
Convex hulls in 2D (I)

The problem: Given a set P of n points in the plane, find their convex hull.

Properties of the convex hull

• A point is on the CH if and only of it is extreme (a point p is extreme if there exists a line l
through it such that all other points are on or on one side of l).

• An edge is on the CH if and only of it is extreme (a line l is extreme if all points in P are on
or on one side of it).

• A point p is not on the CH if and only if p is contained in the interior of a triangle formed
by three other points of P .

• The points with minimum/maximum x-coordinate are on the CH.

• The points with minimum/maximum y-coordinate are on the CH.

• Walking counter-clockwise on the boundary of the CH you make only left turns.

• Consider a point p inside the CH. The points on the boundary of the CH are encountered in
sorted radial order wrt p.

Algorithms

We discussed the following algorithms:

Brute force

Idea: Find all extreme edges

Algorithm BruteForce (input: points P )

• for all distinct pairs of points (pi, pj):

– if edge (pi, pj) is extreme, output it as CH edge

Questions:

• How do you check if an edge is extreme, and how fast?

• What is the overall running time of Algorithm BruteForce?

1



Gift wrapping

Idea: start from a point p guaranteed to be on the CH and find the edge pq of the CH starting at
p; repeat from q.

Algorithm GiftWrapping (input: points P )

• Let p0 be the point with smallest x-coordinate (if more than one, pick right-most)

• p = p0

• repeat

for each point q, q! = p:

∗ compute counter-clockwise-angle of q wrt p

let p′ be the point with smallest such angle

//claim: edge (p, p′) is on the CH because...

output (p, p′) as CH edge

p = p′

• until p == p0

Questions:

1. Simulate GiftWrapping on a set of points and check that it works in degenerate cases.

2. What is the running time of Algorithm GiftWrapping? Express the running time as function
of k, where k is the output size (in the case the size of the CH). This is called an output-
sensitive bound and GiftWrapping’s runnung time is output-sensitive.

3. How big/small can k be for a set of n points? Show examples that trigger best/worst case
for GiftWrapping.

4. Discuss when GiftWrapping is a good choice.

2



QuickHull

Idea: Similar to Quicksort. Partition, then recurse.

Algorithm QuickHull (input: points P )

• Find left-most point a and right-most point b

• Partition P into P1 (points left of ab) and P2 (points right of ab)

• return QuickHull(a, b, P1) + QuickHull(b, a, P2)

QuickHull(a, b, P )
//invariant: P is a set of points all left of ab

• if P is empty: return emptyset

• for each point p ∈ P : compute its distance to ab

• let c be the point with max distance

• let P1 = points to the left of ac

• let P2 = points to the left of cb

• return QuickHull(a, c, P1) + c + QuickHull(c, b, P2)

Questions:

• Simulate QuickHull and check that it works in degenerate cases

• Write a recurrence for its running time.

• What is the best/worst case running time of QuickHull? Show examples.

• Argue that Quickhull’s average complexity is O(n) when points are uniformly distributed.

3



Graham scan

Idea: start from a point p interior to the hull. Order all points by their ccw angle wrt p. Traverse
and maintain the CH of all traversed points.

Algorithm GrahamScan (input: points P )

• Find interior point p0 (instead of an interior point, can pick the lowest point)

• Sort all other points ccw around p0 and call them p1, p2, ...pn−1 in this order.

• Initialize stack S = (p2, p1)

• for i = 3 to n-1 do

– if pi is left of (second(S), first(S)): push pi on S

– else:

∗ repeat: pop S while pi is right of (second(S), first(S)

∗ push pi on S

Questions:

• Degenerate cases: Simulate the algorithm on some degenerate cases and check that it works
(if not, fix it).

• Argue that once the points are sorted, the algorithm takes linear time.

What is the overall running time of Graham Scan? Is the algorithm output sensitive?

4


