An Introduction To Range Searching

Jan Vahrenhold

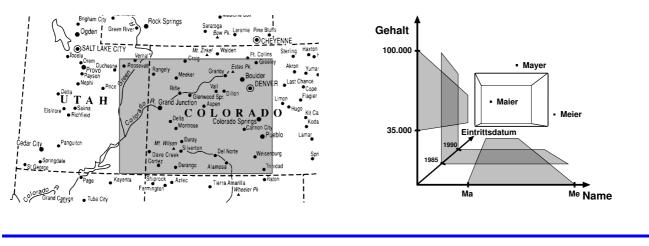
Department of Computer Science Westfälische Wilhelms-Universität Münster, Germany.

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.

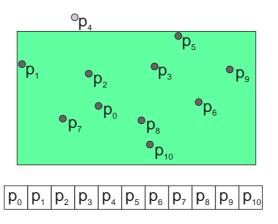


Jan Vahrenhold

Range Searching

A First Approach

- Assume that $S = \{p_0, \dots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.



Need to scan the whole array, regardless of how many points are reported. Complexity: ⊖(n) time and space.

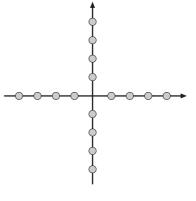
- Change the model to also include k (the number of points reported) as a parameter.
 - Algorithm on previous slide has complexity $\mathcal{O}(n+k) = \mathcal{O}(n)$.
- Time complexity: preprocessing time ⇔ query time
- Can disregard preprocessing time for many applications (one-time operation).
- Query time composed of two components:
 - Search time: Time to locate the first element to be reported.
 - Retrieval time: Time to fetch and report all k elements to be reported.
- Space requirement (lower bound for preprocessing time).

```
Jan Vahrenhold
```

```
Range Searching
```

Lower Bounds [Bentley & Maurer, 1980]

- Parameters: n points, k points reported, d dimensions.
- Space requirement: $\Omega(n)$.
- Retrieval time: $\Omega(k)$.
- Search time: Using binary decision tree (\rightarrow sorting lower bound).
- Lower bound construction:
 - (n =) 2ad points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \dots, b_d] \times [c_1, \dots, c_d]$, with $b_i \in [-a, -1]$, $c_i \in [1, a]$, $1 \le i \le d$.
 - Query ranges not-empty, each produces a different answer.
 - Overall: $a^{2d} = (n/(2d))^{2d}$ different answers.
 - Depth of decision tree: $\Omega\left(\log\left(n/(2d)\right)^{2d}\right) = \Omega\left(d \cdot \log n\right)$.
 - Lower bound not tight for all d.



Δ

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

Jan Vahrenhold

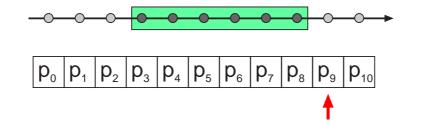
Range Searching

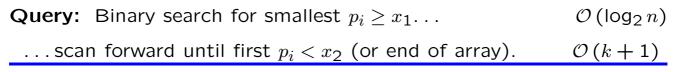
One-Dimensional Range Searching

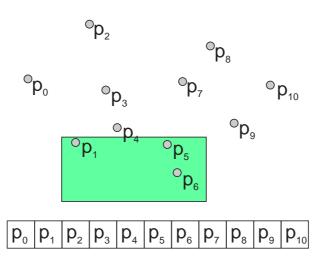
- Point set $S = \{p_0, \dots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \log_2 n + k)$.

Preprocessing:

• Sort the points, e.g., using *heapsort* in $\mathcal{O}(n \log_2 n)$ time.







■ There is no total order on points in two dimensions sorting according to which guarantees ⊖ (2 log₂ n + k) query time for range searching.

Jan Vahrenhold	Range Sea	rching	8
Recap: One-Dimen	sional Range	Searching	
Key ingredient: b	inary search (b	isection).	
 Replace (sorted) 	array by binary	search tree.	
		9 11 13 15	
 Time Complexit Preprocessing tim Query time: O(lo Space Complexi Inserts/Deletes p 	te: $\mathcal{O}(n \log n)$ og $n + k$) ty: $\mathcal{O}(n)$.		

Three-sided (1.5-dim.) Range Searching

0

Given: Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in S$ that, for given (x_1, x_2, y) , fall into $[x_1, x_2] \times] - \infty, y].$

Look at two subproblems:

- Report all points in [x₁, x₂] × ℝ using,
 e.g., a threaded binary search tree.
- Report all points in ℝ ×] −∞, y] using, e.g., a heap:
 - Almost complete binary tree.
 - $\text{key}(v) \le \min\{\text{key}(\text{LSON}(v)), \text{key}(\text{RSON}(v))\}.$

Jan Vahrenhold

Range Searching

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree H storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.
- Additional requirement: $\forall v \in \mathcal{H} : \exists x_v \in \mathbb{R} :$ $l \leq x_v < r \quad \forall l \in \text{LSUBTREE}(v), \forall r \in \text{RSUBTREE}(v).$

Use recursive definition [McCreight, 1985]:

- Build priority search tree H(S) for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{\min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the *x*-coordinates in $S \setminus \{p_{\min}\}$.
- Partition $S \setminus \{p_{\min}\}$:

$$\begin{array}{lll} \mathcal{S}_{\mathsf{left}} & := & \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x \leq x_{\mathsf{mid}} \} \\ \mathcal{S}_{\mathsf{right}} & := & \{ p \in \mathcal{S} \setminus \{ p_{\mathsf{min}} \} \mid p.x > x_{\mathsf{mid}} \} \end{array}$$

- Construct search tree node v storing x_{mid} and set $p(v) := p_{min}$.
- Recursively compute v's children $\mathcal{H}(S_{\text{left}})$ and $\mathcal{H}(S_{\text{right}})$.
- Complexity: $\mathcal{O}(n)$ space; $\mathcal{O}(n \log n)$ time (why?).

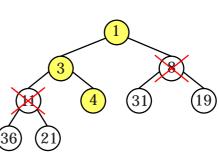
Jan VahrenholdRange Searching12Querying a priority search treeQuery range $[x_1, x_2] \times [-\infty, y]$:

- Queries for x_1 and x_2 result in two search paths in \mathcal{H} .
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $[x_1, x_2] \times \mathbb{R}$.
- Query these subtrees a follows:

SearchInSubtree(v, y)

if v not a leaf and $p(v).y \le y$ then Report p(v); SearchInSubtree(LSON(v), y); SearchInSubtree(RSON(v), y);

Query time: $\mathcal{O}(1+k_v)$.



Example for y = 5.

 \Rightarrow [de Berg et al., 2000]

Missing Components:

 A more detailed description of the query algorithm.

Proof of correctness.

Theorem 2.1

Priority search trees allow for answering three-sided range queries on points in \mathbb{R}^2 with time and space complexities as follows:

Preprocessing time: $\Theta(n \log n)$ Query time: $\mathcal{O}(\log n + k)$ Space requirement: $\Theta(n)$

```
Jan Vahrenhold
```

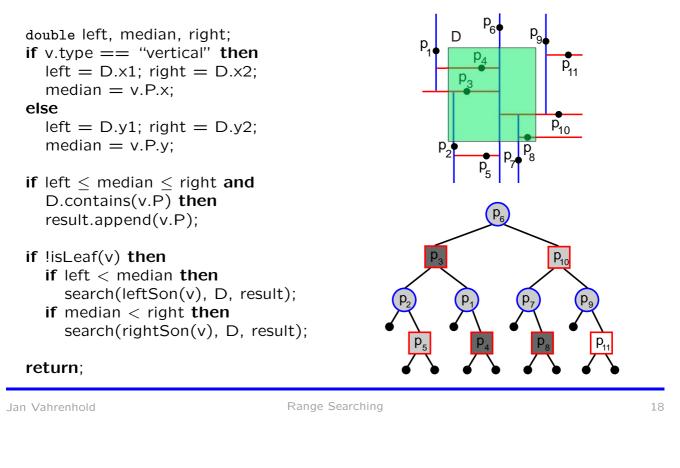
Range Searching

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

- Extend the concept of binary search by bisection to higher dimensions.
- Instead of intervals, partition (hyper-)rectangles; do the partitioning alternating parallel to the coordinate axes.
- R_i is partitioned into R_j and $R_k \Rightarrow |R_j| \approx |R_k| \approx \frac{1}{2}|R_i|$.
- Structure corresponding to partitioning: balanced binary tree (kD-tree [Bentley, 1975]).
- Node v corresponds to hyperrectangle R(v), $R(root) = \mathbb{R}^d$; children correspond to sub-hyperrectangles.
- Each node v is augmented to store:
 - S(v): points contained in R(v) (implicitly).
 - $\ell(v)$: representation of split axis.
 - P(v): median of S(v) w.r.t. $\ell(v)$.

Alternating partitioning along the coordinate axes.

void search(node v, rectangle D, list(point)& result)



Complexity of a 2D-tree

Space requirement:

- $p \in R(v) \iff p = P(v) \lor p \in R(q)$ for any descendant q of v.
- $\mathcal{O}(1)$ space requirement per node, exactly one point stored at each node $\Rightarrow \mathcal{O}(n)$ overall space requirement.

Construction time (preprocessing):

• Linear-time median finding per partitioning step, i.e., recurrence:

$$T(n) = 2 \cdot T(\lceil n/2 \rceil) + \mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)$$

- Alternative: Replace median-finding by pre-sorting (copies of) the point by their x- and y-coordinates, respectively.
 - Can find median w.r.t. x-coordinate in $\mathcal{O}(1)$ time.
 - Can construct sorted *y*-arrays to be passed to the children in linear time.

- Query time proportional to number of nodes visited.
- $v \text{ productive } \iff P(v) \in D.$
- Nodes visited: productive and unproductive nodes.

Definition 3.1

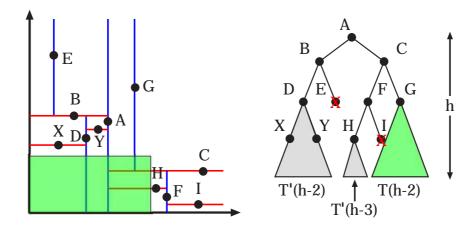
Let R(v) be a rectangle and let $0 \le i \le 4$. D and R(v) form a type*i* situation $\iff i$ sides of R(v)intersect the interior of D.

- $\begin{bmatrix} D \\ R(v) \\ Type 0 \\ R(v) \\ Type 1 \\ R(v) \\ R(v) \\ Type 3 \\ Type 4 \\ \end{bmatrix} \begin{bmatrix} D \\ R(v) \\ Type 4 \\ \end{bmatrix} \begin{bmatrix} D \\ R(v) \\ Type 4 \\ \end{bmatrix}$
- Type-4 situation always productive, all other situations may be unproductive.

Jan Vahrenhold	Range Searching	20

Constructing a worst-case situation-I

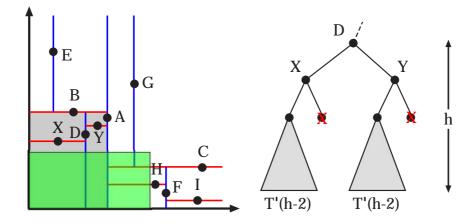
■ Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].



Recurrence for worst-case query time:

$$T(h) = \underbrace{1}_{A} + \underbrace{1}_{B} + \underbrace{1}_{C} + \underbrace{T(h-2)}_{G} + \underbrace{T'(h-2)}_{D} + \underbrace{1}_{F} + \underbrace{T'(h-3)}_{H}$$

• A closer look at situation "subtree rooted at node D".

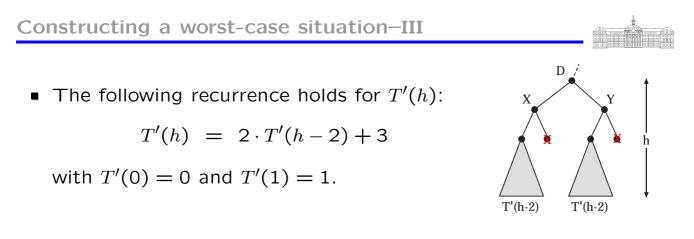


Recurrence for this situation:

$$T'(h) = \underbrace{1}_{D} + \underbrace{1}_{X} + \underbrace{1}_{Y} + \underbrace{2 \cdot T'(h-2)}_{\text{Children of } X \text{ and } Y}$$

Jan Vahrenhold

Range Searching



• Solve recurrence for T'(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T'(2 \cdot i) = 3 + 2 \cdot T'(2(i-1))$$

= 3 + 2 \cdot (3 + 2 \cdot T'(2(i-2)))
= $\sum_{j=0}^{i-1} 3 \cdot 2^j = 3 \cdot 2^i - 3$

Similarly: $T'(2 \cdot i + 1) = 4 \cdot 2^i - 3$.

Solve recurrence for T(h), w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i-1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$

= $T(2(i-1)) + 5 \cdot 2^{i-1} - 2$
= $5 \cdot (2^{h/2} - 1) - h$
Similarly: $T(2 \cdot i + 1) = 7 \cdot (2^{\lfloor h/2 \rfloor} - 1) - h + 2.$

Range Searching

• Overall (for $n \leq 2^h - 1$): $T(n) \in \mathcal{O}\left(2 \cdot n^{1/2}\right)$.

Jan Vahrenhold

Summary

- Worst-case query time independent of the number of points reported.
- kD-tree very relevant in practice!
- Extension to higher dimensions (points in \mathbb{R}^d): Do partitioning in a round-robin manner of the coordinate axes $x_1 \to x_2 \to \ldots \to x_d \to x_1 \to \ldots$

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering foursided range queries on points in \mathbb{R}^d , $d \ge 2$ with time and space complexities as follows:

Preprocessing time: Θ ($d \cdot n \log n$)Query time: \mathcal{O} ($d \cdot n^{1-1/d} + k$)Space requirement: Θ (n)

- 1. Introduction: Problem Statement, Lower Bounds
- 2. Range Searching in 1 and 1.5 Dimensions
- 3. Range Searching in 2 Dimensions
- 4. Summary and Outlook

Jan	Vahi	renhc	ld

Range Searching

Lower bounds:

• $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n}+k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}\left(n^{1-1/d}+k\right)$ algorithm, $\Theta(n)$ space.

Outlook:

 Optimal query time possible of one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.

Bibliography

- [Bentley & Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range searching. *Acta Informatica*, 13:155–168, 1980.
- [Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 18(9):509–517, September 1975.
- [Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching. I: The reporting case. *Journal of the ACM*, 37(2):200–212, April 1990.
- [de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and O. Schwarzkopf. *Computational Geometry: Algorithms and Applications*. Springer, Berlin, second edition, 2000.
- [Lee & Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. *Acta Informatica*, 9:23–29, 1977.
- [McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276, May 1985.