

1

2

5

3

Orthogonal line segment intersection

6

General line segment intersection

- n : size of the input (uumber o tsegnents) - k. size of ouputut (furmber of ineresections)

- Extend sweep line idea
- We'll get an overall bound of $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{k} \lg \mathrm{n})$ which improves on the naive $\mathrm{O}\left(n^{2}\right)$
.The algorithm was developed by Jon Bentley and Thomas Ottmann in 1979
- Simple (once you see it) and practical

7

10

11

12

13

14

-Traverse the events in X in order

15

18

19

- Use above-below order
- Order will flip at intersection point

20

- How do we detect intersections?

How do we detect intersections?

- Segments that intersect are consecutive in above-below order just before they intersect

21

- Let X be the set of all x-coords of segments
- Intialize AS = 11
- Traverse events in order

25

- insert d in $A S$: $a<d$
the ist of tua) intersecent to the right of the line; they do; report point and insert it in the list of future events

26

this event is start of segment d

- insert d in $A S$, d is above $a(a<d)$
- check if (d, a) intersect to the right of the line; they do; report point and insert it in the ist of tuture events

27

30

31

- insert cin AS; cis below d ($\mathrm{c}<\mathrm{d}<\mathrm{a}$)
- check c with its above and below neighbors for intersection to the right of the
sweep line: this detectis the intersection point of c and d; reportit and insertit as sweep ine,l his detects the intersection point of c and d; report i tand insertit as
future event future event

32

35

- this event is start of segment c.
- insert c in AS; c is below d ($\mathrm{c}<\mathrm{d}<\mathrm{a}$)

Check c with its above and below neighbors for intersection to the right of the sweep ine; this detectis the intersection pointo $f \mathrm{c}$ and d ; report 1 tand insert tit as tuture event

36

37

38

this event is intersection of (c, d) :

- flip c and $d: d<c<b<e<a$
- check new neighbors (c, b) for intersection to the right of the sweep line; (c, b)
dontit intersect don't intersect

- this event is start of segment e:
- inserte in AS: $c<d<b<a<e$
- check e with its above and below neighbors for intersection to the right of the
sweep
line: this detecects intersection point of $($ a,e) $)$ report tit and insert it as future event

39

- this eventis end of segment b
- delete b from AS: $\mathrm{d}<\mathrm{c}$ <e <a
- check new neighbors (c,e) for intersection to the right of the sweep line; this
detects the intersection point of (c,e): report it and insertit as future event

43

- this event is end of segment a:
- delete a from AS: $\mathrm{d}<\mathrm{c}$ <e
- no new neighbors

- this event is end of segment b.
- delete b from AS: $\mathrm{d}<\mathrm{c}$ <e <a
- check new neighbors (c,e) for intersection to the right of the sweep line: this
detects the interssection point of (c, e)) , report t tand insertit as future event

44

- this event is the intersection of (c, e) :
- flip c,e in AS: $\mathrm{d}<\mathrm{e}<\mathrm{c}$
- check new neighbors (d, e) for intersection to the right of the sweep line; this
detectis the intersection of (d.e) ; reportit and
detects the intersection of (d,e); reportit t and insert it as future event

- this event is end of segment a:
- delete a from AS: $\mathrm{d}<\mathrm{c}<\mathrm{e}$
- no new neighbors

- this event is the end of d :
- delete din AS: e
- no new neighbors

- this event is end of segment c
- delete cin AS: $d<e$
- no new neighbors

- this event is the end of d :
- delete din AS: e
- no new neighbors

51

- this event is the end of e:
- delete e in AS:
- no new neighbors

55

56

Bentley-Ottmann sweep

- Simplifing assumptions
- no vertical segments
- no vertical segments
- not wo segments intersect at their endpoints
- all endpoints (of segments) and all intersection points have different x -
coordinates
- al endipoints
cor seg
- no segmeates
nonts overlap
- no segments overlap

These assumptions are not realistic for real data.
But, they don't provide insight into the plane sweep technique, so we omit them
Real data challenges

- dealing with degenerate cases
dealing with finite precision arithmetic and precision problems

57

Bentley-Ottmann sweep

We'll maintain the following invariants during the algorithm:

- Active structure AS:
- For any position of the sweep line SL, AS contains all active segments (ie segments that start before SL and end after SL)
- AS is sorted by their y-coordinates of their intersection with SL
- Event list EL:
- For any position of SL, EL contains segment endpoints to the right of SL and also the intersections to the right of SL of active segments that wer are neighbors in SL
- EL is sorted by x-coordinate

Bentley-Ottmann sweep
We'll maintain the following invariants during the algorithm:

- Active structure AS:
- For any position of the sweep line SL, AS contains all active segments (ie segments that start before SL and end atter SL)
- AS is sorted by their y-coordinates of their intersection with SL
- Event list EL:
- For any position of SL, EL contains segment endpoints to the right of SL, and also the intersections to the right of SL of active segments that were, are neighbors in SL
- EL is sorted by x-coordinate
-For any position of the sweep line SL, all pairs of intersecting dead segments have been reported.

Algorithm Bentley-Ottmann (S)

I/S is a set of n line segments in the plane

- intiaizize AS= = sort 2n end of sill seaments in S by x-coord and store them in Event - while EventList not empty
- Iete be the next event from EventList; delete it from EL
- ife is leff endpoint of a segment 1
- insert in AA in the right place
check itl intersecers . 1 -prev and 1 -suucc in AS to the right of the sweep
line, it they do, insert their intersection optional: sincee I. I.revev and I. Iucec arion point in the EventList intersect and if they do, delelete that intersection point from the Eventist
- if. is the right endpoint of a segment

Tis the intersection of two segments

- end.

Bentley-Ottmann sweep
Questions

- AS
- What operations do we do on AS?
- What data structure should we use for AS?
- EL
- Note that we know a priorit the $2 n$ events corresponding to start and end
points of segments, but $E L$ is not static; the events corresponding to tersection points are generated on the fly
- What operations do we do on EL?
- What data structure should we use for EL?

```
Bentley-Ottmann sweep
- As
    - O(n)
    How many operations?
    - O(n+k)
    Overall time?
        - O((n+k)gn)
    EventList
    What is the size of Eventlist
    - o(n+k)
    . How many operations?
    - O(n+k)
    - Overall lime?
    - o((n+k)lg n)
```

Bentley-Ottmann sweep

Running time	
- As	
- What is the size of AS?$\cdot 0$ O(n)	
- How many operations?	
- o(n+k)	
- Overall time?	Bentley-Ottmann sweep runs in
- 0 ($(\mathrm{n} \times \mathrm{l}) \mathrm{g}$ n)	$\mathrm{O}((\mathrm{n}+\mathrm{k}) \lg \mathrm{n})$ time.
- EventList	
- What is the size of EventList?	
- How many operations?	
- o(n+k)	
- Overall time?	

65

