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We say that a set of guards covers polygon P if every point in P is visible to at least one 
guard. 
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Can all quadrilaterals be guarded with one point? 
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1. Given a polygon P of size n, what is the smallest number of guards (and their 
locations) to cover P?   
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Questions:  

1. Given a polygon P of size n, what is the smallest number of guards (and their 
locations) to cover P?    

2. Klee’s problem: Consider all polygons of n vertices, and the smallest number of 
guards to cover each of them. What is the worst-case?

The Art Gallery Problem(s)

NP-Complete



Notation 
• Let Pn: polygon of n vertices 
• Let g(P) = the smallest number of guards to cover P 
• Let G(n) = max { g(Pn) | all Pn}.   

• In other words, G(n) is sometimes necessary and always sufficient to guard a 
polygon of n vertices. 

• G(n) is necessary: there exists a Pn that requires G(n) guards 
• G(n) is sufficient: any Pn can be guarded with G(n) guards 

• Klee’s problem: find G(n)

Klee’s problem



Our goal (i.e. Klee’s goal) is to find G(n). 

Trivial bounds 
• G(n) >= 1 : obviously, you need at least one guard.  

• G(n) <= n : place one guard in each vertex 

Klee’s problem: find G(n)



n=3

Klee’s Problem

G(3) = 1

Any triangle needs at least one guard.  
One guard is always sufficient. 



n=4

Klee’s Problem

G(4) = 1

Any quadrilateral needs at least one guard.  
One guard is always sufficient. 



n=5

Klee’s Problem

G(5) = ?

Can all 5-gons be guarded by one point?



n=5

Klee’s Problem

G(5) = 1



n=6 

Klee’s Problem

G(6) = ?

A 6-gon that can’t be guarded by one point?



n=6 

Klee’s Problem

G(6) = 2



G(n) = ?  

Come up with a Pn that requires as many guards as possible. 
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G(n) = ?  

Come up with a Pn that requires as many guards as possible. 
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 n/3   necessary

Klee’s Problem



It was shown that  n/3   is also sufficient. That is,  

  Any Pn can be guarded with at most  n/3   guards. 

• (Complex) proof by induction  
• Subsequently, simple and beautiful proof due to Steve Fisk, who was Bowdoin 

Math faculty.  
• Proof in The Book. 

Klee’s Problem





1. Any simple polygon can be triangulated. 

2. A triangulated simple polygon can be 3-colored. 

3. Observe that placing the guards at all the vertices assigned to one color 
guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color and 
place guards at the vertices of that color. 

Fisk’s proof of sufficiency



Claim: Any simple polygon can be triangulated.

Fisk’s proof of sufficiency



Given a simple polygon P, a diagonal is a segment between 2 non-
adjacent vertices that lies entirely within the interior of the polygon.  

Polygon triangulation



Claim: Any simple polygon can be triangulated.  

Proof idea: induction using the existence of a diagonal.  Later. 

Polygon triangulation
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• Placing guards at vertices of one color covers P.
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• Placing guards at vertices of one color covers P.

Fisk’s proof of sufficiency



• Placing guards at vertices of one color covers P. 
• Pick least frequent color! At most n/3 vertices of that color. 

Fisk’s proof of sufficiency



The proofs



1. Any polygon can be triangulated 

2. Any triangulation can be 3-colored 

3. Observe that placing the guards at all the vertices assigned to one 
color guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 

Fisk’s proof of sufficiency



Claim:  The set of red vertices covers the polygon.  The set of blue vertices 
covers the polygon. The set of green vertices covers the polygon.  

Proof:  



There are n vertices colored with one of 3 colors.  

Claim:  There must exist a color that’s used at most n/3 times. 

Proof:  



Theorem: Any triangulation can be 3-colored. 

Proof: 



Theorem: Any simple polygon has at least one convex vertex. 

Proof: 

Polygon triangulation



Theorem: Any simple polygon with n>3 vertices contains (at least) a diagonal. 

Proof: 

Polygon triangulation



Theorem: Any polygon can be triangulated 

Proof: 


