ell(v)$.

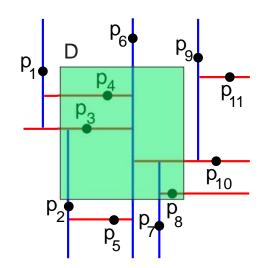


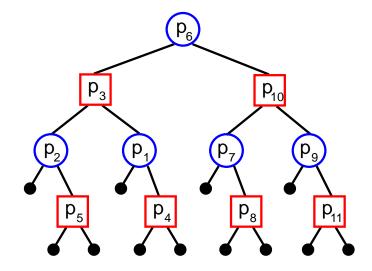




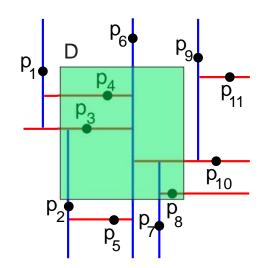


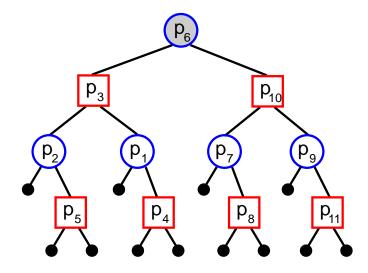

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



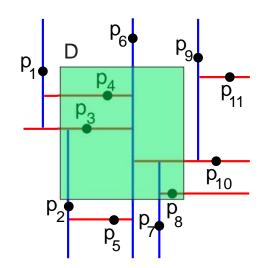


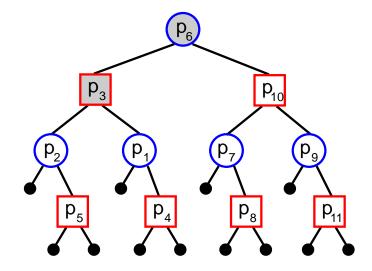

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



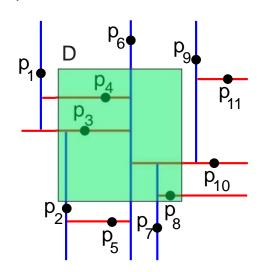


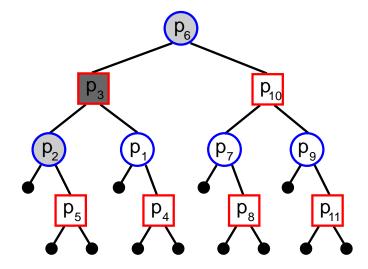

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



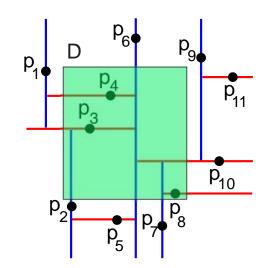


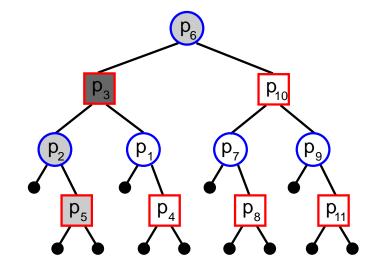

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
```



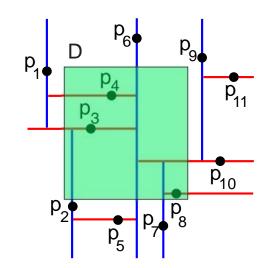


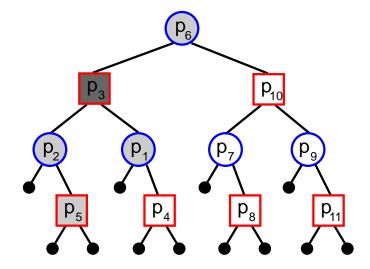

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
```



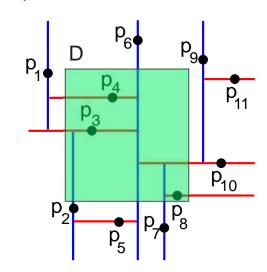


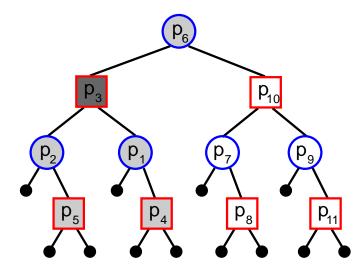

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



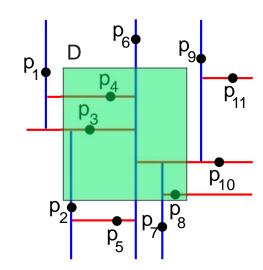


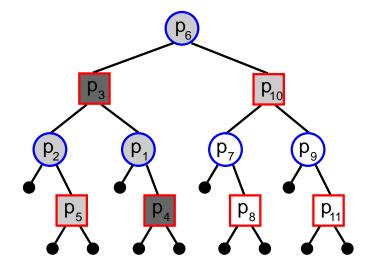

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



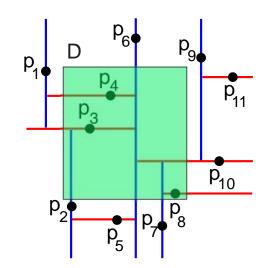


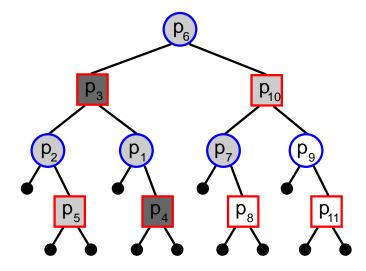

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



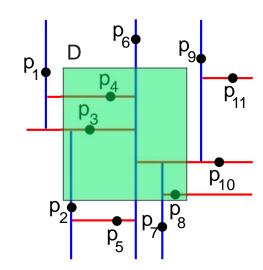


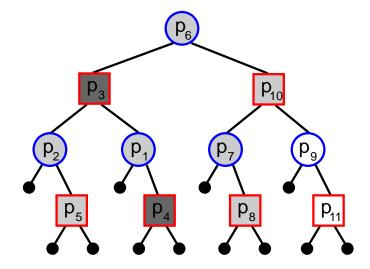

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```



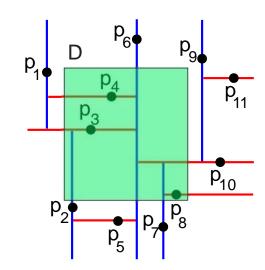


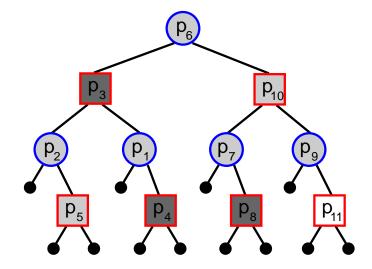

```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```






```
double left, median, right;
if v.type == "vertical" then
  left = D.x1; right = D.x2;
  median = v.p.x;
else
  left = D.y1; right = D.y2;
  median = v.p.y;
if left ≤ median ≤ right and
  D.contains(v.p) then
  result.append(v.p);
if !isLeaf(v) then
  if left < median then
     search(leftSon(v), D, result);
  if median < right then</pre>
     search(rightSon(v), D, result);
return;
```





Space requirement:

- $p \in R(v) \iff p = p(v) \lor p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Space requirement:

- $p \in R(v) \iff p = p(v) \lor p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Construction time (preprocessing):

■ Linear-time median finding per partitioning step, i.e., recurrence:

$$T(n) = 2 \cdot T(\lceil n/2 \rceil) + \mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)$$

Space requirement:

- $p \in R(v) \iff p = p(v) \lor p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Construction time (preprocessing):

Linear-time median finding per partitioning step, i.e., recurrence:

$$T(n) = 2 \cdot T(\lceil n/2 \rceil) + \mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)$$

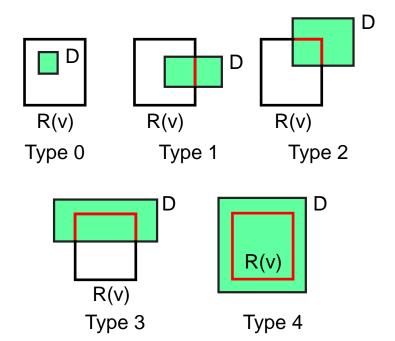
- Alternative: Replace median-finding by pre-sorting (copies of) the point by their x- and y-coordinates, respectively.
 - Can find median w.r.t. x-coordinate in $\mathcal{O}(1)$ time.
 - Can construct sorted y-arrays to be passed to the children in linear time.

Analysis of worst-case query time

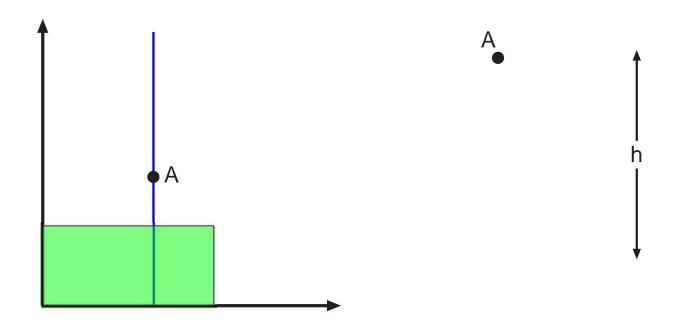
- Query time proportional to number of nodes visited.
- v productive $\iff p(v) \in D$.
- Nodes visited: productive and unproductive nodes.

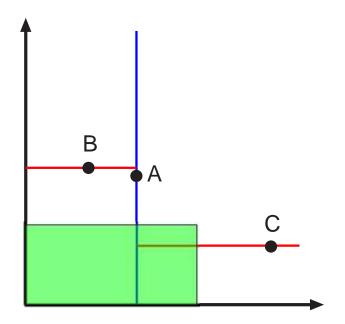
Definition 3.1

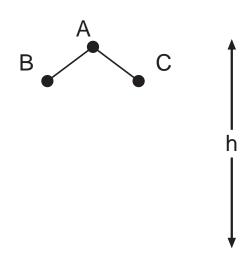
Let R(v) be a rectangle and let $0 \le i \le 4$. D and R(v) form a type-i situation $\iff i$ sides of R(v) intersect the interior of D.

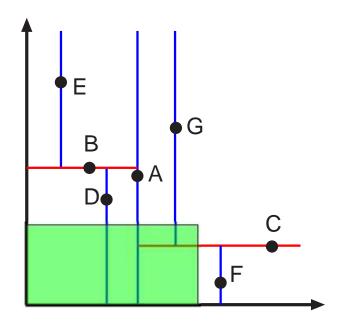


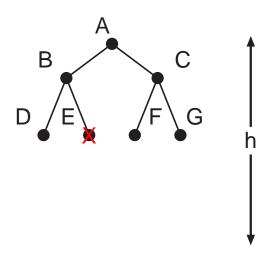
■ Type-4 situation always productive, all other situations may be unproductive.

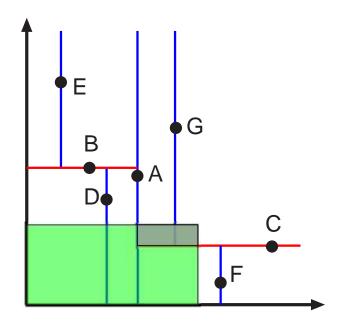


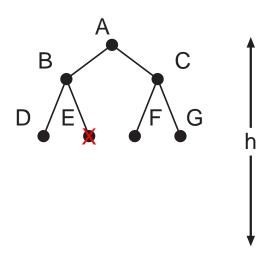


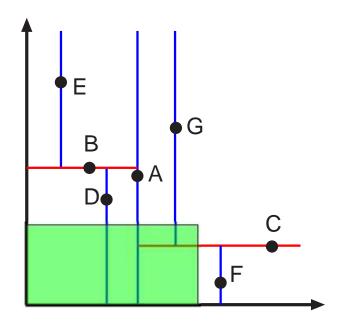






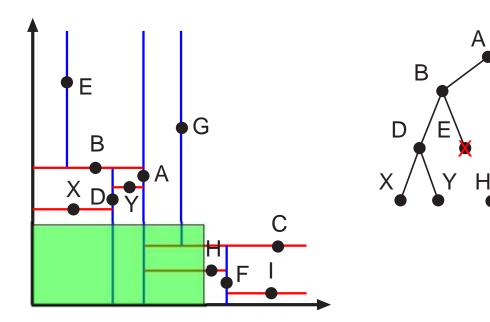


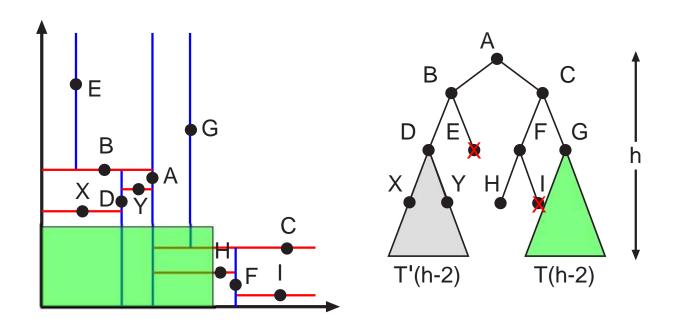


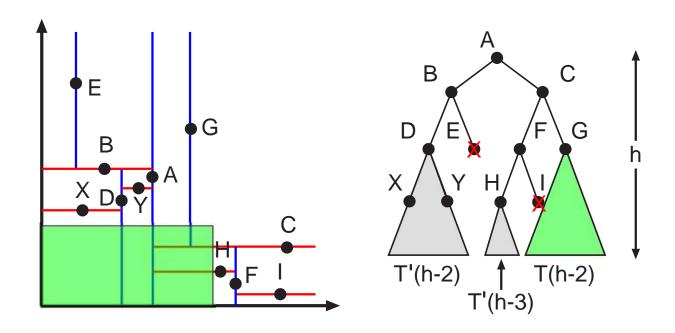




T(h-2)



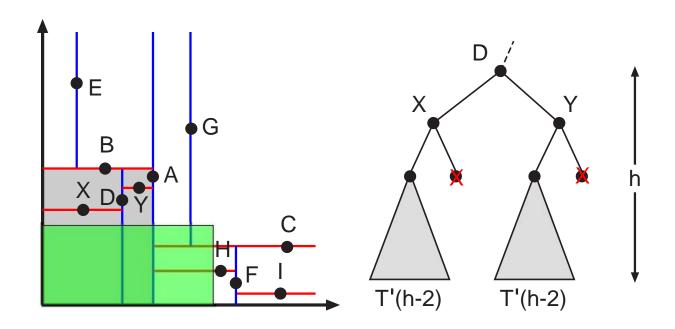




■ Recurrence for worst-case query time:

$$T(h) = \underbrace{1}_{A} + \underbrace{1}_{B} + \underbrace{1}_{C} + \underbrace{T(h-2)}_{G} + \underbrace{T'(h-2)}_{D} + \underbrace{1}_{F} + \underbrace{T'(h-3)}_{H}$$

lacktriangle A closer look at situation "subtree rooted at node D".



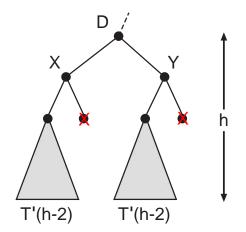
Recurrence for this situation:

$$T'(h) = \underbrace{1}_{D} + \underbrace{1}_{X} + \underbrace{1}_{Y} + \underbrace{2 \cdot T'(h-2)}_{\text{Children of } X \text{ and } Y}$$

■ The following recurrence holds for T'(h):

$$T'(h) = 2 \cdot T'(h-2) + 3$$

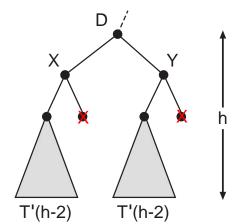
with T'(0) = 0 and T'(1) = 1.



■ The following recurrence holds for T'(h):

$$T'(h) = 2 \cdot T'(h-2) + 3$$

with T'(0) = 0 and T'(1) = 1.



■ Solve recurrence for T'(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T'(2 \cdot i) = 3 + 2 \cdot T'(2(i - 1))$$

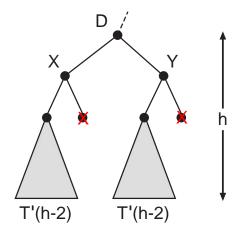
$$= 3 + 2 \cdot (3 + 2 \cdot T'(2(i - 2)))$$

$$= \sum_{j=0}^{i-1} 3 \cdot 2^{j} = 3 \cdot 2^{i} - 3$$

■ The following recurrence holds for T'(h):

$$T'(h) = 2 \cdot T'(h-2) + 3$$

with T'(0) = 0 and T'(1) = 1.



■ Solve recurrence for T'(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T'(2 \cdot i) = 3 + 2 \cdot T'(2(i - 1))$$

$$= 3 + 2 \cdot (3 + 2 \cdot T'(2(i - 2)))$$

$$= \sum_{j=0}^{i-1} 3 \cdot 2^{j} = 3 \cdot 2^{i} - 3$$

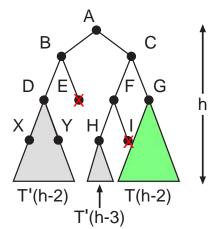
Similarly: $T'(2 \cdot i + 1) = 4 \cdot 2^i - 3$.

■ The following recurrence holds for T(h):

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases} 4 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i + 1 \\ 3 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i \end{cases}$$

with
$$T(0) = T'(0) = 0$$
 and $T(1) = T'(1) = 1$.



■ The following recurrence holds for T(h):

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases} 4 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i + 1 \\ 3 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i \end{cases}$$

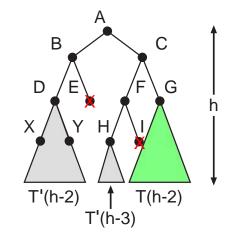
with T(0) = T'(0) = 0 and T(1) = T'(1) = 1.

■ Solve recurrence for T(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

■ The following recurrence holds for T(h):

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases} 4 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i + 1 \\ 3 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i \end{cases}$$



with T(0) = T'(0) = 0 and T(1) = T'(1) = 1.

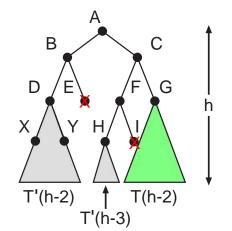
■ Solve recurrence for T(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i-1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$
$$= T(2(i-1)) + 5 \cdot 2^{i-1} - 2$$
$$= 5 \cdot (2^{h/2} - 1) - h$$

■ The following recurrence holds for T(h):

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases} 4 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i + 1 \\ 3 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i \end{cases}$$



with T(0) = T'(0) = 0 and T(1) = T'(1) = 1.

■ Solve recurrence for T(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i-1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$
$$= T(2(i-1)) + 5 \cdot 2^{i-1} - 2$$
$$= 5 \cdot (2^{h/2} - 1) - h$$

Similarly: $T(2 \cdot i + 1) = 7 \cdot (2^{\lfloor h/2 \rfloor} - 1) - h + 2$.

■ The following recurrence holds for T(h):

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases} 4 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i + 1 \\ 3 \cdot 2^{i} - 3 & \text{for } h = 2 \cdot i \end{cases}$$

with T(0) = T'(0) = 0 and T(1) = T'(1) = 1.

■ Solve recurrence for T(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i-1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$
$$= T(2(i-1)) + 5 \cdot 2^{i-1} - 2$$
$$= 5 \cdot (2^{h/2} - 1) - h$$

Similarly: $T(2 \cdot i + 1) = 7 \cdot (2^{\lfloor h/2 \rfloor} - 1) - h + 2$.

• Overall (for $n \leq 2^h - 1$): $T(n) \in \mathcal{O}\left(2 \cdot n^{1/2}\right)$.

- Worst-case query time independent of the number of points reported.
- kD-tree very relevant in practice!
- Extension to higher dimensions (points in \mathbb{R}^d): Do partitioning in a round-robin manner of the coordinate axes $x_1 \to x_2 \to \ldots \to x_d \to x_1 \to \ldots$

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering foursided range queries on points in \mathbb{R}^d , $d \ge 2$ with time and space complexities as follows:

Preprocessing time: $\Theta(d \cdot n \log n)$

Query time: $\mathcal{O}\left(d \cdot n^{1-1/d} + k\right)$

Space requirement: $\Theta(n)$

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

Summary

Lower bounds:

 \square $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

• $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

■ One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.

• $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.

• $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.

■ $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}\left(n^{1-1/d}+k\right)$ algorithm, $\Theta\left(n\right)$ space.

 \blacksquare $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}\left(n^{1-1/d}+k\right)$ algorithm, $\Theta\left(n\right)$ space.

Outlook:

Optimal query time possible of one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.

Bibliography

- [Bentley & Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range searching. *Acta Informatica*, 13:155–168, 1980.
- [Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 18(9):509–517, September 1975.
- [Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching. I: The reporting case. *Journal of the ACM*, 37(2):200–212, April 1990.
- [de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and O. Schwarzkopf. *Computational Geometry: Algorithms and Applications*. Springer, Berlin, second edition, 2000.
- [Lee & Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. *Acta Informatica*, 9:23–29, 1977.
- [McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276, May 1985.