Motion Planning:

A Journey of Robots, Digital Actors, Molecules and Other Artifacts

Jean-Claude Latombe

Computer Science Department Stanford University

My Research Interests

- Autonomous agents that sense, plan, and act in real and/or virtual worlds
- Algorithms and systems for representing, capturing, planning, controlling, and rendering motions of physical objects
- Applications:
 - Manufacturing
 - Mobile robots
 - Computational biology
 - Computer-assisted surgery
 - Digital actors

Goal of Motion Planning

- Compute motion strategies, e.g.:
 - geometric paths
 - time-parameterized trajectories
 - sequence of sensor-based motion commands
- To achieve high-level goals, e.g.:
 - go to A without colliding with obstacles
 - assemble product P
 - build map of environment E
 - find object O

Goal of Motion Planning

- Compute motion strategies, e.g.:
 - geometric paths
 - time-parameterized trajectories
 - sequence of sensor-based motion commands
- To achieve high-level goals, e.g.:
 - go to A without colliding with obstacles
 - assemble product P
 - build map of environment E
 - find object O

Goal of Motion Planning

- Compute motion strategies, e.g.:
 - geometric paths
 - time-parameterized trajectories
 - sequence of sensor-based motion commands
- To achieve high-level goals, e.g.:
 - go to A without colliding with obstacles
 - assemble product P
 - build map of environment E
 - find object O

Examples

Is It Easy?

Basic Problem

• Statement:

Compute a collision-free path for a rigid or articulated object (the robot) among static obstacles

Inputs:

- Geometry of robot and obstacles
- Kinematics of robot (degrees of freedom)
- Initial and goal robot configurations (placements)

Outputs:

 Continuous sequence of collision-free robot configurations connecting the initial and goal configurations

Example with Rigid Object

Example with Articulated Object

Extensions to the Basic Problem

- Moving obstacles
- Multiple robots
- Movable objects
- Deformable objects
- Goal is to gather data by sensing

- Nonholonomic constraints
- Dynamic constraints
- Optimal planning
- Uncertainty in control and sensing

Application: Design for Manufacturing

Application: Robot Programming and Placement

David Hsu's PhD

Application: Checking Building Code

Charles Han's PhD

Application: Generation of Instruction Sheets

Application: Model Construction by Mobile Robot

Hector Gonzalez' s PhD

Application: Graphic Animation of Digital Actors

Application: Computer-Assisted Surgical Planning

Rhea Tombropoulos' s PhD

Joel Brown's PhD

Application: Prediction of Molecular Motions

Amit Singh's PhD

Motion in Configuration Space

$$Q(t) = \begin{bmatrix} q_0(t) \\ \vdots \\ q_n(t) \end{bmatrix}$$
$$t \in [0, T]$$
$$\frac{\text{Parts DOF}}{L \begin{bmatrix} 19 & 68 \\ 51 & 118 \end{bmatrix}}$$

Disc Robot in 2-D Workspace

Rigid Robot Translating in 2-D

 $CB = B \Theta A = \{b - a \mid a \text{ in } A, b \text{ in } B\}$

Rigid Robot Translating and Rotating in 2-D

C-Obstacle for Articulated Robot

Other Representation Concepts

- State space (configuration x velocity)
- Configuration/state x time space
- Composite configuration/state spaces
- Stability regions in configuration/state spaces
- Visibility regions in configuration/state spaces
- ♦ Etc ...

Motion Planning as a Computational Problem

• Goal:

Compute the connectivity of a space (e.g., the collision-free subset of configuration space)

- High computational complexity: Typically requires time exponential in an input parameter, e.g., the number of degrees of freedom, the number of moving obstacles, ...
- Two main algorithmic approaches:
 - Planning by random sampling
 - Planning by computing criticalities

Motion Planning as a Computational Problem

- Goal: Characterize the connectivity of a space (e.g., the collision-free subset of configuration space)
- High computational complexity: Requires time exponential in number of degrees of freedom, or number of moving obstacles, or etc...
- Two main algorithmic approaches:
 - Planning by random sampling
 - Planning by extracting criticalities

Motion Planning as a Computational Problem

- Goal: Characterize the connectivity of a space (e.g., the collision-free subset of configuration space)
- High computational complexity: Requires time exponential in number of degrees of freedom, or number of moving obstacles, or etc...
- Two main algorithmic approaches:
 - Planning by random sampling
 - Planning by extracting criticalities

Principle of Randomized Planning

(Probabilistic Roadmap)

Why Does it Work?

[Kavraki, Latombe, Motwani, Raghavan, 95]

In Theory, a PRM Planner ...

- Is probabilistically complete, i.e., whenever a solution exists, the probability that it finds one tends toward 1 as the number N of milestones increases
- Under rather general hypotheses, the rate of convergence is exponential in the number N of milestones, i.e.:

Prob[failure] $\sim \exp(-N)$

In practice, PRM Planners ...

Are fast

- Deal effectively with many-dof robots
- Are easy to implement
- Have solved complex problems

Example 1: Planning of Manipulation Motions

Example 1: Planning of Manipulation Motions

Example 2: Air-Cushioned Robot

Example 3: Radiosurgical Planning

Cyberknife (Neurosurgery Dept., Stanford, Accuray)

Surgeon Specifies Dose Constraints

Beam Selection Algorithm

- Place points uniformly at random on the surface of the tumor
- Pick beam orientations at random at these points

Beam Selection Algorithm

- Place points uniformly at random on the surface of the tumor
- Pick beam orientations at random at these points

Compute Beam Weights

2000 < Tumor < 2200 2000 < B2 + B4 < 2200 2000 < B4 < 2200 2000 < B3 + B4 < 2200 2000 < B3 < 2200 2000 < B1 + B3 + B4 < 2200 2000 < B1 + B4 < 2200 2000 < B1 + B4 < 2200 2000 < B1 + B2 + B4 < 2200 2000 < B1 + B2 + B4 < 2200 2000 < B1 + B2 + B4 < 2200 2000 < B1 + B2 + B4 < 2200

• 0 < Critical < 500 0 < B2 < 500

•

Sample Case

Linac plan 80% Isodose surface

CARABEAMER' s plan 80% Isodose surface

Sample Case

50% Isodose Surface

80% Isodose Surface

CARABEAMER's plan

Example 4: Indoor Map Building by Robot

Next-Best View Strategy

Computing Next Sensing Position

Sample the free edges of the visited region at random. For each sample point, compute the subset of visited region from which this point is visible and sample this subset at random.
Set of candidate positions q

- Select "best" candidate *q* based on following criteria:
 - overlap of visible environment edges (to ensure reliable alignment)
 - amount of potential new space visible from q
 - length of path to go to q

Map Construction Example

Robotics Lab Map

Example 5: Digital Actor with Vision Sensing

Example 5: Digital Actor with Vision Sensing

Fast Path Planning for Perception-Based Navigation

James Kuffner, Jr. Jean-Claude Latombe

Robotics Laboratory Computer Science Department Stanford University

Example 6: Predicting Molecule Docking Motions

Future Work: Minimally Invasive Surgey Amidst Soft Tissue Structures

Future Work: Autonomous Interactive Characters

A Bug's Life (Pixar/Disney)

Toy Story (Pixar/Disney)

Antz (Dreamworks)

Tomb Raider 3 (Eidos Interactive)

The Legend of Zelda (Nintendo)

Final Fantasy VIII (SquareOne)

Future Work: Protein Folding

Summary/Conclusion

- Over the last decade there has been considerable progress in motion planning techniques and their application
- While motion planning originated in robotics, the areas of application are now very diverse: product design, manufacturing, graphic animation, video games, biology, etc...
- There are orders of magnitude more processors embedded in physical devices (cars, planes, surgical instruments, etc) than desktop computers, and the gap is still growing. The interest in modeling and computing the motion of physical objects will continue to grow.