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m Assume that S = {pg,...,pn_1} IS Stored in an array.

m Scan though the array and test for each p; whether p, € D.
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Change the model to also include k (the number of points re-
ported) as a parameter.

— Algorithm on previous slide has complexity O (n + k) = O (n).

Time complexity: preprocessing time < query time

Can disregard preprocessing time for many applications
(one-time operation).

Query time composed of two components:

— Search time: Time to locate the first element to be reported.
— Retrieval time: Time to fetch and report all £ elements to be reported.

Space requirement (lower bound for preprocessing time).
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Parameters: n points, k£ points reported, d dimensions.

Space requirement: Q2(n).

Retrieval time: (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly (C1.C2)
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O0}.

- D = [bl,...,bd] X [Cl,...,cd], with
b € [—a,—1], ¢; € [1,a], 1 <17 < d.

— Query ranges not-empty, each pro-
duces a different answer.

— Overall: a2 = (n/(2d))** different .
answers. (by,b)

— Depth of decision tree: © (Iog (n/(2d))2d) — Q(d-logn).
— Lower bound not tight for all d.
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m Point set S ={pg,...,pn—1} C R, stored in an array.
s Query range D = [x1, z>o].

m Scanning is sub-optimal; lower bound: Q2(1-log>n 4+ k).
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s Point set S = {po, . ..

= Query range D = [z1, z»o].

m Scanning is sub-optimal; lower bound: Q(

Preprocessing:

m Sort the points, e.g., using heapsort in O (nlogpyn) time.
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m [ here is no total order on points in two dimensions sorting ac-
cording to which guarantees © (2-logon + k) query time for range
searching.
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s Report all points in [x1,22] X R using,
e.g., a threaded binary search tree.
s Report all points in R x | — oo, y] using,
e.d., a heap:

— Almost complete binary tree.
— key(v) < min{key(LSON(v)), key(RSON(v))}.
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Binary search tree with heap property:.
m Binary search tree unique w.r.t. inorder-traversal.
s No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

m More precisely: Children of a node may be switched.

Priority Search Tree:

m Binary tree 'H storing a two-dimensional point at each node s.t.
the heap property w.r.t. the y-coordinates is fulfilled.

m Additional requirement: Yv € H : dxpy € R :
| <xy<r VI € LSUBTREE(v), Vr € RSUBTREE(v).
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Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =0, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let xmig be the median of the z-coordinates in S\ {pmin}-

Partition S\ {pmin}:

{r € S\ {Pmin} | p-x < zmid}
{p € S\{Pmin} | P > Tmid}

Sleft
Sright

Construct search tree node v storing xmig and set p(v) ‘= Pmin-
Recursively compute v's children H(Siert) and H(Syight) -

Complexity: O (n) space; O (nlogn) time (why?).
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m Queries for 1 and xzo result in two search
paths in H.
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Query time: O (1 + k). Example for y = 5.
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Missing Components:

= A more detailed description of the)
query algorithm. s = [de Berg et al., 2000]
m Proof of correctness. )

Theorem 2.1
Priority search trees allow for answering three-sided range queries on
points in R2 with time and space complexities as follows:

Preprocessing time: © (nlogn)
Query time: O (logn + k)

Space requirement: © (n)




3. Range Searching in 2 Dimensions

4. Summary and Outlook




Extend the concept of binary search by bisection to higher dimen-
sSions.

Instead of intervals, partition (hyper-)rectangles; do the partition-
ing alternating parallel to the coordinate axes.

R; is partitioned into R; and Ry = |R;| ~ |Ry| =~ 3|R;|.

Structure corresponding to partitioning: balanced binary tree
(kD-tree [Bentley, 1975]).

Node v corresponds to hyperrectangle R(v), R(root) = R?:
children correspond to sub-hyperrectangles.

Each node v is augmented to store:
— S(v): points contained in R(v) (implicitly).

— /Y(v): representation of split axis.
— p(v): median of S(v) w.r.t. £(v).
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void search(node v, rectangle D, list(point)& result)

double left, median, right;

iIf v.type == ‘“vertical” then
left = D.x1; right = D.x2;
median = v.p.X;

else
left = D.y1; right = D.y2;
median = Vv.p.y;

If left < median < right and
D.contains(v.p) then
result.append(v.p);

iIf lisLeaf(v) then
If left < median then
search(leftSon(v), D, result);
If median < right then

search(rightSon(v), D, result);

return;
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void search(node v, rectangle D, list(point)& result)

double left, median, right; D p6+ Pod

if v.type == “vertical” then P9 .
left = D.x1; right = D.x2; D *— Py
median = v.p.X: P

else o
left = D.y1; right = D.y2; L P10
median = Vv.p.y; ) p#ps

b

If left < median < right and
D.contains(v.p) then
result.append(v.p); @

iIf lisLeaf(v) then P
If left < median then

search(leftSon(v), D, result); (p,) (p) OO

If median < right then
search(rightSon(v), D, result);
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return; o/ \o o/
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Space requirement:

m pc R(v) <= p=1p(v) Vpe€ R(q) for any descendant g of v.

m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.
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m Linear-time median finding per partitioning step, i.e., recurrence:

T(n)=2-T(n/2])+0Mm) € O(n-logn)




Space requirement:

= pc R(v) < p=p(v)Vpe R(q) for any descendant ¢ of wv.
m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.

Construction time (preprocessing):

m Linear-time median finding per partitioning step, i.e., recurrence:
T(n)=2-T(n/2])+0On) € O(n-logn)

m Alternative: Replace median-finding by pre-sorting (copies of) the
point by their z- and y-coordinates, respectively.

— Can find median w.r.t. z-coordinate in O (1) time.

— (Can construct sorted y-arrays to be passed to the children in linear time.




m Query time proportional to number of nodes visited.

= v productive <— p(v) € D.

L : []P D
m Nodes visited: productive and
unproductive nodes. R(V) R(V) R(V)
Type O Type 1 Type 2

Definition 3.1

Let R(v) be a rectangle and let 0 < D D
i < 4. D and R(v) form a type- RE)
i situation <= i sides of R(v) RW)
intersect the interior of D. Type 3 Type 4

m [ype-4 situation always productive, all other situations may be
unproductive.




m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].
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m Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

C
H o v
‘iF | T'(h-2) 1 T(h-2)

> T'(h-3)

m Recurrence for worst-case query time:

T(h) =L+ +LA+Th=2)+T(h=2)+ 1 +T'(h—3)
A B ¢ I % F 3




m A closer ook at situation ‘“‘subtree rooted at node D".

A
D /
'E X Y A
[ 1€

B

®* 1B A h
o D8V -

H  ®
> T'(h-2) T'(h-2)

m Recurrence for this situation:

T =1+ L+ 1+ 2702
D X Y Children of X and Y




= The following recurrence holds for T'(h): X Y
T(h) = 2-T"(h—2)+3

with 7(0) = 0 and 7"(1) = 1.
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with 7(0) = 0 and 7"(1) = 1.
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= Solve recurrence for T'(h), w.l.o.g. h=2-4, i € N.
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= The following recurrence holds for T'(h): X Y

T(h) = 2-T'"(h—2)+3 h

with 7(0) = 0 and 7"(1) = 1.

T'(h-2) T'(h-2)

= Solve recurrence for T(h), w.l.o.g. h=2-1, i € N.
T'(2-i) = 342 7'(2(i—1))
= 3+2-(3+2-7'(2(i-2)))

,L_l . .
j=0

Similarly: T/(2-i+ 1) = 4.2t — 3.
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with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)
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m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.
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) — { 3 for h P4
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Similarly: T(2-i+1)=7- (2W2J - 1) —h+2.




m The following recurrence holds for T'(h):

T(h) = T(h—-2)+T'(h—-2)4+T'(h—-3)+4

4 .2v — f =2.i+1
) — { 3 for h P4

3.20-3 forh=2-3

T'(h-2) 1 T(h-2)
with T(0) =T'(0) =0 and T(1) =T'(1) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h=2-14, i € IN.

T(2-z’) = 4—|—T(2(z’—1))—|—3-2i_1—3—|-4-2i_2—3

T(Q(i - 1)) +5.2071 _»
— 5-<2h/2—1>—h
Similarly: T(2-i+1)=7- (2W2J - 1) —h+2.

s Overall (forn <2"—1): T(n) € © (2 : nl/z).




m \Worst-case query time independent of the number of points re-
ported.

m kD-tree very relevant in practice!

m Extension to higher dimensions (points in ]Rd): Do partitioning

in @ round-robin manner of the coordinate axes 1 - x> — ... —
Ld — L1 — ...

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering four-

sided range queries on points in ]Rd,d > 2 with time and space com-
plexities as follows:

Preprocessing time: © (d-nlogn)
Query time: O(d-nl_l/d—l—k)

Space requirement: © (n)




4. Summary and Outlook
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Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (yv/n + k) algorithm, © (n) space.
= d dimensions: sub-optimal © (nl—l/d—l— k) algorithm, © (n) space.




Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logon 4+ k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logon + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (yv/n + k) algorithm, © (n) space.
= d dimensions: sub-optimal © (nl—l/d—l— k) algorithm, © (n) space.

Outlook:

m Optimal query time possible of one is willing to spend superlinear
space [Chazelle, 1990]. Beware: choosing the adequate model of
computation is crucial.
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